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 19 

Abstract 20 

We present IMP, an automated pipeline for reproducible integrated analyses of coupled 21 

metagenomic and metatranscriptomic data. IMP incorporates preprocessing, iterative co-22 

assembly of metagenomic and metatranscriptomic data, analyses of microbial community 23 

structure and function as well as genomic signature-based visualizations. Complementary use 24 

of metagenomic and metatranscriptomic data improves assembly quality and enables the 25 

estimation of both population abundance and community activity while allowing the recovery 26 

and analysis of potentially important components, such as RNA viruses. IMP is containerized 27 

using Docker which ensures reproducibility. IMP is available at http://r3lab.uni.lu/web/imp/. 28 

 29 

Keywords: multi-omics data integration; metagenomics; metatranscriptomics; microbial 30 

ecology; microbiome; reproducibility  31 
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 3 

Background and motivation 32 

Microbial communities are ubiquitous in nature and govern important processes related to 33 

human health and biotechnology [1, 2]. A significant fraction of naturally occurring 34 

microorganisms elude detection and investigation using classical microbiological methods due 35 

to their unculturability under standard laboratory conditions [3]. The issue of unculturability is 36 

largely circumvented through the direct application of high-resolution and high-throughput 37 

molecular measurements, most notably metagenomics, to microbial community samples 38 

collected in situ [4–6]. Beyond metagenomics, there is also a clear need to obtain functional 39 

readouts in the form of additional layers of omics data from consortia. Moreover, there is a 40 

growing desire to integrate the resulting meta-omics data to more conclusively link genetic 41 

potential to actual phenotype in situ [6]. For this purpose, specialized wet-lab methods have 42 

been developed to ensure that the generated data fulfill the premise of systematic measurements 43 

[7], as subsampling has been shown to inflate intra- and inter-sample variation, thereby 44 

hampering subsequent data integration, individual biomolecular fractions, i.e. DNA, RNA, 45 

proteins and metabolites are derived from single, unique samples [7, 8]. Next-generation 46 

sequencing (NGS) of microbial community derived DNA and reverse transcribed RNA 47 

(cDNA) results in metagenomic (MG) and metatranscriptomic (MT) data, respectively. 48 

Additional layers of meta-omic data include the metaproteome (MP) and the (meta-49 

)metabolome [4–6, 9]. Although standardized and reproducible wet-lab methods have been 50 

developed for integrated omics of microbial communities, corresponding dry-lab workflows 51 

have yet to be formalized. 52 

 53 

Computational solutions for the analysis of MG and MT data can be broadly 54 

categorized into reference-dependent or reference-independent (de novo) methods [5]. 55 

Reference-dependent methods are based on the direct alignment/mapping of sequencing reads 56 
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onto isolate genomes, gene catalogs or MG data. A major drawback of such methods is the 57 

large number of sequencing reads discarded during data analysis, due to their dissimilarity from 58 

genomes/genes within the reference databases. More specifically, based on analyses of MG 59 

data from the human gut microbiome, which is arguably the most resolved microbial ecosystem 60 

in terms of representative isolate genomes, 43% of organisms are not represented by isolate 61 

genomes [10], while 74%-81% of sequencing data is typically represented within an integrated 62 

gene catalog based on MG data [11], exemplifying a substantial loss of potentially useful 63 

information when using isolate genome reference databases alone. Conversely, reference-64 

independent methodologies, such as approaches based on de novo assembly, enable the 65 

retrieval of previously uncharacterized genomes and/or potentially novel genes, providing an 66 

added advantage over reference-based methods [4, 5, 12]. Furthermore, it has been shown that 67 

the assembly of sequencing reads into longer contiguous sequences (contigs) greatly improves 68 

the taxonomic assignments and prediction of genes as opposed to direct identification from 69 

short sequencing reads [13, 14].  70 

 71 

Given the advantages of reference-independent methods, a wide array of MG-specific 72 

assemblers such as IDBA-UD [15] and MEGAHIT [16] have been developed. Most MT 73 

analyses consist of reference genome- or metagenome-dependent workflows, similar to the 74 

reference-dependent workflows used for MG data [17, 18]. However, reference-independent 75 

approaches for metatranscriptomic data exploitation are also available either using specialized 76 

metatranscriptome assemblers (e.g. IDBA-MT [19]), metagenome assemblers (e.g. IDBA-UD 77 

[15]) or single-species transcriptome assemblers (e.g. Trinity [20]) [14]. In both cases, the 78 

available assemblers are able to handle the uneven sequencing depths of MG and MT data. 79 

Although dedicated assembly methods have been developed for MG and MT data, formalized 80 

pipelines allowing both data types to be used in an integrated way have yet to be developed. 81 
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 82 

Automated data processing and analysis pipelines have so far been mainly developed 83 

for MG data. These include pipelines such as MOCAT [21] and MetAMOS [12] which 84 

incorporate the entire process of MG data analysis, ranging from preprocessing of sequencing 85 

reads to de novo assembly and post-assembly analysis (read alignment, taxonomic 86 

classification, gene annotation, etc.). Both pipelines use SOAPdenovo [22] as the default de 87 

novo assembler, performing single-length kmer-based assemblies which usually result in 88 

fragmented (low contiguity) assemblies with lower coverage levels, compared to multiple-89 

length kmer-based assemblers [23]. However, MetAMOS offers more flexibility by providing 90 

multiple options for MG assemblers, in addition to being an easily installable and user-91 

amendable pipeline for standardized MG data analysis. De novo MG assemblies may be further 92 

leveraged by binning the data to resolve and retrieve population-level genomes including those 93 

from hitherto undescribed taxa [17, 24–28]. 94 

 95 

Multi-omic analyses have already allowed unprecedented insights into microbial 96 

community structure and function in situ, using different in silico analysis approaches. 97 

Franzosa et al. (2014) [29] have applied reference-based analyses of MG and MT data to study 98 

healthy human fecal microbial community samples. Conversely, Hultman et al. (2015) [30] 99 

performed a multi-omic survey of microbial communities in permafrost soils, leveraging 100 

coupled MG, MT and MP data. The MG data was subjected to de novo assembly, annotation 101 

and binning of the resulting contigs. The remaining MT and MP datasets were analyzed based 102 

on the MG assembly and additional reference databases. Bremges et al. (2015) [31] performed 103 

analysis on a production-scale bioreactor, using deep MG and MT data. De novo assembly and 104 

annotation was carried out for the MG data, after which MT data was used to identify active 105 

metabolic pathways of target organisms. Furthermore, the authors bundled all tools and 106 
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dependencies within a Docker container to promote reproducibility of their workflow. In 107 

contrast to these aforementioned studies, arguably the most integrated multi-omic study to date 108 

was performed by Muller, Pinel et al. (2014) [32], which involved a temporal survey of a 109 

oleaginous microbial community from a biological wastewater treatment plant using a 110 

combination of MG, MT and MP data. In their study, MG and MT data were integrated via a 111 

de novo co-assembly procedure, the output of which was subsequently binned and annotated. 112 

