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Abstract 

 

Accurate identification of copy number alterations is an essential step in understanding the events driving 

tumor progression. While a variety of algorithms have been developed to use high-throughput 

sequencing data to profile copy number changes, no tool is able to reliably characterize ploidy and 

genotype absolute copy number from tumors which contains less than 40% tumor DNA. To increase our 

power to resolve the copy number profile of these low cellularity tumor genomes, we developed a novel 

approach which pre-phases heterozygote germline SNPs in order to replace the commonly used  'B-allele 

frequency' with a more powerful 'parental-haplotype frequency'. We also describe a novel 'digital spectral 

karyotyping’ approach for visualization of copy number alterations. 

 

We apply our tool - sCNAphase - to characterize the copy number and loss-of-heterozygosity profiles of 

four publicly available breast cancer cell-lines. Comparisons to previous spectral karyotyping and 

microarray studies revealed that sCNAphase reliably identified overall ploidy and the individual copy 

number changes from each cell-line. Analysis of tumor-normal cell-line mixtures demonstrated the 

capacity of this method to determine the level of tumor purity as little as 5% tumor DNA and to 

consistently identify sCNAs and characterize ploidy in samples at 10% tumor purity. This novel 

methodology has the potential to bring sCNA profiling to low-cellularity tumors, a form of cancer unable 

to be profiled by current methods. 
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Introduction 

Somatic Copy Number Alterations (sCNAs) represent an important class of mutation in the cancer 

genome, evident by the large number of short focal sCNAs and larger chromosomal scale changes seen 

in the analysis of individual tumor genomes (Beroukhim et al. 2010). This class of mutation has been 

linked to tumor progression, metastasis, multidrug resistance and poor clinical outcomes (Carter et al. 

2006; Sheffer et al. 2009; Lee et al. 2011; Hieronymus et al. 2014; Bambury et al. 2015). Despite the 

sporadic accumulation of sCNAs during tumor progression, a number of regions are subject to recurrent 

sCNAs (Zack et al. 2013). Some of these recurrent sCNAs are found across different cancer types, while 

others were specific to a particular type or subtype of the disease (Chin et al. 2006; Sheffer et al. 2009; 

Cho et al. 2011; Curtis et al. 2012). As a result, determining the sCNAs in an individual tumor sample 

has become standard practice in pathology labs for the treatment of some cancers. For example, this is 

routinely used to assign the optimal chemotherapeutic treatments for patients with breast cancer who 

contain additional copies of the HER2 gene (Bast et al. 2001; Slamon et al. 2001). 

 

Despite the importance of this class of mutation, it can be difficult to characterize the copy number profile 

of a tumor genome. Large numbers of invading cells with a normal, diploid genome, such as endothelial 

or immune cells, can obscure the mutations in the tumor genome (Carter et al. 2012). These low 

cellularity samples represent a significant challenge as the best current methods fail to produce the correct 

results when tumor purity falls below 40% (Supplementary Table 1). The tumor purity for a number of 

serious forms of cancer, such as Breast Invasive Carcinoma, Lung Adenocarcinoma and some forms of 

Melanoma routinely fall below this threshold, moreover multiple cancers including renal clear cell 

carcinoma and lower grade glioma show a decreased survival time with lower tumor purity (Aran et al. 

2015). Thus there is an important unmet need to identify copy number mutations in low purity samples. 

 

It is possible to survey the copy number profile of samples with a high tumor content, using a number of 

different techniques, however it is difficult to characterize the full spectrum of sCNAs with a single 

technology. Spectral Karyotyping (SKY) is one of the most accurate tools for characterizing and 

visualizing genome wide changes in ploidy (Schröck et al. 1996; Sirivatanauksorn et al. 2001; Storlazzi 

et al. 2010; Stephens et al. 2011), but suffers from a limited resolution and is low throughput. More 

recent technologies, such as comparative genomic hybridization (CGH) and single-nucleotide 

polymorphism (SNP) microarrays have all provided powerful approaches for interrogating the tumor 

genome and identifying copy number mutations (Zhao et al. 2004; Conrad et al. 2010; Pinto et al. 2011; 

Carter et al. 2012; Krijgsman et al. 2014). While these approaches have been used effectively to profile 

sCNAs across a large number of tumor samples, the performance of these tools are restricted by the 

resolution of different microarray platforms.  

 

High throughput sequencing (HTS) is a powerful technology for identifying sCNAs, which may make it 

possible to characterize the complete copy number profile of impure cancer samples. A number of 

computational tools have been designed to identify copy number changes, characterize loss of 
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heterozygosity (LOH) and identify homozygous deletions, as well as address the challenges posed by 

stromal cell contamination in tumor samples from HTS data (Supplementary Table 1). These tools use 

a variety of different signals present in HTS data including read depth aberration, B-allele frequency at 

somatic and  germline SNPs. Many of these tools do not address ploidy, and most of them are not suitable 

for samples with tumor purity less than 40% (Yau et al. 2010; Gusnanto et al. 2012; Li and Xie 2014; 

Oesper et al. 2014). Only Absolute and CNANorm have an explicit parameterization of ploidy in their 

model. Absolute has been shown to accurately estimate tumor ploidy and purity in tumor cell-line derived 

tumor-normal mixture samples which contained as little as 40% tumor DNA (Carter et al. 2012). 

CLImAT is a recently introduced tool, which uses read-depth and BAF to estimate the ploidy and purity 

of impure tumor genomes and also characterizes copy number and LOH changes (Yu et al. 2014). At 

20% tumor purity, CLImAT demonstrated more robust purity and ploidy estimates as well as greater 

sCNA and LOH calling accuracy than Absolute (Carter et al. 2012),  SNVMix (Goya et al. 2010), 

Control-FREEC (Boeva et al. 2012) and Patchwork (Mayrhofer et al. 2013), however this was evaluated 

using simulated tumor chromosomes rather than tumor-normal mixture samples. 

 

Modelling BAF has strengths and limitations complementary to read-depth (RD) modelling. BAF - 

which effectively uses an internal control of one allele versus the other - is less susceptible to position-

specific biases, such as GC and mappability biases. However, one striking disadvantage of BAF 

modelling is that it is not possible to directly summate the allelic depth signal over multiple adjacent 

SNPs, as the non-reference alleles at one adjacent positions may not be on the same parental haplotype. 

Summating RD over windows of size from 10kb up to 1Mb leads to substantial increases in statistical 

power to detect sCNAs. We hypothesized that application of state-of-the-art computational phasing 

approaches, incorporating population haplotype from the 1000 genomes project (Altshuler et al. 2012) 

as well as direct within-read phasing (Delaneau et al. 2013), would allow us to sum allelic depth along 

phased haplotypes to obtain parental haplotype frequency (PHF) estimates. We further hypothesized that 

modelling PHF instead of BAF could lead to improved power characterize tumor ploidy and sCNAs at 

ultra-low levels of tumor purity. 