The resulting gene set was subsequently used to identify peptides from the MP data. In addition, 113 

patterns of intra- and inter-population expression and genomic variation (single nucleotide 114 

polymorphisms, SNPs) were resolved. Furthermore, Roume, Heintz-Buschart et al. (2015) [33] 115 

performed a comparative study of two samples from a biological wastewater treatment plant. 116 

In this work, MG and MT data were also integrated through co-assemblies and the MP data 117 

was analyzed in relation to these co-assemblies. The latter two studies performed integration 118 

by co-assembling MG and MT data. Although these studies clearly demonstrated the power of 119 

multi-omic analyses in facilitating unprecedented insights into community structure and 120 

function, standardized and reproducible dry-lab workflows for integrating and analyzing the 121 

multi-omic data have so far been unavailable. Such approaches are pertinent to compare results 122 

between different studies and systems of study. 123 

 124 

While MG analysis provides information on the gene coding potential (functional 125 

potential) of a given community, complementary usage of MT data enables the study of 126 

transcriptional activity, which more faithfully represents potential community-wide 127 

phenotypes [4, 9, 34]. Due to the absence of tools/workflows to handle multi-omic datasets, 128 

most of the aforementioned studies utilize non-standardized, ad hoc analyses, mostly made up 129 

of custom workflows, creating a challenge in reproducing the analyses [12, 35–37]. Here, we 130 

present the Integrated Meta-omic Pipeline (IMP), an open source de novo assembly-based 131 
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pipeline to perform standardized, automated and reproducible large-scale integrated analysis 132 

of multi-omic (MG and MT) data, derived from a single microbial community. 133 

 134 

Overview of IMP  135 

IMP leverages Docker for reproducibility and deployment. The interfacing with Docker is 136 

facilitated through a user-friendly Python wrapper script. As such, Python and Docker are the 137 

only prerequisites for the pipeline, enabling an easy installation and execution process. 138 

Workflow implementation and automation is achieved using Snakemake [38, 39]. The IMP 139 

workflow can be broadly categorized into three major processes: i) preprocessing, ii) assembly 140 

and iii) analysis (Fig. 1). The modular design and open source features of IMP also allow for 141 

customization of the pipeline to suit specific user-defined analysis requirements. Detailed 142 

parameters for IMP processes are described in the section Details and parameters of IMP and 143 

examples of detailed workflow schematic is provided in Additional file 1: HTML S1 and S2. 144 

 145 

Preprocessing of paired-end reads 146 

The input to IMP consists of MG and MT (preferably depleted of ribosomal RNA - rRNA) 147 

paired-end reads in FASTQ format, each comprising a set of two files containing pair-1 and 148 

pair-2 reads, respectively. MG and MT reads are preprocessed independently of each other and 149 

this involves an initial quality control step (see Fig. 1 and section Trimming and quality 150 

filtering) [40] followed by filtering of reads that are deemed undesired in downstream 151 

processes. For the analysis of MG and MT data from human microbiome studies, the quality 152 

control steps should be followed by the optional filtering of human genome derived sequences 153 

(see Fig. 1 and section Human genome derived sequence filtering). Additionally, in silico 154 

rRNA sequence depletion is applied to the MT data (see Fig. 1 and section Ribosomal RNA 155 

filtering). In summary, the preprocessing implemented in IMP involves the independent 156 
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removal of sequences from MG and MT datasets which are undesired due to technical and/or 157 

biological reasons. 158 

 159 

IMP-based iterative co-assembly 160 

IMP implements an iterative co-assembly procedure (Fig. 1 and Additional file 2: Figure S1), 161 

which combines the benefits from iterative assemblies and co-assemblies of multi-omic (MG 162 

and MT) data [32]. Additional rounds of assembly involving the unused reads (unmappable) 163 

from previous assembly are herein referred to as “iterative assemblies”, while assemblies 164 

involving both MG and MT reads are hereafter referred to as “co-assemblies”. 165 

 166 

Preprocessed MT reads are first assembled to generate an initial set of MT contigs 167 

(Additional file 2: Figure S1). MT reads that remain unmapped to the initial set of MT contigs 168 

undergo an additional round of assembly. The combined set of MT contigs (from both the 169 

aforementioned MT assemblies) are then used as input, together with preprocessed MG and 170 

MT reads, to perform an initial co-assembly. The MG and MT reads which remain unmapped 171 

to the resulting contigs are recruited for an additional co-assembly iteration. The resulting 172 

contigs are further refined by performing a contig-level assembly, which aligns highly similar 173 

contigs against each other. This procedure aims at reducing redundancy by collapsing shorter 174 

contigs into longer contigs and/or improving contiguity by extending contigs via overlapping 175 

contig ends, thereby producing the final set of contigs (Additional file 2: Figure S1). The IMP-176 

based iterative co-assembly is a key feature that facilitates the integration of MG and MT data 177 

as it allows maximization of overall data usage. Finally, preprocessed MG and MT reads are 178 

mapped onto the final contigs and the resulting alignment information is used in various 179 

downstream analysis procedures (Fig. 1). Please refer to section Details and parameters of IMP 180 

for information about programs and parameters. 181 
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 182 

Post-assembly analysis and output 183 

The set of contigs resulting from the IMP-based iterative co-assembly undergo quality 184 

assessment as well as taxonomic [41] and functional annotation [42]. Additionally, non-linear 185 

dimensionality reduction of genomic signatures (NLDR-GS) is performed using VizBin [24, 186 

43] which provides two-dimensional (2D) embeddings, enabling the visualization of the 187 

contigs as scatter plots in a 2D map format. Further analysis steps include, but are not limited 188 

to, calculations of the contig- and gene-level depths of coverage and the calling of genomic 189 

variants (using three variant callers, see section Variant calling). The information from these 190 

analyses are condensed and integrated into the VizBin-based maps to produce augmented 191 

visualizations. The visualizations and various summaries of the output are compiled into a 192 

HTML report (for examples of HTML report see Additional file 1: HTML S1 and S2 and for 193 

details of output see section Output). 194 

 195 

Results and discussion 196 

We demonstrate the performance and output of IMP on three multi-omic datasets, each 197 

consisting of MG and MT paired-end reads (see section Coupled metagenomic and 198 

metatranscriptomic datasets for details). A simulated mock (SM) community of 73 bacterial 199 

genomes [14] was mainly used to benchmark the IMP-based iterative co-assemblies in 200 

comparison to standard assembly strategies. Additional benchmarking of the iterative co-201 

assemblies were performed on published datasets from a human fecal (HF) sample [29] and a 202 

wastewater (WW) sludge microbial community [32]. The latter datasets were used to assess 203 

the output and features of IMP ranging from preprocessing to post-assembly analyses. 204 

 205 

Preprocessing and filtering 206 
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The preprocessing and filtering of sequencing reads is essential for the removal of low quality 207 

bases/reads and potentially unwanted sequences, prior to assembly and analysis. Preprocessing 208 

of NGS data, prior to assembly, has been shown to increase the quality of de novo assemblies, 209 

despite decreased numbers of input reads [44]. The preprocessing of MG and MT reads is 210 

handled in a tailored manner within IMP. 211 

 212 

The results of the IMP and MetAMOS preprocessing procedures are summarized in 213 

Additional file 3: Table S1. The preprocessing of the HF included the optional filtering of 214 

human genome derived-sequences, while the same step was omitted for the WW data. Even 215 

though the preprocessing using IMP yields both paired- and single-end reads, the following 216 

section discusses only the paired-end reads as they make up a large fraction of the data and are 217 

generally more informative compared to single-end reads. However, IMP retains the use of 218 

single-end reads in all downstream processes, unlike most available methods, which discard 219 

such reads. Since MetAMOS assumes all input to be MG data, it cannot be directly compared 220 

against the preprocessing using IMP. 221 

 222 

The final output of IMP’s preprocessing and filtering procedure retained 69.2% (29.8% 223 

low quality and 1.0% human genome derived sequences) and 89.2% (10.8% low quality) of 224 

MG paired-end reads for HF and WW, respectively. Similarly, approximately 90.8% (6.4% 225 

low quality, 1.2% rRNA and 1.7% human genome derived sequences) and 55.3% (19.8% low 226 

quality and 24.9% rRNA) of MT paired-end reads were retained from HF and WW, 227 

respectively. The filtering of human genome derived sequences are due to technical and privacy 228 

reasons, whereas in silico rRNA filtering helps remove remaining rRNA reads, which are 229 

usually abundant in cDNA libraries, even after the application of wet-lab rRNA depletion 230 

procedures. In summary, IMP is designed to perform stringent and standardized preprocessing 231 
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of MG and MT data in a tailored way enabling efficient data usage in subsequent steps. 232 

 233 

Assessment of the iterative assembly approach 234 

De novo assemblies of MG or MT data usually result in a large fraction of reads that are 235 

unmappable to the produced contigs and therefore remain unused, resulting in suboptimal data 236 

usage. Previous studies (e.g. Muller, Pinel et al. 2014 [32]; Schürch et al. 2014 [45]; Reyes et 237 

al. 2015 [46]) assembled the set of unmappable reads iteratively to successfully obtain 238 

additional contigs from these additional rounds of assembly and which lead to an increase in 239 

number of predictable genes. 240 

 241 

In order to evaluate the best iterative assembly approach for IMP, we attempted to 242 

determine the opportune number of assembly iterations in relation to assembly quality metrics. 243 

The evaluation involved performing multiple iterations of recruiting unmappable reads to the 244 

previously generated non-redundant assembly, followed by a de novo assembly of those 245 

unmapped reads. The assembly from a given iteration was then merged with the previous 246 

assembly to reduce the redundancy (refer to section Iterative single-omic assemblies for 247 

details). The evaluation of additional assembly iterations for MG data of SM, HF and WW are 248 

summarized in Fig. 2, based on four different metrics. Overall, each iteration on each of the 249 

different datasets (SM, HF and WW) lead to an increase in total length of assembly and 250 

increased the overall number of mappable reads, but differed in the observed gain of contigs 251 

and genes (Fig. 2; and Additional file 3: Table S2). A similar trend is noticeable for iterative 252 

assemblies on MT data (see Additional file 2: Figure S2 and Additional file 3: Table S3). The 253 

observed trends may be explained by the fact that the complexity of the data typically 254 

confounds assemblies [44]. The exclusion of mappable reads in each iteration of assembly 255 
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reduces the complexity of the data, which in turn allows additional contigs to be assembled and 256 

results in a higher cumulative output [44]. 257 

 258 

Considering the relatively low increase in longer contigs and genes beyond the first 259 

assembly iteration (Fig. 2, Additional file 2: Figure S2 and Additional file 3: Table S2 and S3) 260 

and the extended runtimes required to perform additional assembly iterations, an opportune 261 

single iteration assembly approach was implemented in the workflow of IMP. This approach, 262 

which balances the maximization of output yield with runtime, is implemented within the IMP-263 

based co-assembly approach. 264 

 265 

Benchmarking 266 

The iterative co-assemblies were benchmarked against single-omic MG and MT assemblies 267 

and co-assemblies obtained using the state-of-the-art MG data analysis pipeline, MetAMOS 268 

[12].  269 

 270 

Single-omic assemblies and multi-omic iterative co-assemblies 271 

Separate single-omic iterative assemblies on all datasets were generated using the preprocessed 272 

MG and MT data (see Iterative single-omic assemblies). The iterative co-assemblies were 273 

executed in IMP using the two available assembler options for the co-assembly step, i.e. the 274 

default IDBA-UD [15] (hereafter referred to as IMP) and the optional MEGAHIT assembler 275 

[16] (referred to as IMP-MEGAHIT). Both assemblers are regarded as state-of-the-art because 276 

they perform assemblies on multiple kmer sizes, while MEGAHIT was also chosen due to its 277 

superior speed and efficient memory usage [15, 16].  278 

 279 
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The comparison between single-omic assemblies and IMP-based co-assemblies are 280 

summarized in Table 1. The IMP-based co-assemblies consistently returned larger number of 281 

contigs, increased total length of assembled contigs and a higher number of predicted genes 282 

(partial genes included) compared to single-omic assemblies for all datasets (Table 1). The 283 

apparent slight reduction in contiguity (N50 statistic) is due to the addition of shorter contigs 284 

likely stemming from the increased sequencing depth of the combined MG and MT datasets, 285 

which also increases the complexity of the assembly process. By using the reference genomes 286 

from the SM data as ground truth, an improved recovery of reference genome fractions is 287 

apparent for the IMP-based co-assemblies. Importantly, a significant increase in the number of 288 

mappable MG and MT reads was observed within all co-assemblies compared to the respective 289 

single-omic assemblies (Table 1) which suggests superior data usage using the IMP-based 290 

approach. For example, the IMP-based iterative co-assemblies resulted in a large fraction of 291 

reads being mappable back to the contigs derived from the HF sample (average of 292 

approximately 88.0 % and 96.3 % for the MG and MT reads, respectively; Table 1), which is 293 

substantially higher compared to the numbers reported in a previous report in which MG 294 

sequencing data was mapped to an integrated gene catalog, i.e. 74%-81% [11]. In summary, 295 

the complementary use of MG and MT data in the context of de novo co-assembly results in 296 

an increased yield of output, while enhancing overall data usage for subsequent analyses. 297 

 298 

Quality assessment of the IMP-based iterative co-assembly procedure 299 

Iterative co-assemblies using IMP (referred to as IMP and IMP-MEGAHIT, see section above) 300 

and co-assemblies from MetAMOS [12] on all datasets were compared against each other. 301 

MetAMOS was chosen due to its similar aim of providing an open source, reproducible and 302 

standardized de novo assembly-based platform for large-scale microbiome sequencing 303 

analyses [12]. Although MetAMOS was developed specifically for MG data analysis, it was 304 
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hereby extended to perform MG and MT co-assemblies by including both MG and MT read 305 

libraries as input (see section Execution of pipelines) using two available assembler options: 306 