 

In this manuscript we present sCNAphase, a tool, which has been developed to characterize the full copy 

number profile of a cancer sample across a range of tumor purity. It achieves this by inferring tumor 

ploidy, sCNAs and regions of LOH across all levels tumor purity by integrated modelling of PHF and 

RD. We show that sCNAphase has accuracy comparable to SKY in determining genome-wide increases 

in ploidy and it is able to identify focal sCNAs that are consistent with results from microarray analyzes. 

We also show that sCNAphase can confidently determine regions that have undergone a loss of 

heterozygosity event and identify regions of homozygous deletion. Moreover, sCNAphase consistently 

generates accurate sCNA segmentations at low levels of tumor purity and can accurately define levels of 

tumor purity in mixtures containing 5% tumor DNA. 

  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 4, 2016. ; https://doi.org/10.1101/038828doi: bioRxiv preprint 

https://doi.org/10.1101/038828


5 
 

 

Results 

 

We downloaded high quality sequencing data from eight publicly available, well-characterized cancer 

cell-lines. These cell-lines were generated from matched tissue samples and represent breast cancer and 

normal tissue samples from four patients (Table 1). 

 

Table 1.  Samples included in analysis 
Cell-line Platform Library Coverage Tissue Annotation 

HCC1143 HiSeq2000 Paired WGS 50x Breast 
Ductal 

52 years female, Caucasian with STAGE IIA, 
grade 3 Breast ductal carcinoma 

HCC1143BL HiSeq2000 Paired WGS 60x, 30x Blood Paired 60x normal for HCC1143 and 
independent 30x sample 

HCC1954 HiSeq2000 Paired WGS 58x Breast 

Ductal 

61 years female, Indian with STAGE IIA, grade 
3 Breast ductal carcinoma.  

HCC1954BL HiSeq2000 Paired WGS 71x, 30x Blood Paired 60x normal for HCC1954 and 
independent 30x sample 

HCC1187 HiSeq2000 Paired WGS 93x Breast 

Ductal 

41 years female, Caucasian with STAGE IIA, 
grade 3 Breast ductal carcinoma 

HCC1187BL HiSeq2000 Paired WGS 49x Blood Paired normal for HCC1187 

HCC2218 HiSeq2000 Paired WGS 83x Breast 
ductal 

38 years female, Caucasian with STAGE IIIA, 
grade 3 Breast ductal carcinoma 

HCC2218BL HiSeq2000 Paired WGS 37x Blood Paired normal for HCC2218 

 
 

Haplotype phasing greatly improves the power to identify sCNA from allelic depth 

The B-allele frequency (BAF) is commonly used to detect the presence of copy number variants (CNVs) 

in normal, diploid genome(Coin et al. 2010). This signal can also be interrogated to find sCNAs by 

looking for deviations from an expected equal ratio of two alleles at germ-line heterozygous SNPs. In 

order to investigate the power in this signal, we calculated Allelic Depth (AD) at all germ-line 

heterozygous SNPs in a tumor derived cell-line (HCC1143, see Table 1) at varying tumor purities, as 

well as in the matched normal sample (note that an independent normal was used to generate artificial 

mixed tumor/normal samples at varying purity, see Methods). The distribution of p-values under a null 

model which assumes an equal ratio is inflated even for the normal sample, due to the presence of 

germline CNVs (Supplementary Figure 1), thus we instead calculate p-values under the assumption 

that tumor BAF is the same as germ-line BAF, which corrects this inflation (Figure 1A). BAF provides 

substantial power to identify sCNA at 100% purity (Figure 1B.), but the signal is too weak at 5% purity 

to identify any sCNAs (Figure 1C.). 
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To investigate the improvement in power to detect sCNAs using PHF rather than BAF, we phased germ-

line heterozygotes using SHAPEIT2 (Delaneau et al. 2013) and the panel of reference haplotypes from 

the 1000 Genomes Project, then used this information to calculate tumor PHF in no-overlapping windows 

of 40 consecutive heterozygous SNPs (See methods).  This strategy dramatically improved the power to 

detect sCNAs in the 100% purity sample (Figure 1E) and 5% (Figure 1F), and did not lead to spurious 

identification of sCNAs in the normal sample (Figure 1D). 

 

 

Figure 1. The capacity of different Allele Frequencies to determine sCNAs in tumor derived cell-line samples. Each 
of the points in the Q-Q plots corresponds to a p-value for a pair of allelic depths from a tumor derived cell line 
(HCC1143) at all germ-line heterozygote SNPs in different scenarios.  The red line represents the expected 
distribution of p-values under the null hypothesis (of no sCNA).  P-values are calculated using a binomial distribution 
with probability of success equal to observed germline BAF (A, B, C) or PHF (D, E, F).   Deviation above this line 
indicates power to detect sCNA (A) Using BAF on 0% tumor purity sample (i.e. normal). (B) Using BAF at 100% 
tumor purity (C) Using BAF at 5% tumor purity. (D) Using PHF on a 0% tumor purity sample (i.e. normal). (E) 
Using PHF at 100% tumor purity. (F) Using PHF on 5% tumor purity.  

 

We developed sCNAphase to capitalize on the capacity of the PHF-based approach to characterize copy 

number profiles at very low tumor purity.  This method was designed to integrate PHF (derived from 

computational phasing) with the total read depth to identify sCNAs, haplotype-specific copy number 

mutations, estimate the tumor content of a sample and accurately characterize changes in tumor ploidy 

(Figure 2). 
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Figure 2.  The individual steps that make up the sCNAphase workflow. (A) Each panels shows an individual process 
used by sCNAphase to characterize the copy number profile from matched tumor and normal pairs. (B) The BAFs 
from a region of chromosome 8 from the HCC1143 breast cancer cell-line. (C) The application of phasing to the 
BAF data makes it possible to identify PHFs, regions composed of 40 adjacent germline, heterozygous SNPs. Each 
PHF increase the power of this analysis and makes it possible to better reflect the copy number profile of this region. 
(D) Application of the sCNAphase pipeline to the phased data, calls specific copy number changes. 
 

In order to characterize the complete copy number profile of a tumor sample, sCNAphase is broken into 

a number of distinct steps (Figure 2). Analysis of the matched normal sample is used to identify 

heterozygous SNPs present in the germline, these results are passed through SHAPEIT2 (Delaneau et al. 

2013), a method that uses information from the 1000 Genomes Project to determine the haplotype of 

each these heterozygous alleles. The allelic depth from groups of 40 of these polymorphic sites are 

merged to produce a PHF region (90% of PHF regions are < 100kb). This PHF information is first used 

to estimate the maximum likelihood of a tumor belonging to a specific ploidy, our model examines a 

larger range of ploidy than other tools, allowing us to characterize samples more complex than a triploid. 
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This ploidy information is used to determine tumor purity and estimate tumor cellularity in an iterative 

manner. Together this information used to identify the individual copy number changes (Methods). 