SOAPdenovo [22] (hereafter referred to as MetAMOS) and IDBA-UD [15] (hereafter referred 307 

as MetAMOS-IDBA_UD). The results of the comparison are summarized in Fig. 3 (see 308 

Additional file 2: Figure S3 and Additional file 3: Table S4 for detailed comparison and 309 

results). 310 

 311 

Based on the SM data (Fig. 3A), IMP and MetAMOS-IDBA_UD performed similarly 312 

for most measures but the IMP-based assemblies producing slightly better contiguity (N50 313 

statistic) and lower levels of apparent misassembly. Despite MetAMOS producing the largest 314 

number of contigs ≥ 1kb, its comparatively low N50 statistic indicates a highly fragmented 315 

assembly, which is further reflected in the low number of predicted unique genes. Conversely, 316 

this fragmented assembly is accompanied by relatively low misassembly rate, reinforcing the 317 

notion that shorter contigs are less prone to misassemblies [44]. However, longer contigs (≥ 318 

1kb) are a prerequisite for population-level genome reconstruction and subsequent multi-omic 319 

data interpretation. On the other hand, IMP-MEGAHIT generated the highest number of 320 

predicted unique genes, recovered the largest fraction of reference genomes, while yielding 321 

comparatively large number of contigs ≥ 1kb, relatively high N50 statistic and a low rate of 322 

misassembly. The assessment based on real datasets shows comparable performance between 323 

IMP, IMP-MEGAHIT and MetAMOS-IDBA_UD (Fig. 3B and C). In general, MetAMOS 324 

produced highly fragmented assemblies for the real datasets, possibly due to the single kmer 325 

length (k = 31) assemblies, which tend to produce relatively fragmented assemblies compared 326 

to multiple kmer length assemblers (as in IMP, IMP-MEGAHIT and MetAMOS-IDBA_UD) 327 

[23]. In summary (Fig. 3D), IMP and MetAMOS-IDBA_UD performed similarly for most 328 

metrics when the same assembly program (IDBA-UD) was used by both pipelines. However, 329 
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the IMP iterative co-assemblies were generated using a lower number of reads compared to 330 

MetAMOS-IDBA_UD due to the more stringent preprocessing procedures in IMP, which in 331 

turn yielded better quality assemblies (Fig. 3D) which are a prerequisite for population-level 332 

genome reconstruction and multi-omic data interpretation.  333 

 334 

Summary output from IMP 335 

The workflow of IMP is unique such that it allows integrated MG and MT data handling. 336 

Although MetAMOS may be extended to perform co-assemblies of MG and MT data, it does 337 

not discriminate between the two data types in its pre- and post-assembly procedures which is 338 

important given the disparate nature of MG and MT datasets.  339 

 340 

IMP generates several output files, as detailed in the Output section which allow both 341 

reference-dependent and –independent analyses of the data. Information from these output files 342 

are condensed and summarized using different static and dynamic visualization methods, 343 

which are compiled into an HTML report (Additional file 1: HTML S1 and S2). Fig. 4 presents 344 

selected output available from the analysis of IMP on the HF data. The generated taxonomic 345 

overviews are based on the alignment of contigs to the most closely related prokaryotic 346 

genomes within the NCBI genome database and the fraction of potential reference genome 347 

bases covered (Fig. 4A; Additional file 1: HTML S1) [41]. The abundances of the predicted 348 

genes (based on average depths of coverage) may be represented both at the MG and MT levels 349 

and thus enable the comparison of functional potential (Fig. 4B) and actual expression (Fig. 350 

4C) of various KEGG Ontology categories (for details, see Krona charts within Additional file 351 

1: HTML S1). IMP also provides augmented VizBin-based 2D maps [24, 43], with additional 352 

layers of information integrated onto them, for example, variant densities (Fig. 4D) and MT to 353 

MG depth of coverage ratios (Fig. 4E). These visualizations may aid users in highlighting 354 
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subsets of contigs based on certain characteristics of interest, i.e. population 355 

heterogeneity/homogeneity, low/high transcriptional activity, etc. Please refer to Additional 356 

file 1: HTML S1 and S2 for further examples.  357 

 358 

Integrated omic data allows identification of key microbiome characteristics 359 

The integration of MG and MT data provides unique opportunities for uncovering community- 360 

or population-specific traits which cannot be resolved from MG data alone. Here we provide 361 

two examples of insights gained through the direct comparison of the MG and MT results 362 

provided by IMP.  363 

 364 

Identification of RNA viruses 365 

To identify differences in the information content of MG and MT complements, the contigs 366 

generated from IMP were inspected with respect to coverage by MG and MT reads. In the two 367 

exemplary datasets, a large fraction of the contigs resulted from the composite assembly of MG 368 

and MT data, followed by contigs composed exclusively of MG data and a small proportion 369 

composed exclusively of MT data (Additional file 3: Table S5). Longer contigs (≥ 1 kb) 370 

composed exclusively of MT reads and annotated with known viral/bacteriophage genes were 371 

enriched and retained for further inspection Table 2 (for the complete list contigs, see 372 

Additional file 3: Table S6 and S7). A sequence alignment-based search against the NCBInr 373 

nucleotide database revealed that the longer contigs represent almost complete genomes of 374 

RNA viruses (see Additional file 3: Table S8 and S9). This demonstrates that the incorporation 375 

of MT data in the assembly enables the recovery of nearly complete RNA virus genomes, 376 

thereby allowing their detailed study. 377 

 378 

Identification of populations with apparent high transcriptional activity 379 
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To further demonstrate the unique analytical capabilities of IMP, we set out to identify 380 

populations with a high transcriptional activity in the HF sample. Average depth of coverage 381 

at the contig- and gene-level is a common measure used to evaluate the abundance of microbial 382 

populations within communities [25, 27, 32]. Integrative analysis of MG and MT data by IMP 383 

further extends this measure by calculation of average MT to MG depth of coverage ratios, 384 

which provides information on transcriptional activity and can be visualized using augmented 385 

VizBin maps. 386 

 387 

One particular cluster of contigs within the augmented VizBin maps displayed high MT 388 

to MG depth of coverage ratios (see Additional file 2: Figure S4). The subset of contigs 389 

(simplified as subset) within the selected cluster aligned to the genome of the Escherichia coli 390 

P12B. For comparison, we also identified a subset which was highly abundant at the MG level 391 

(lower MT to MG ratio), which aligned to the genome of Collinsella intestinalis DSM 13280 392 

strain. Based on these observations, we highlighted these subsets of contigs to produce an 393 

augmented VizBin map (Fig. 5A). In these, C. intestinalis and E. coli subsets are mainly 394 

represented by clear peripheral clusters which exhibit consistent intra-cluster MT to MG depth 395 

of coverage ratios (Fig. 5A). The subsets were manually inspected in terms of their distribution 396 

of average MG and MT depths of coverage, comparing them against the corresponding 397 

distributions of all the contigs. The MG-based average depths of coverage of the contigs from 398 

the entire community exhibited a bell-shape like distribution, with a clear peak (mode). On the 399 

contrary, MT depths of coverage exhibited a spread distribution, with a relatively lower mean 400 