 

Analysis of each of the matched cell-line pairs using sCNAphase revealed that a significant fraction of 

the genome had been altered by some form of copy number mutation. In some cell-lines, this analysis 

classified a large amount of the genome as having undergone an LOH event (Table 2) such as HCC1143 

and HCC1187, interestingly in HCC1143 the majority of these LOH events corresponded to regions that 

contained two or more copies. These analyses also indicate that each of the cell-lines had seen a 

significant increase in ploidy.  

 

Table 2: Summary of results from sCNAphase on 4 cancer cell lines. The proportion of the genome that 

has undergone sCNA is calculated as the proportion of the genome with copy number not equal to nearest 

integer ploidy. 

 

Cell-line 

Estimated Ploidy Proportion of genome 

Ploidy 

determined by 

sCNAphase 

Ploidy determined 

by COSMIC 
Undergon

e sCNA  
Undergone 

LOH 

Undergone 

LOH with more 

than 2 copies 
HCC1143* 

Hypo-tetraploid 
3.7 3.36 83% 46% 30% 

HCC1954* 
Tetraploid 

4.5 4.2 43% 8% 6% 

HCC1187* 
Hypo-triploid 

2.7 2.64 28% 58% 8% 

HCC2218# 
Tetraploid 

4.2 3.93 64% 14% 4% 

* Cell-line with the ploidy determined from SKY (Grigorova et al. 2005). 
# Cell-line with the ploidy determined from flow cytometry (Kao et al. 2009). 

 
 

Digital Spectral Karyotyping with sCNAphase is concordant with spectral karyotyping  

We developed a visualization tool for the output from sCNAphase, which we call digital spectral 

karyotyping (dSKY), as it generates an image, which is directly comparable to spectral karyotyping 

(Figure 3). These dSKY plots make visual identification of aneuploidy, loss of heterozygosity and focal 

changes straightforward. To build on SKY platform, red shading on the chromosome ideograms indicates 

regions of LOH, and green shading indicates double deletions. 

 

dSKY plots generated from the sCNAphase analysis of these cell-lines, were compared to images from 

existing SKY analyses of the same cell lines (Figure 3, Supplementary Figure 2) (Grigorova et al. 

2005). Results from sCNAphase were highly concordant with those from the SKY analysis, both at the 

level of average ploidy (Table 2) and also in the identification of large-scale genomic alterations. For 

example, both the sCNAphase and SKY analysis of HCC1187 classified this cell-line as hypo-triploid 

and identified 4 complete copies of chromosome 7 (Figure 3). The higher resolution provided by 
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sCNAphase, reveals more information about the length and the exact location of smaller sCNAs not 

readily visible by the traditional SKY analyses, such as a focal amplification in 10q23.1 (Figure 3; High 

resolution image at https://figshare.com/authors/_/1365237). sCNAphase identified regions that had 

undergone an LOH event, which can provide additional insight into the mutational history of a tumor 

sample. For example both the sCNAphase and SKY analyses of HCC1143 identified 4 copies of 

chromosome 5 (Supplementary Figure 2AB), however our analyses revealed that this chromosome as 

having undergone LOH. Our results indicate that this mutation was not the result of the duplication of 

both parental chromosomes but rather the deletion of one, coupled with the 4x amplification of the other.  

 

 

Figure 3. The digital SKY plots from sCNAphase recapitulate the results from SKY analysis 
 
The dSKY plot from the sCNAphase analysis of HCC1187, as well as the results from an existing SKY analysis of 
the same cell-line (Grigorova et al. 2005) for each chromosome are shown side by side. While there are some minor 
differences such as chromosome 9 and 18, the results from these two methods are largely consistent with one another. 
A yellow box highlights a recurrent, focal amplification on the q arm of chromosome 10. 
  

sCNAphase accurately calculates tumor ploidy, tumor purity and sCNAs across a range of 

different levels of simulated tumor purity 

The presence of stromal cells, or other cells with a normal diploid genome in a solid tumor sample can 

impact the capacity of genomic-based approaches to characterize mutations in a tumor sample (Carter et 

al. 2012). To assess the performance of sCNAphase to characterize impure tumor samples, simulated 

mixtures from HCC1143 and HCC1954 (Wilks et al. 2014) as well as HCC1187 and HCC2218 from  

Illumina BaseSpace (https://basespace.illumina.com) were analyzed (see Methods). To simulate the 

range of tumor heterogeneities found in primary tumor samples, each cell-line had a number of mixtures 

analyzed, each with varying proportions of tumor cell-line DNA (95%, 80%, 60%, 40%, 20%, 10%, 5% 

and 0% - see methods). Each mixture and matched normal sample was passed through the sCNAphase 

pipeline. Given that the ploidy estimates from the pure cell lines were comparable to the results from 

SKY (Table 3), we assessed the degree to which the analysis from the mixture samples were consistent 

with the results from the pure cell lines. A similar analysis was carried out using CLImAT (version 1.1), 
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the BAF-based approach most capable of characterizing low purity samples, which allowed us to 

examine the increased power offered by the use of PHFs. 

 

This analysis revealed that sCNAphase was able to accurately recapitulate the ploidy results from each 

of the pure cell-lines across the majority of the mixtures as well as accurately determine the level of 

tumor DNA in each sample (Figure 4AB, Supplementary Table 2). The only inaccurate ploidy calls 

came from the mixtures that contained ultra-low levels of cell-line DNA (5%) in HCC1954 and 

HCC2218. Despite this, sCNAphase was still able to accurately report on the amount of cell-line DNA 

in these samples. Across the entire cohort of mixtures, the sCNAphase results only deviated from the 

simulated proportion by maximum 2% (Figure 4B, Supplementary Table 2). Furthermore, sCNAphase 

estimated that all 0% cell-line DNA mixtures contained less than 0.1% tumor content, an important 

measure of the robustness of the algorithm. Cellularity estimates, which can be calculated as a function 

of tumor purity and ploidy (see Methods) were also reported (Figure 4C). The sCNAs identified were 

consistent across the mixtures (see Methods) except for the 5% mixtures from HCC2218 and HCC1954 

in which the ploidy estimates had been incorrectly calculated (Figure 4D). Adjusting the ploidy to the 

correct value rescued the segmentation and allowed sCNAphase to capture the same broad copy number 

profile from these 5% mixtures (Supplementary Figure 3).  

 

Figure 4. Inference from sCNAphase and CLImAT on HCC1954 (hyper-tetraploid), HCC2218 (tetraploid), 
HCC1143 (hypo-tetraploid) and HCC1187 (hypo-triploid across a range of tumor purity.  (A) Inferred ploidy 
as a function of tumor purity. (B) Estimated  tumor purity as a function of simulated tumor purity (proportion of 
tumor DNA in sample). No results shown for CLImAT as it estimates cellularity only. (C) Estimated tumor 
cellularity (the proportion of tumor cells in each sample) as function of simulated purity. (D) self-consistency, 
measured as average of base-pair sensitivity and base-pair specificity,  with 100% tumor sample estimate as tumor 
purity decreases.  
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In comparison, CLImAT provided robust cellularity estimates for 3 of 4 samples down to 20% tumor 

purity, but substantially over-estimated tumor cellularity for low purity samples, including the 0%  (i.e. 

normal) mixture sample (Figure 4C).  The sCNA predictions of CLImAT were self-consistent down to 

20% purity for 3 of 4 samples, although with lower self-consistency scores than sCNAphase (Figure 4D).  

However,  CLImAT, only determined the correct ploidy for two of these cell-lines and for one of these 

cell-lines it was only in samples that contained high levels of cell-line DNA (HCC1143 at higher than 

60%). CLImAT failed to recognize HCC2218 and HCC1954 as tetraploids across all levels of tumor 

purity (Figure 4B). Furthermore, CLImAT reported inflated cellularity estimates in the low purity 

mixtures (CLImAT does not report purity). As a result, CLImAT estimated every mixture containing 0% 

tumor cell-line DNA, to contain a substantial proportion (i.e. greater than 40%) of tumor cells (Figure 

4C). This comparison highlights the difficulties involved in correctly predicting ploidy and accurately 

estimating tumor cellularity in low purity mixtures. These results showcase the utility of the increased 

power offered by PHFs to resolve complex tumor genomes over the current state-of-the-art BAF based 

approach. 

Microarray analysis of cell-lines validates the sCNAphase results  

The Cancer Cell Line Encyclopedia and the COSMIC Cell Line Project (Forbes et al. 2015) provide an 

independent annotation of the mutations present in publically available cell-lines. The copy number 

profiles of the cell-lines analyzed by sCNAphase had been characterized as part of this COSMIC project, 

and were independently profiled using a PICNIC analysis of microarray data (Greenman et al. 2010). 

This resource provides us with an independent annotation of the specific sCNAs in each of these cell-

lines and allows us to investigate the capacity of sCNAphase to report on individual sCNAs. To compare 

the annotations of these cell-lines, the base ploidy for each cell-line needed to be determined. With the 

exception of HCC1187, all cell-lines were treated as tetraploids, while HCC1187 was considered as 

triploid. Any segment determined to have a value higher than this was defined as an amplification and 

those with a lower value were defined as a deletion. Sensitivity and specificity were calculated by 

counting the number of bases overlapping between two events which have the same direction (i.e. gain 

or loss) relative to the base ploidy (see Methods). This comparison revealed that the majority of events 

present in the COSMIC annotation of each cell line could be found across the range of mixtures for each 

cell-line using sCNAphase, when ploidy was properly assigned (Figure 5A, B). In the samples in which 

ploidy was incorrectly calculated (5% HCC2218 and HCC1954), the capacity of sCNAphase to reflect 

the COSMIC results was greatly diminished. A similar comparison with the results from CLImAT 

showed that this approach failed to correctly profile any of the HCC2218 or HCC1954 mixtures (Figure 

5A, B). The comparison of the sCNAs identified by an array-based approach to those identified by 

sCNAphase and CLImAT, illustrate the ability of sCNAphase to identify valid copy number changes 

across a range of different simulated tumor cellularities. 

 

LOH events are a common feature of the cancer genome and have been previously linked to the 

inactivation of tumor suppressors (Side et al. 1997; Tuna et al. 2009). Given the capacity of our approach 

to quantify and identify the haplotype of each chromosome, we assessed the ability of sCNAphase to 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 4, 2016. ; https://doi.org/10.1101/038828doi: bioRxiv preprint 

https://doi.org/10.1101/038828


12 
 

identify the LOH events present in the COSMIC annotation of these cell lines (Figure 5C, D). This 

comparison showed sCNAphase identified approximately 90% of the regions of  LOHs in COSMIC 

annotations of these cell-lines while producing only few spurious results (except for HCC1954). 

Furthermore, sCNAphase was still able to identify the same regions of LOH in the ultra-low purity 

samples in which ploidy had been incorrectly assigned.  

 

Despite the high level of similarity between the results from sCNAphase and COSMIC for the majority 

of cell-lines, few regions of LOH in the COSMIC annotation of these cell-lines were not identified in the 

corresponding sCNAphase analysis. For example, chr9p1-13 of HCC1187 was defined as a region of 

LOH by both COSMIC and CLImAT (Figure 5E), however only small islands of LOH were identified 

in the sCNAphase analysis of the same region (marked in pink). To identify any shortcomings in the 

sCNAphase algorithm, we investigated the raw BAFs from this location. This analysis revealed that these 

regions are unlikely to be homozygous, as the individuals BAFs are highly variable, unlike the remainder 

of the chromosome (Figure 5F).  

 

In the analysis of HCC1954 there was a low degree of overlap between the regions of LOH identified by 

sCNAphase and CLImAT and those present in the COSMIC LOH annotation of the cell-line. Closer 

inspection indicated that these differences were due to large chromosomal regions predicted to be LOH 

in COSMIC, but which appear to be regions of high copy number and allelic imbalance, rather than 

regions of LOH (Supplementary Figure 4). We also found substantial differences between the copy 

number estimates from COSMIC and sCNAphase for multiple chromosomal arms for HCC1954 as well 

as differences between the ploidy estimates in COSMIC and those from sCNAphase and the previous 

SKY analyses (Supplementary Figure 2,4). Given the inconsistent results, the COSMIC annotation of 

the HCC1954 may underestimate the ploidy of this cell-line (Table 2), and as a result, may have reported 

some regions of LOHs and focal deletions for HCC1954 that do not reflect the true copy number profile 

of this cell-line. 
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Figure 5. sCNAphase recapitulates the COSMIC annotation of these cell-lines across a range of purities.  
Consistency with COSMIC segmentation for copy number (A, B) and LOH (C,D) at varied tumor purity. For tumor 
samples at different tumor purity, the base-pair sensitivity in (A,C) and base-pair specificity in (B,D), was calculated 
by overlapping sCNAphase and CLImAT segmentations estimated at a particular tumor purity with COSMIC 
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segmentations based on 100% purity tumor samples. Each of the four cell-lines was represented a particular point 
shape as indicated in the legend. Results from sCNAphase and CLImAT are shown in green and black respectively. 
The copy number segmentations of chr9 p-arm HCC1187 from COSMIC, sCNAphase and CLImAT were shown in 
(E) in blue, green and black hash lines respectively. BAFs at this region in (F) support the loss of heterozygosity in 
p-arm except for the region highlighted in the pink box (39M-47M). For most of this 8M region, sCNAphase did 
not report copy number or LOH due to the highly variable BAFs which give merging errors (see Method). 

 
Focal sCNAs identified by sCNAphase mirror those identified by microarray analysis 

Given the clinical importance of recurrent focal amplifications in the cancer process, we assessed the 

performance of sCNAphase and CLImAT to detect the focal amplifications (100kb to 4Mb) present in 

the COSMIC annotation for these four cell-lines, using a 50% reciprocal overlap criterion (see Methods). 