(compared to MG distribution) and no clear peak (Fig. 5B). The C. intestinalis subset displays 401 

similar distributions to that of the entire community, whereas the E. coli subset exhibits an 402 

unusually high MT-based depth of coverage, and a low MG-based depth of coverage (Fig. 5B). 403 

Further inspection of the individual omic datasets revealed that the E. coli subset was not 404 
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covered by the MG-based contigs, while 70 % of the E. coli genome was recoverable from the 405 

MT-based assembly (Fig.5C). In contrast, the C. intestinalis subset demonstrated comparable 406 

genomic recovery in all co-assemblies and the MG-only assembly. As noted by the authors of 407 

the original study by Franzosa et al. (2014) [29], the cDNA conversion protocol used to 408 

produce the MT data is known to introduce approximately 1-2 % of E. coli genomic DNA into 409 

the cDNA as contamination which is then reflected in the MT data. According to our analyses, 410 

0.12 % of MG reads and 1.95 % of MT reads from this sample could be mapped onto the E. 411 

coli contigs which is consistent with the numbers quoted by Franzosa et al. (2014) [29]. This 412 

fraction of reads is sufficient for de novo reconstruction of approximately 70% of the E. coli 413 

genome. The integrative analyses of MG and MT data within IMP enables users to 414 

conveniently highlight notable cases such as this, and to further investigate inconsistencies 415 

and/or interesting characteristics within the multi-omic data. 416 

 417 

Summary 418 

IMP was developed in order to leverage the advantages associated with integrating MG and 419 

MT data for studying microbial community structure and function in situ [4, 6]. Accordingly, 420 

we present a self-contained workflow which performs reproducible integrative analyses of 421 

coupled MG and MT data derived from single and unique microbial community samples. IMP 422 

encapsulates all processes including preprocessing, assembly, and analyses within an 423 

automated reproducible pipeline. 424 

 425 

We implemented customized preprocessing and filtering procedures for MG and MT 426 

data due to the distinct nature of these different omic data types. We also evaluated the IMP-427 

based iterative co-assembly procedure and found it to produce higher amount of output volume 428 

(a higher number of contigs and genes), thereby resulting in enhanced data usage (reflected in 429 
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a higher fraction of read which can be mapped back to the contigs). IMP provides the option 430 

for the use of two state-of-the-art assemblers, whereby the default assembler, IDBA-UD, 431 

produces highly contiguous assemblies, while MEGAHIT balances the number of contigs with 432 

favorable contiguity with a high number of predicted genes and a relatively low rate of 433 

misassemblies. High quality assemblies yield better quality taxonomic information and gene 434 

annotations. Consequently, the post-assembly analysis of MG and MT data enables users to 435 

evaluate their community of interest based on taxonomy, functional potential and functional 436 

expression. The integrated co-assembly also provides the opportunity for analyses not possible 437 

based on MG data alone, such as the detection of RNA viruses and the identification of 438 

transcriptionally active populations. The output of IMP is compatible with, and may be 439 

exported to interactive tools such as VizBin [43] and Anvi’o [17] for binning and further 440 

analyses. Furthermore, the output data (annotated gene sets) may be used for the analysis and 441 

integration of additional omic data, most notably MP data. 442 

 443 

The use of the Docker promotes reproducibility and sharing such that researchers are 444 

able to tag specific versions of the pipeline used for a particular study, thus enabling their peers 445 

to precisely replicate bioinformatic analyses workflows with relative ease and with minimal 446 

impact on overall performance of the employed bioinformatic tools [36, 37]. Static websites 447 

will be created and associated with every new version of IMP (Docker image), such that users 448 

will be able to download and launch specific versions of the pipeline to reproduce the work of 449 

others. Finally, the open source nature of IMP encourages a community-based effort to 450 

contribute and further improve the pipeline. The common scripting languages Bash, Make and 451 

Python, which Snakemake is based on [38, 39], are widely used within the bioinformatic 452 

community, thus reducing the learning curve for further development, improvement and 453 

customization by other users. Finally, the combination of open development and 454 
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reproducibility should promote the general paradigm of reproducible research within the 455 

microbiome research community. 456 

 457 

Details and parameters of IMP 458 

A Python (ver 3) wrapper script was implemented for user-friendly execution of IMP via the 459 

command line. The full list of dependencies, parameters (see below) and documentation are 460 

available on the IMP website (http://r3lab.uni.lu/web/imp/). 461 

 462 

Reproducibility 463 

IMP is based around a Docker container that runs the Ubuntu 14.04 operating system, with all 464 

relevant dependencies. Five mounting points are defined for the Docker container with the -v 465 

option: i) input directory, ii) output directory, iii) database directory, iv) code directory, and v) 466 

configuration file directory. Environment variables are defined using the -e parameter, 467 

including: i) paired MG data, ii) paired MT data, and iii) configuration file. The latest IMP 468 

Docker image will be downloaded automatically upon launching the command, but users may 469 

also launch specific versions based on tags or use modified/customized versions of their local 470 

code base.  471 

 472 

Automation 473 

Automation of the workflow is achieved using Snakemake 3.4.2, a Python-based make 474 

language implemented specifically for building reproducible bioinformatic workflows and 475 

pipelines. It allows seamless integration of Python code and shell (bash) commands, using 476 

make scripting style. It also provides checkpoints to continue interrupted analyses and/or rerun 477 

steps if required [38, 39]. 478 

 479 
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Trimming and quality filtering 480 

Trimmomatic 0.32 [40] is used to perform trimming and quality filtering of MG and MT 481 

Illumina paired-end reads, using the following parameters: ILLUMINACLIP:TruSeq3-482 

PE.fa:2:30:10; LEADING:20; TRAILING:20; SLIDINGWINDOW:1:3; MAXINFO:40:0.5; 483 

MINLEN:40. The parameters may be tuned in the IMP config file. The output from this step 484 

includes retained paired-ends and single-ends (mate discarded) which are all used for 485 

downstream processes. 486 

 487 

Ribosomal RNA filtering 488 

SortMeRNA 2.0 is used for filtering rRNA from the MT data. The process is applied on 489 

FASTQ files for both paired- and single-end reads generated from the previous preprocessing 490 

step. Paired-end FASTQ files are interleaved prior to running SortMeRNA. If one of the mates 491 

within the paired-end read are classified as an rRNA sequence, then the entire pair is filtered 492 

out. After running SortMeRNA, the interleaved paired-end output is split into two separate 493 

paired-end FASTQ files. The filtered sequences (without rRNA) are used for the downstream 494 

processes. All available databases provided within SortMeRNA are used for filtering and the 495 

maximum memory usage parameter is set to 4 Gb (option: -m 4000). 496 

 497 

Read mapping 498 

The read mapping procedure is performed using bwa mem aligner [47] with settings: -v 1 499 