In the analysis of the pure cell-lines sCNAphase was able to detect majority of the focal amplifications 

present in the COSMIC annotation of each of these cell-lines (see Methods), with a sensitivity 

approximately twice that of CLImAT, as well as a specificity which was as good or better than CLImAT 

(Table 3, Supplementary Table 3). As the tumor purity decreased to 10%, the performance of 

sCNAphase remained unchanged. However the performance of CLImAT was unstable for all four cell-

lines. At 10% tumor purity, CLImAT failed to identify any of the focal amplifications present in the 

COSMIC annotations from any of the cell-lines, while sCNAphase was able to identify over 60% of the 

focal mutations. 

 

The sCNAphase analysis of HCC1143 and HCC1187 was still able to identify the majority of focal 

events at 5% tumor purity, the sensitivity of sCNAphase dropped significantly for HCC1954 and 

HCC2218, however this was due to the underestimation of the tumor ploidy in these samples. Despite 

this, sCNAphase was able to detect at least 12 copies of the pathologically relevant ERBB2 in HCC1954 

and HCC2218 across the entire cohort of mixtures (Supplementary Table 4), highlighting the diagnostic 

potential of sCNAphase (Neve et al. 2006; Kao et al. 2009) at even 5% tumor DNA. Likewise, another 

focal peak of amplification, that was found to be recurrently altered in breast cancer (11q13) (Desnoyers 

et al. 2007; Sawey et al. 2011), was detected in both the 100% HCC1143 and HCC1954 samples, as well 

as their corresponding 5% mixtures. The identification of focal events, including those that are well 

known to be clinically significant, across the full range of mixtures demonstrates the capacity of 

sCNAphase to identify pathologically relevant sCNAs in ultra-low purity samples. 

 
Homozygous deletions are another class of copy number mutation involved in the tumorigenic process 

(Knudson et al. 1975; Cairns et al. 1995; Li et al. 1997). The COSMIC annotations show that there are 7 

homozygous deletions larger than 100Kb in these four cell-lines (Supplementary Table 5). sCNAphase 

was able to consistently detect the 3 longer homozygous deletions from HCC1143 and HCC1187. The 

size of a focal deletion, more specifically, the number of germ-lines SNPs in the region limits sCNAphase 

from identifying shorter events. Our analysis of HCC1954 did not detect the longer deletion from chr22 

of HCC1954, however analysis of the raw sequencing data suggest that this deletion may be shorter than 

the 332kb listed in the COSMIC annotation, as the read depth at the flanking region is significantly 

higher than the deleted region (Supplementary Figure 5). Despite this, sCNAphase did not identify any 

false positives and was able to consistently identify these deletions at minimal levels of tumor purity. In 
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contrast, CLImAT failed to identify any of homozygous deletions present in COSMIC, however it did 

classify a number of other areas, as homozygous deletions that were not present in either the COSMIC 

or sCNAphase results. 

Table 3. The capacity of sCNAphase to detect the focal sCNAs in COSMIC 

Tumor 
purity 

HCC1143 
15 focal 
amplification from 
COSMIC 

HCC1954 
94 focal 
amplification from 
COSMIC 

HCC1187 
2 focal amplification 
from COSMIC 

HCC2218 
18 focal 
amplification from 
COSMIC 

Sen Spe Sen Spe Sen Spe Sen Spe 

100% 80 23 66 52 100 26 61 31 

80% 80 24 67 47 100 25 56 31 

60% 80 24 63 47 100 27 44 38 

40% 67 28 61 52 100 30 78 25 

20% 80 22 65 57 100 30 61 44 

10% 87 29 77 52 100 23 61 48 

5% 80 23 37 93 100 29 22 100 

Sen for sensitivity; Spe for specificity. 

 

sCNAphase identifies biologically significant events in samples too complex for existing 

methodologies  

The comparison between the results from the COSMIC microarray and the sCNAphase analysis of the 

same cell-lines, demonstrated the capacity of our approach to identify recurrent focal sCNAs that have 

been previously associated with cancer. While the detection of focal amplifications is essential for any 

tool designed to characterize the copy number profile of a tumor genome, we wanted to access the 

capacity of sCNAphase to identify potentially biologically significant changes outside of these more 

prominent regions and in samples thought to be too complex for other studies. 

 

The use of microarrays to survey the tumor genome, made it possible to quantify the number of 

chromosomes in tumor sample, while identifying instances of LOH. These studies identified regions 

recurrently altered by LOH but contained a normal karyotype, something that trait that thought to be the 

result of multiple mutational processes and too complex to be observed across the genome using prior 

methodologies. A number of these regions of recurrent Copy Neutral- LOH (CN-LOH) have been 

directly linked to cancer and include TP53 as well as CDNK2A (Murthy et al. 2002; Mullighan et al. 

2007). However the identification of these complex regions with microarrays was not always possible, 

as they are obscured in samples that contained small amounts of tumor content (<40%) (Carter et al. 

2012). Examination of the results from the analysis of the pure cell-lines with sCNAphase, revealed a 

number of regions that had undergone LOH and contained two or more copies. Furthermore, a number 

of these regions were present in multiple cell-lines. To investigate the capacity of our tool to characterize 

this complex event, in samples too complex for existing methods, we examined the results from 
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sCNAphase to identify instances of recurrent LOH in segments containing two or copies from samples 

containing very low levels of tumor DNA. 

  

Analysis of the mixtures that contained 10% tumor DNA, revealed that the majority of the regions of 

CN-LOH, or regions of Acquired Uniparental Polysomy (AUPP - LOH in regions that contain three or 

more copies), could be identified in the analysis of the corresponding pure cell-lines. Analysis of these 

low tumor content mixtures, revealed a number of regions of AUPP or CN-LOH shared across multiple 

cell-lines (Supplementary Table 6). These recurrent regions of LOH included chr5q and chr17p as well 

as parts of chr17q, all of which had been previously found to undergo recurrent CN-LOH in cancer 

(Murthy et al. 2002; Lips et al. 2007; Tuna et al. 2009; Pedersen et al. 2013).  

 
One of these regions, the p arm of chromosome 17 was found to be altered in all of these cell-lines (this 

region was not classed as LOH in the 10% mixture from HCC1143, but was correctly classified in the 

5% mixture), a result echoed in the literature, which describe the tumor suppressor TP53, a gene located 

in this region as the most common region of CN-LOH across a range of different types of cancer (Tuna 

et al. 2009; Whibley et al. 2009). To investigate the biological impact of these recurrent regions of LOH 

and the single nucleotide resolution offer by the HTS platform, we performed an in-depth examination 

of the TP53 locus in each of these cell-lines. This analysis revealed homozygous somatic mutations in 

TP53 for three of the cell-lines (Supplementary Figure 6). In the remaining cell-line HCC2218, two 

heterozygous germline SNPs were identified (Supplementary Table 7), one of which, R283C has been 

previously shown to increase a carrier’s risk of developing cancer (Murthy et al. 2002; Keller et al. 2004; 

Manoukian et al. 2007). It is likely that the loss of the wild type allele and the amplification of the 

deleterious SNP only increases this risk. These results demonstrate the power offered by HTS and 

sCNAphase to characterize the biological impacts of a complex mutation in complex samples. 

 

Discussion  

Although somatic copy number alterations are a well-established driver of cancer, the capacity to identify 

these mutations are impacted by a number of issues including varying levels of tumor purity and frequent 

changes in tumor ploidy. As a result, the majority of methods designed to characterize the sCNAs in the 

cancer genome are unable to accurately profile a significant fraction of primary tumor samples. In this 

study, we have shown that by taking a haplotype-based approach, sCNAphase can overcome these issues 

and reliably characterize both genome-wide copy number changes and the individual mutations present 

in a tumor genome across a range of tumor purities.  

 

The results shown here confirm the capacity of sCNAphase to accurately reflect the copy number profile 

of a range of different primary tumor like samples. This was achieved by demonstrating that sCNAphase 

could precisely determine a number of key factors that are essential to correctly characterizing the full 

scope of copy number changes in a tumor sample. Comparison of the results from the sCNAphase to 

those from SKY and flow cytometry, illustrated the ability of sCNAphase to correctly reflect the genome-
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wide changes in ploidy (Figure 3 and Supplementary Figure 2). Using a range of mixtures, to simulate 

the challenges posed by low-cellularity primary tumors, we were able to recapitulate the changes in 

ploidy seen in the analysis of the pure cell-lines, across the spectrum of tumor purities (Figure 4). Equally 

important was that the sCNAphase analyzes of the mixtures that did not contain any cell-line DNA, did 

not produce false positive results (Figure 4). When the specific copy number changes identified by 

sCNAphase were compared to those identified by microarray, it was apparent that our methodology was 

able to accurately reflect the individual sCNAs present, across the majority of samples (Figure 5). In 

depth examination of the results from sCNAphase revealed a number of changes that could be linked to 

the tumorigenic process in these cell-lines, highlighting the potential of this tool to identify biologically 

significant changes in primary tumor samples. Furthermore, when compared to CLImAT, a BAF-based 

tool that was found to best handle the challenges posed by primary tumors (Table 1), sCNAphase was 

found to consistently outperform this methodology, highlighting the potential offered by our PHF-based 

approach. Together, these results demonstrate that using PHFs, sCNAphase is able to better reflect the 

full range of copy number changes in samples representative of the complexity present in primary tumors. 

 

The accurate characterization of the copy number profile in low cellularity samples as well as the 

identification of mutations in cancer genes, is suggestive of the potential clinical utility of this tool. While 

the additional testing with a larger cohort of primary tumor samples is needed to fully realize this, our 

PHF based approach provides a method to identify the sCNAs in samples from which other tools cannot 

identify any sCNAs. In addition to low purity tumors or cancer types that routinely suffer from 

contaminating cells, a potential application of our PHF-based methodology would be in studies that aim 

to profile the copy number changes in a tumor through the analysis of circulating tumor DNA. Circulating 

tumor DNA, has been previously shown to contain mutations present in the tumor genome, but tumor 

DNA in circulation is mixed with DNA from normal cells and the tumor purity is frequently low (10% 

at most) (Newman et al. 2014). While sCNAphase can successfully profile low purity mixtures, it is 

likely that in order to realize this an optimized version of the tool will need to be developed. 

 

In conclusion, we have provided evidence to show that sCNAphase is a robust software package, capable 

of characterizing the copy number profile of cancer samples, across a range of different of levels of tumor 

purity. We have shown that sCNAphase is able to correct for the presence of contaminating normal cells 

in tumor samples to confidently estimate the genome-wide sCNA changes as well as accurately identify 

the presence of individual sCNAs. Comparison of the results from sCNAphase to those generated using 

BAF, shows the dramatic increase in power to resolve these complex genomes offered by our PHF 

focused approach. In addition, this tool provides an effective way of visualizing data and identifies 

regions that have undergone a LOH event. Together, these results highlight the strength of sCNAphase 

and showcase its potential to identify biologically significant changes in a clinical setting. 

 

  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 4, 2016. ; https://doi.org/10.1101/038828doi: bioRxiv preprint 

https://doi.org/10.1101/038828


18 
 

Methods 

Datasets 

The Illumina whole genome sequencing data of cell-lines, HCC1143, HCC1954, HCC1143BL, 

HCC1954BL were collected from Variant Calling Benchmark 4 provided by The Cancer Genome Atlas 

(TCGA) (Wilks et al. 2014), and HCC1187, HCC1187BL, HCC2218 and HCC2218BL were from 

Illumina BaseSpace. The tumor cell-lines, HCC1143, HCC1954, HCC1187 and HCC2218 were cultured 

from breast ductal tissue, sequenced at 50x, 58x, 93x and 83x. Patient-matched normal samples, 

HCC1143BL, HCC1954BL, HCC1187BL and HCC2218BL were from peripheral blood, sequenced at 

60x, 71x, 49x and 37x.  

 
The Variant Calling Benchmark 4 simulated tumor-normal mixture samples of HCC1143/HCC1143BL, 

HCC1954/HCC1954BL were at 30x coverage. They were created by mixing 5%, 20%, 40%, 60%, 80% 

and 95% of normal DNA to tumor DNA. The normal cell-lines HCC1143BL.30x.compare, 

HCC1954BL.30x.compare, were sequenced independently at 30x, different from the normal samples 

used to create the mixture samples. Because BaseSpace provides no mixtures samples for 

HCC1187/HCC1187BL, HCC2218/HCC2218BL, we created the mixture samples at 30x coverage with 

5%, 20%, 40%, 60%, 80% and 95% of tumor DNA, by randomly sampling and mixing suitable amount 

of reads from tumor and normal samples. To create the low coverage normal controls, we down-sampled 

bam files of the HCC1187BL and HCC2218BL to 30x coverage. Therefore, for each tumor/normal pairs, 

there are 6 mixture samples, and 1 independent normal control. In the same way, we created 10% tumor-

normal mixtures for all four cell-lines in order to assess the capacity of sCNAphase at very low level 

tumor DNA samples. 

 
All the tumor cell-lines are from high-grade breast ductal carcinoma. Based on the expression patterns, 

HCC1143, HCC1954 and HCC1187 were classified as the Basal A subtype, and HCC2218 as the 

Luminal subtype. HCC1954 and HCC2218 showed over-expression of ERBB2 (Neve et al. 2006; Kao et 

al. 2009). 

 

Workflow 

The workflow is described in Figure 2. The workflow includes the determination of the BAF for each 

heterozygous SNP (Figure 2a),  generation of phased allelic depths (Figure 2b), estimation of sCNAs 

as well as tumor purity and tumor ploidy (Figure 2c). In order to generate allelic phase information, the 

pipe-line relies on external software for SNP calling, haplotype phasing in the pre-processing steps. 