(verbose output level), -M (Picard compatibility) introducing an automated samtools header 500 

using the -R option [47]. Paired- and single-end reads are mapped separately, and the resulting 501 

alignments are merged (using samtools merge). Read mapping is performed at various steps in 502 

the workflow including: i) filtering human sequences (optional), ii) recruitment of unmapped 503 
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reads within the IMP-based iterative co-assembly, and iii) mapping of preprocessed MG and 504 

MT reads to the final contig set. 505 

 506 

Extracting unmapped reads 507 

The extraction of unmapped reads (paired- and single-end) begins by mapping reads to a given 508 

reference sequence (see section Read mapping). The resulting alignment file (BAM format) is 509 

used as input for the extraction of unmapped reads. A set of paired-end reads considered 510 

unmappable if both or either one of the mates do not map to the given reference. The unmapped 511 

reads are converted from BAM to FASTQ format using samtools and BEDtools 2.17.0 - 512 

bamToFastq utility [48]. Similarly, unmapped single-end reads are also extracted from the 513 

alignment information. 514 

 515 

Filtering host sequences 516 

The human sequence filtering is performed by mapping the both paired- and single-end reads 517 

(see section Read mapping) onto the human genome version 38 518 

(http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/), followed by extraction of 519 

unmapped reads (see section Extracting unmapped reads for details). This filtering step may 520 

be omitted from the workflow using the IMP user configuration file, while users may replace 521 

the human genome with other FASTA sequences from other hosts based on their screening 522 

requirements. 523 

 524 

Parameters of the IMP-based iterative co-assembly 525 

The IMP-based iterative co-assembly implements MEGAHIT 1.0.3 [16] as the MT assembler 526 

while IDBA-UD 1.1.1 [15] is used as the default co-assembler (MG + MT), with MEGAHIT 527 

[16] as an alternative option for the co-assembler. All de novo assemblies are performed on 528 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 10, 2016. ; https://doi.org/10.1101/039263doi: bioRxiv preprint 

https://doi.org/10.1101/039263
http://creativecommons.org/licenses/by-nd/4.0/


 

 23 

kmers ranging from 25-mers to 99-mers, with an incremental step of four. Accordingly, the 529 

command line parameters for IDBA-UD are --mink 25 --maxk 99 --step 4 --similar 0.98 --pre-530 

correction [15]. Similarly, the command line options for MEGAHIT are --k-min 25 --k-max 531 

99 --k-step 4, except for the MT assemblies which are performed with an additional --no-bubble 532 

option to prevent merging of bubbles within the assembly graph [16]. Furthermore, contigs 533 

generated from the MT assembly (“pseudo long-reads”) are used as input within the -l flag of 534 

IDBA-UD or -r flag of MEGAHIT [15, 16]. The parameters for the assemblies may be adjusted 535 

in the user configuration file. Kmer ranges may be customized in the IMP user configuration 536 

file. 537 

 538 

 539 

Annotation and assembly quality assessment 540 

Prokka 1.11 [42] with the --metagenome setting is used to perform functional annotation. The 541 

default BLAST and HMM databased of Prokka are used for the functional annotation. 542 

 543 

MetaQUAST 3.1 [41] is used to perform taxonomic annotation of contigs with the 544 

maximum number of reference genomes set to 75 (--max-ref-number 75). In addition, 545 

MetaQUAST provides various assembly statistics. 546 

 547 

Depth of coverage 548 

Contig- and gene-wise depth of coverage values are calculated (per base) using BEDtools 549 

2.17.0 [48] and aggregated (by average) using awk, adapted from the CONCOCT code [27] 550 

(script: map-bowtie2-markduplicates.sh, Github URL: https: 551 

//github.com/BinPro/CONCOCT). 552 

 553 
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Variant calling 554 

The variant calling procedure is performed using the following tools: i) Samtools mpileup 555 

0.1.19 [49], ii) Freebayes 0.9.21 [50] and iii) Platypus 0.8.1 [51], each using their respective 556 

default settings. The input is the merged paired- and single-end read alignment (BAM) against 557 

the final assembly FASTA file (see section Read mapping). The output files from the three 558 

methods are indexed using tabix and compressed using gzip. No filtering is applied to the 559 

variant calls, so that users may access all the information and filter them according to their 560 

requirements. The output from samtools mpileup is used for the VizBin-based visualizations.  561 

 562 

Non-linear dimensionality reduction of genomic signatures (NLDR-GS)  563 

VizBin [43] performs NLDR-GS onto contigs ≥ 1kb, using default settings, to obtain 2D 564 

embeddings. Parameters can be modified in the IMP config file. 565 

 566 

Visualization and reporting 567 

IMP compiles the multiple summaries and visualizations into a HTML report. FASTQC [52] 568 

is used to visualize the quality and quantity of reads before and after preprocessing. 569 

MetaQUAST [41] is used to report assembly quality and taxonomic associations of contigs. A 570 

custom script is used to generate KEGG-based [53] functional Krona plots by running 571 

KronaTools [54] (script: genes.to.kronaTable.py, GitHub URL: 572 

https://github.com/EnvGen/metagenomics-workshop). Additionally, VizBin output is 573 

integrated with the information derived from the IMP analyses, using a custom R script for 574 

analysis and visualization of the augmented maps. The R workspace (Rdat) is saved such that 575 

users are able to access it for further analyses. All the steps executed within an IMP run 576 

including parameters and runtimes are summarized in the form of a workflow diagram and a 577 

log-file. 578 
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 579 

Output 580 

The output generated by IMP includes a multitude of large files. Paired- and single-end FASTQ 581 

files of preprocessed MG and MT reads are provided such that the user may employ them for 582 

additional downstream analyses. The output of the IMP-based iterative co-assembly consists 583 

of a FASTA file, while the alignments/mapping of MG and MT preprocessed reads to the final 584 

co-assembly are also provided as a binary alignment format (BAM), such that users may use 585 

these for further processing. Predicted genes and their respective annotations are provided in 586 

the various formats produced by Prokka [42]. Assembly quality statistics and taxonomic 587 

annotations of contigs are provided as per the output of MetaQUAST [41]. Two-dimensional 588 

embeddings from the NLDR-GS are provided such that they can be exported to and further 589 

curated using VizBin [43] for human-augmented binning. Additionally, abundance and 590 

expression information is represented by contig- and gene-level average depth of coverage 591 

values. MG and MT genomic variant information (VCF format), including both SNPs and 592 

INDELs (insertions and deletions), is also provided. 593 

 594 

The HTML report (see Additional file 1: HTML S1 and S2) compiles various 595 

summaries and visualizations including, i) augmented VizBin-based maps, ii) MG- and MT-596 

level functional Krona charts [54], iii) run time information iv) detailed schematic of the steps 597 

carried out within the IMP run, v) list of parameters and commands, and vi) additional reports 598 