Specifically, in current analysis, we start by calling SNP variants from pre-mapped Illumina pair-end 

sequencing data using BCFtools (Li et al. 2009) in VCF format. Then we used SHAPEIT2 (Delaneau et 

al. 2013) to perform population-based haplotype phasing at the SNP variants. Notably, the variant calling 

and in-silico haplotype phasing are only performed once on a normal sample rather than all tumor 

samples. This is because population-based haplotype phasing is based on a set of common germ-line 

SNPs and INDELs; however tumor genome is usually significantly altered, therefore not suitable for 
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calling and phasing SNP variants. For the tumor samples, rather than calling variants, we calculated the 

allelic depths on the same set of SNP variants using BCFtools. 

 

Due to somatic mutations in tumor, the alleles in tumor are occasionally different from those in normal. 

The estimation process first checks the consistency of an alternative allele in normal and tumor samples, 

and then filters loci with inconsistent alternative alleles. After that, sCNAphase merges phased ADs 

every n loci. This step significantly reduces the variability of the allelic frequencies, and therefore 

increase the power in calling sCNAs.  

 

To determine the tumor ploidy, the next step is searching through all possible values from 2 to 5, 

incrementing by 0.2. Given an assumed tumor ploidy, the pipe-line identifies the tumor cellularity and 

copy number profile, which is most fitted to the merged read depths and phased allelic depths. As such, 

the estimated copy number profile with the maximal likelihood is chosen with the corresponding tumor 

ploidy, cellularity estimations. Based on this estimation, the pipe-line can generate varied outputs 

including a) a copy number segmentation file indicating which regions are amplified; b) a vcf file 

includes the genotypes, allelic copy numbers and phases for the SNPs; c) the dSKY plots which 

resembles the Spectral KaryotYping (SKY) plots. sCNAphase is powered by multithread techniques. 

This ploidy estimation step take approximately 4 hours on a machine with 12 CPUs at 1600MHz. 

 

Calculating the parental allele frequency 

Given the allelic phase calculated from SHAPEIT2, the two alleles at each SNP are arranged into 

two haplotypes for the parental chromosomes. If one haplotype is randomly chosen as maternal, the 

fraction of maternal allele depth mi over read depth di at each SNP reflects the amplification of the 

amplification of one parental chromosome over the other. Defined for a regional n consecutive 

SNPs, the parental haplotype frequency (PHF) is the sum of maternal allele depth mi to the sum of 

read depth di as follows: 

                                (1) 

 
A PHF of 0 or 1 corresponds to a homozygote. For a maternally amplified region, the PHF is expected 

to be above 0.5. B-allelic frequency (BAF) defined as the fraction of the alternative allelic depth in this 

region, however, would vary a lot about 0.5, because the amplified allele can be either the reference or 

alternative allele. In this paper, the number consecutive SNPs (n) in a region was set to be 40, but it 

can be other values. 

 

In ideal cases, when there are no allele-specific biases, such as allelic-specific enrichment during PCR, 

the probability of seeing maternal allelic depth mi, given the genotypes gi
(t), read depth di

(t), satisfy a 

binomial distribution of from a tumor sample is dependent on the genotypes gi
t, read depth di

(t), which 

approximates a binomial distribution of: 

i
i

i

m
PHF

d
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                   (2) 

 

                                 (3) 

 
in which the superscript, t differentiates a tumor sample from the matched normal. xi

(t) and yi
(t) are copy 

numbers of the maternal and paternal alleles for SNP i, which define the genotype gi
(t). Therefore given 

a genotype of {MMP, Pi is 2/3. Different from absolute copy numbers, xi
(t) and yi

(t) are copy numbers 

relative to the germ-line allelic copy number. Therefore if the copy number for the germ-line maternal 

allele is xi
(n), the absolute maternal allelic copy number in tumor would be xi

(n)·xi
(t). xi

(t) of 1 means no 

somatic copy number alterations. In most cases, xi
(n) and yi

(n) are both 1 given the normal being the diploid 

genome, so that xi
(t) represents the absolute copy number. 

 

When the genotype for a tumor sample is unknown at a site i, the parental allelic frequency, PHFi
(t) is 

the unbiased estimation of Pi
(t). The variance of PHFi

(t) from Pi
(t) is,  

                      (4) 

Therefore, as the read depth di
(t) increases, the variance becomes smaller so that the allelic amplification 

can be inferred from the average PHFi. For the genotype of {MMP} (Pi
(t) = 2/3) and 30x sequencing 

coverage, the PHFi
(t) varies in the range of 2/3 ± 0.086, in 68% of cases (Wald method). This spans 

possible allelic copy number ratios of 3/5, 2/3, 4/5. For this maternally amplified sCNAs, the merging 

on the allelic depths at neighbor SNPs, would increase the depth, therefore reduce the variability. If 

adding up the depths at every 40 SNPs, the variance reduces to 0.023 in 90% cases. In this case, genotypes 

other than {MMP} become very unlikely.  

 

Normal-tumor paired test 

Due to germ-line copy number variations (CNVs), the genotypes of a normal sample cannot be assumed 

as {MP} for all the SNPs, although for most of them the assumption is fitted. In order to call sCNAs 

(copy number gain or loss from the germ-line copy numbers), both the tumor and paired normal samples 

are required. 

 

Assuming there are no somatic alterations, the pi
 in Equation 2 can be approximated by the PHFi

(n) from 

the matched normal sample at a locus i, 

,                     (5) 

in which mi
(n) and di

(n) correspond to the maternal allelic depth and read depth for a SNP from the paired 

normal sample. 
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The fitness of this assumption can be analyzed visually from Q-Q plot, which is commonly used to 

compare if observations (an empirical distribution) fit into certain assumptions (an expected distribution). 

For a fitted assumption, the Q-Q plot is expected to be approximately y=x. In our case, this includes 1) 

calculate the probability at each SNP with Equation 2, 5; 2) rank and treat each probability as the ith 

quantile. Since an PHFi
(n) varies about the pi, this variation makes the expected distribution more variable 

than the empirical distribution of the observations. The Q-Q plot will be slightly deflated from y=x, even 

if there are no sCNAs in tumor sample. By merging the allelic depths in each haplotype, the increased 

depths will reduce the variance of PHFi
(n) about the pi, which restores the Q-Q plot to y=x as shown in 

Figure 1d. The test on the merged phased ADs is sensitive enough to detect as low as 5% tumor DNA 

providing a normal-tumor mixture.  

 

Hidden Markov Model on Allelic Depth and Read Depth 

For tumor-normal mixture samples with a tumor cellularity tc, the likelihood for observing the depths 

{mi
(t), di

(t), mi
(n), di

(n)} still satisfy a binomial distribution in Equation 2. The Pi
(t), in this case, is given as, 

 

  (6) 

 

            (7) 

in which xi
(t) and yi

(t) are the maternal and paternal allelic copy numbers for a genotype gi
(t).  

 

Given the sum of read depths across all sites R(n) and R(t) for normal and tumor samples, the likelihood 

function of read depths di
t and di

n is 

,     (8) 

,                         (9) 

 
in which γi is a factor for the position specific biases, such as the mappability and GC-bias. This is 

expected to be comparable for tumor and normal samples, given the identical procedure of library 

preparation and sequencing platform. cni
(a) is the absolute copy number in tumor for SNP i. ∑ �����

(�)
�  

and ∑ �����
(�)

� only vary with global setting of copy numbers at each locus cnj
(a). 

 

The difference of the values for the tumor and normal samples reflects the ploidy change C from diploid, 

that is 
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                             (10) 

Given the haploid coverage of normal and tumor samples at hc(n) and hc(t), the expected read depth di
(t), 

di
(n) can be calculated as follows, 

                             (11) 

 

                            (12) 

 
To find the somatic copy number alterations to the germ-line copy number, we define the relative copy 
number cni

(t) in tumor to the germ-line copy number cni
(n) in normal as, 

                                (13) 

With Equation 9, 10, 11, 12, 13, Equation 10 can be solved as, 

                   (14) 

in which cni
(t) is the sum of xi

(t) and yi
(t) given the genotype gi

(t). Notably, the mappability factor is 

cancelled out in this equation. In Equation 14, tumor cellularity tc and degree of ploidy alteration C are 

model parameters. 

 

With likelihood functions ei
RD and ei

AD, the complete likelihood of the Hidden Markov Model defined 

on read depth {RDi} and allelic depth {ADi} can be formulated as, 

       (15) 

 
in which G stands for a set of n possible genotypes. The probability of genotype transition from a 

genotype gi at SNP i to gi+1 at SNP j forms a fully connected transition matrix {tij}. Φ(g1) stands for the 

initial probability vector for the genotypes in G. The transition matrix is estimated using Baum-Welch; 

tumor cellularity tc is calculated from maximum likelihood estimation. 

 

Determination of tumor purity and cellularity 

The percentage of tumor cells, tc, in a mixture sample is different from the percentage of the tumor DNA 

content in sequencing data tcd. For tumor with higher than 2 ploidy, tcd is bigger than tc. The relationship 

of the two scales is shown in following equation, 

              (16) 

in which base(n) and base(t) are the haploid read depth for normal and tumor samples respectively. The 

relation between the expected read depths ��
(�)�����

 and ��
(�)�����

 at a SNP i and base level read depths base(n) and 

base(t) is, 
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Assume di
n and di

t is close enough to ��
(�)�����

 and ��
(�)�����

, the tcd and tc can be calculated with equation 16, 17 

and 18 as, 

.                (19) 
 
Estimation of tumor aneuploidy  
Predicting the average ploidy of tumor genome is a tricky problem, because the amount of DNA from a 

single cell in the primary tumor sample is unquantified for NGS. This causes ambiguity in ploidy 

estimation. A duplicated genome ({MMPP}) with 2 copies of chromosomes from each parent is 

indistinguishable from a diploid genome ({MP}), since the genotype of {MMPP} at ploidy of 4 and 

{MP} at ploidy of 2 are equivalent states and the allelic depths and read depths could not tell which is 

more likely. If there is a region with odd copy numbers, e.g. the genotype of {MMP} for a genome at 

average ploidy of 4, the region will strongly against the average ploidy of 2, as there is no equivalent 

genotype at that ploidy with 1.5 copies.  

sCNAphase searched through all possible average ploidy values (the parameter C in Equation 14) from 

1.8 to 5.0 and choose the one with the maximal likelihood. sCNAphase was coupled with weak 

preferences for diploid, unless the allelic depths and read depths at some regions are easier to reconcile 

at higher copy numbers in higher ploidy. These regions are the “ploidy supporting region”. 

For example, Supplementary Figure 7a shows the maximum likelihood calculated for the ploidy of 1.9 

to 5 for 100% tumor purity sample. Clearly, HCC2218 is more likely to be a tetraploid than a diploid, as 

chr3p had a region with 3 copy, which supports for higher ploidy (in Supplementary Figure 7c). 

However at 5% tumor purity, the average ploidy was predicted to be close to 2 (in Supplementary 

Figure 7ab), as the less preferred copy number 2 to 3 at 0-50M region in chr3p did not generate as strong 

signal.  

Adjustment for allelic mappability  

Mappability difference between reference and alternative allele produces a tiny bias on allelic depths. In 

a particular segment, if the maternal alleles are mostly reference alleles or alternative alleles, this bias on 

allelic mappability is amplified when merging successive maternal alleles. To adjust the allelic depths, 

we measured the bias by likelihood ratio. This is calculated by the likelihood of observing allelic depth 

of ai and bi at a site i with a reference nucleotide A, and an alternative nucleotide B. This can be 

formulated as, 
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in which A and B belongs to a set of {A,T,G,C}. A 2D matrix calculated from HCC1143 and HCC1954 

is shown as follow in. Therefore allelic depths are recalibrated by increasing the count of an alternative 

allele by a factor of the bias. 

 

Removal of merging errors at the boundary of adjacent sCNAs. 

The PHFs are created by merging the phased allelic depths for every n loci, assuming the n loci are in 

the same copy number states. However, the merging errors occurs  at a region which spans the boundary 

of two adjacent sCNAs, e.g. one at 5 copies and the other one at 1 copy. The PHFs will instead imply 

this region at 3 copies. To remove these merging error at the boundary of adjacent sCNAs, we performed 

an likelihood ratio test, as follows: 

                  (22) 

The numerator assumes the n loci are in a single sCNAs, with a single genotype gi
(t) from G which 

maximizes the likelihood.  The numerator assumes the loci are from different sCNAs; therefore they can 

have an individual genotype, the gi
(t) is chosen if it maximizes the likelihood. After the tc is estimated, 

sCNAphase performs this likelihood test for each PHF, before removes 1% of the PHF that failed this 

likelihood ratio test.  

Overlapping analysis for copy number segmentations estimated from different tools 

To evaluate the performance, the copy number segmentation estimated from sCNAphase was compared 

with those from CLImAT and COSMIC by overlapping the estimated varied criteria. The overall 

performance was calculated by comparing how many bases were consistently estimated as gain or loss 

for any two segmentations. In the same way, the consistency in estimation of LOHs was also counted by 

per base. For the analysis of the focal sCNAs, a consistent sCNAs is considered if there are at least 50% 

overlap between two estimated segments. A segment is treated as focal if it is shorter than 4 Mb. We 

applied this different criteria for focal sCNAs because this per base overlapping criteria is unfair for the 

relatively shorter focal sCNAs than the longer ones. We choose 4 Mb as the threshold for focal sCNAs 

because the breakpoints for a focal sCNAs is likely to be inaccurate, given that all the copy number 

segmentations used in this paper are imputed based on the copy number at the SNPs. Therefore if an 
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sCNAs is 2Mb in length, the estimation of 2.5Mb is still a reasonable estimation. Since the PHF in 90% 

of the cases spans over a region at 100K (Supplementary Figure 8), we choose this value as the low 

bound for the focal events.  
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