[FASTQC report [52], MetaQUAST report [41]]. Please refer to documentation of IMP for a 599 

detailed list and description of the output. 600 

 601 

Customization and further development 602 
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Basic parameters (input, output, assembler, configuration file) may be changed via the IMP 603 

command line, while more advanced parameters may be changed by editing the user 604 

configuration file (JSON format). Finally, users may directly edit the code of IMP to implement 605 

extensive changes to the pipeline, if required. The “--current” flag, within the IMP command 606 

line can be used to execute customized (local) versions of the code base. Finally, the IMP 607 

launcher script provides the option (flag: --enter) to launch the Docker container interactively, 608 

for development and testing purposes (described on the IMP website and documentation). 609 

 610 

Data and analyses 611 

Coupled metagenomic and metatranscriptomic datasets 612 

The simulated MT data was obtained from the original authors [14], upon request. A 613 

complementary metagenome was simulated using the same set of 73 bacterial genomes used 614 

for the aforementioned simulated MT [14]. Simulated reads were obtained using the NeSSM 615 

MG simulator (default settings) [55].  616 

 617 

Real data analyzed for this article included coupled MG and MT data, i.e. both datasets 618 

were obtained from the same unique sample. The published human fecal data derived from the 619 

healthy individual “X310763260” [29] was obtained from the NCBI Sequence Read Archive 620 

(metagenome SRA: SRX247379, metatranscriptome SRA:SRX247335). The wastewater 621 

sludge data was obtained in-house, but is available on the NCBI SRA (metagenome SRA: 622 

SRX389533, metatranscriptome SRA: SRX389534) [32]. 623 

 624 

Iterative single-omic assemblies 625 

In order to determine the opportune number of iterations within the IMP-based iterative co-626 

assembly strategy within IMP, we first performed an initial assembly using IMP preprocessed 627 
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SM, HF and WW MG reads with IDBA-UD [15] together with cap3 [56], which was used to 628 

further collapse the contigs and reduce the redundancy of the assembly. This initial assembly 629 

was followed by a total of three assembly iterations. Each iteration was made up of four 630 

separate steps: i) extraction of reads unmappable to the previous assembly (using the procedure 631 

explained in Extracting unmapped reads), ii) assembly of unmapped reads using IDBA-UD 632 

[15], iii) merging/collapsing the contigs from the previous assembly using cap3 [56], and iv) 633 

evaluation of the merged assembly using MetaQUAST [41]. The assembly was evaluated in 634 

terms of the per-iteration increase in mappable reads, assembly length, numbers of contigs ≥ 635 

1 kb, and number of unique genes.  636 

 637 

Similar iterative assemblies were also performed for MT data of SM, HF and WW using 638 

MEGAHIT [16] except, CD-HIT-EST [57] was used to collapse the contigs at ≥ 95% identity 639 

(-c 0.95) while MetaGeneMark [58] was used to predict genes. The parameters and settings of 640 

the other programs were the same as those defined in Details and parameters of IMP. 641 

 642 

The contigs from the first iteration of both the MG and MT iterative assemblies were 643 

selected to represent the control single-omic (MG-only and MT-only) assemblies and were 644 

compared against co-assemblies. 645 

 646 

Execution of pipelines 647 

MetAMOS was executed on each dataset using: i) the default setting, with SOAPdenovo as 648 

assembler (using a length of 31-mers), and ii) a custom version with IDBA-UD as the 649 

assembler (option: -a idba-ud) using both MG and MT paired-end FASTQ reads as input. All 650 

computations using MetAMOS were set to use eight computing cores per run (option: -p 8).  651 

 652 
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Similarly, IMP was executed for each dataset using different assemblers for the co-assembly 653 

step: i) default setting using IDBA-UD, and ii) MEGAHIT (option: -a megahit). Additionally, 654 

the analysis of HF data included the preprocessing step of filtering human genome sequences, 655 

which was omitted for WW data. Illumina TruSeq2 adapter trimming was used for WW data 656 

preprocessing, since the information was available. Computation was performed using eight 657 

computing cores. The customized parameters were specified in the IMP configuration file (see 658 

Additional file 1: HTML S1 and S2 for exact configurations). 659 

 660 

Assembly assessment and comparison 661 

Assemblies were assessed and compared at the contig level (scaffolds not considered), using 662 

MetaQUAST [41]. The gene calling function (flag: -f) was utilized to obtain the number of 663 

genes which were predicted from the various assemblies. An additional parameter within 664 

MetaQUAST was used for ground truth assessment of the simulated mock (SM) community 665 

assemblies, by providing the list of 73 reference genomes (flag: -R). MetaQUAST was applied 666 

to compare: i) single-omic assemblies and multi-omic co-assemblies and ii) co-assemblies 667 

from different pipelines. 668 

 669 

Analysis of contigs assembled from MT data 670 

A list of contigs with no MG depth of coverage together with additional information on these 671 

(contig length, annotation, MT depth of coverage) was retrieved using the R workspace (Rdat) 672 

which is provided as part IMP output. The sequences of these contigs were extracted and 673 

subjected to a BLAST search on NCBI to determine their potential origin. Furthermore, contigs 674 

with length ≥ 1kb, average depth of coverage ≥ 20 bases and containing genes encoding known 675 

virus/bacteriophage functions were extracted. 676 

 677 
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Analysis of subsets of contigs 678 

Subsets of contigs were identified by visual inspection of augmented VizBin maps generated 679 

by IMP. Detailed inspection of contig-level MT to MG depth of coverage ratios was carried 680 

out using the R workspace provided as part of IMP output. The alignment information of 681 

contigs to isolate genomes provided by MetaQUAST [41] were used to highlight subsets of 682 

contigs aligning to genomes of Escherichia coli P12B strain (E. coli) and Collinsella 683 

intestinalis DSM 13280 (C. intestinalis). 684 

 685 

MetaQUAST [41] was used to compare the three co-assemblies carried out on the HF 686 

dataset (using IMP, IMP-MEGAHIT and MetAMOS-IDBA_UD) against the corresponding 687 

single-omic MG and MT assemblies (see section Iterative single-omic assemblies). For the HF 688 

data, corresponding reference genomes were extracted from the IMP output and were provided 689 

to MetaQUAST (flag: -R) as the reference genome set. 690 

 691 

Computational platforms 692 

IMP and MetAMOS were executed on a Dell R820 machine with 32 Intel(R) Xeon(R) CPU 693 

E5-4640 @ 2.40GHz physical computing cores (64 virtual), 1024 TB of DDR3 RAM (32 GB 694 

per core) with Debian 7 Wheezy as the operating system. Additional computations outside the 695 

scope of the pipelines (IMP and MetAMOS) were performed on the Gaia cluster of the 696 

University of Luxembourg HPC platform [59].  697 

 698 

Availability 699 

IMP software and code are available under the BSD-4-Clause license, on the LCSB R3 website: 700 

http://r3lab.uni.lu/web/imp/. Scripts and commands for additional analyses are available at: 701 

https://git-r3lab.uni.lu/shaman.narayanasamy/IMP_article_analyses. 702 
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WW: Wastewater 727 

bp: base pair 728 
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SRA: Sequence read archive 732 
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Tables 924 

Table 1. Co-assemblies versus separate single-omic assemblies.  925 

Sample Assembly 
No. of 

contigs (all) 
Total 

length 
N50 

No. of 
predicted 

genes 
(unique) 

Genome 
fraction 

(%) 

MG 
mapped 

reads (%) 

MT 
mapped 

reads (%) 

SM 

IMP 84052 198407791 10154 201480 65.3 97.6 90.2 

IMP-MEGAHIT 108011 208588327 8243 212669 70 98 91.39 

MG-only 74498 183252937 10902 187382 60.8 96.39 80.36 

MT-only 14723 9497250 961 7357 3.5 8.58 29.03 

HF 

IMP 131728 174193511 4227 182924 NA 87.5 96.8 

IMP-MEGAHIT 149163 181987482 3696 191503 NA 88 95.7 

MG-only 121018 146897961 3564 155068 NA 35.1 34.35 

MT-only 43466 46274315 2248 48527 NA 4.27 4.73 

WW 

IMP 167295 125102684 1501 126748 NA 30.9 61.6 

IMP-MEGAHIT 208345 143114883 1285 143354 NA 32.1 62.8 

MG-only 88818 77058077 2100 81084 NA 0.73 12.2 

MT-only 47237 23251573 808 17851 NA 0.05 0.53 

 926 

Characteristics of the metagenomic (MG) and metatranscriptomic (MT) co-assemblies (IMP 927 

and IMP-MEGAHIT) against MG-only and MT-only assemblies based on simulated mock 928 

(SM) community dataset, human fecal (HF) community dataset and wastewater (WW) sludge 929 

community dataset. N50 statistics are reported based on a 500bp cut-off while read mappings 930 

were performed on all contigs.  931 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 10, 2016. ; https://doi.org/10.1101/039263doi: bioRxiv preprint 

https://doi.org/10.1101/039263
http://creativecommons.org/licenses/by-nd/4.0/


 

 41 

Table 2. Contigs reconstructed from the metatranscriptomic data with a likely 932 

viral/bacteriophage origin/function. 933 

Sample Contig ID 
Contig 
length 

Avg. contig 
depth of 
coverage 

Gene product 
Avg. gene depth of 

coverage 

HF 

contig_34 6468 20926.50 

Virus coat protein (TMV like) 30668.30 

Viral movement protein (MP) 26043.40 

RNA dependent RNA polymerase 22578.40 

Viral methyltransferase 18816.60 

contig_13948 2074 46.00 
RNA dependent RNA polymerase 40.98 

Viral movement protein (MP) 55.76 

WW 

contig_6405 4062 46.24 

Tombusvirus p33 43.42 

Viral RNA dependent RNA 
polymerase 

41.76 

Viral coat protein (S domain) 36.48 

contig_7409 3217 20.62 

Viral RNA dependent RNA 
polymerase 

18.24 

Viral coat protein (S domain) 20.88 

contig_7872 2955 77.01 
hypothetical protein 112.11 

Phage maturation protein 103.02 

 934 

Contigs of ≥ 1kb and average depth of coverage ≥ 20 were selected.  935 
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Figures 936 

 937 

Fig. 1. Schematic overview of the IMP pipeline. Cylinders represent input and output while 938 

rectangles represent processes. MG: Metagenomic data, MT: Metatranscriptomic data, rRNA: 939 

ribosomal RNA and NLDR-GS: non-linear dimensionality reduction of genomic signatures. 940 
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IMP handles raw paired-end (unprocessed) MG and MT data. Processes, input and output 941 

specific to MG and MT data are labeled blue and red, respectively. Processes and output that 942 

involve integration of MG and MT data are represented in purple. Details about the “iterative 943 

co-assembly” are available in Additional file 2: Figure S1. IMP is launched as Docker container 944 

with Ubuntu as the operating system and uses Snakemake for workflow automation. 945 

 946 

Fig. 2. Information contained within the iterative metagenomic assemblies. Quantitative 947 

assessment of the initial metagenomic (MG) assembly as well as incremental information and 948 

data usage from additional MG assembly iterations, employing unmappable reads from: (A) 949 

simulated mock (SM) community, (B) human fecal (HF) community and (C) wastewater 950 

(WW) sludge community.  951 

 952 
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 953 

Fig. 3. Assessment of the IMP-based iterative co-assemblies in comparison to established 954 

methods. Radar charts summarizing the characteristics of the co-assemblies generated using 955 

IMP and MetAMOS pipelines on: (A) simulated mock (SM) community (B) human fecal (HF) 956 

community and (C) wastewater (WW) sludge community. (D) Summary radar chart reflecting 957 

the cumulative measures obtained using the different datasets. The solid lines represent IMP 958 

assemblies while the dashed lines represent MetAMOS assemblies, both pipelines executed 959 

using two different assemblers. The assemblies are assessed based on number of contigs ≥ 1kb, 960 

N50 statistics (contiguity), number of predicted genes (unique). N50 statistics are reported 961 

using a 500bp cut-off. Additional reference-based assessments for SM assemblies include 962 

recovered genome fraction (%) and proportion of misassemblies. Higher values within the 963 

radar charts (furthest from center) represent best performance, except for misassemblies, where 964 

lower (closer to center) values indicate best performance. 965 

 966 
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 967 

Fig. 4. Examples of information retrievable from the IMP output of human fecal metagenomic 968 

and metatranscriptomic data. (A) Taxonomic composition reflecting the percentages of 969 

genomes covered. Representation of the inferred abundances of certain metabolic pathways 970 

based on (B) metagenomic data (functional potential) and (C) metatranscriptomic data (gene 971 

expression). Augmented VizBin maps of contigs ≥ 1kb, representing (D) contig-level 972 

metagenomic variant densities and (E) contig-level ratios of MT to MG average depth of 973 

coverage. 974 
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 975 
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Fig. 5. Metagenomic and metatranscriptomic data integration. (A) Augmented VizBin map 976 

highlighting contig subsets with sequences that are most similar to Escherichia coli P12b and 977 

Colinsella intestinalis DSM 13280 genomes. (B) Beanplot of metagenomic (MG) and 978 

metatranscriptomic (MT) average contig-level depth of coverage for the entire microbial 979 

community and two subsets (population-level genomes) of interest. (C) Recovered portion of 980 

subsets associated to the aforementioned taxa compared to a MG-only and MT-only 981 

assemblies. 982 

  983 
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 984 

Additional files 985 

The following additional data are available with the online version of this article. 986 

 987 

Additional file 1:  988 

File format: HTML 989 

Title of data: Supplementary IMP HTML reports. 990 

Description of data: HTML S1 and S2 are reports produced by IMP for the analysis of the 991 

human fecal (HF) microbial community and wastewater (WW) sludge microbial community 992 

datasets. 993 

 994 

Additional file 2:  995 

File format: PDF 996 

Title of data: Supplementary figures. 997 

Description of data: Figures S1 to S4. Detailed figure legends available within file. 998 

 999 

Additional file 3:  1000 

File format: MS Excel (XLSX) 1001 

Title of data: Supplementary tables. 1002 

Description of data: Tables S1 to S9. Detailed table legends available within file. 1003 
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