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ABSTRACT 
Patient interactions with health care providers result in entries to electronic health records 
(EHRs). EHRs were built for clinical and billing purposes but contain many data points 
about an individual. Mining these records provides opportunities to extract electronic 
phenotypes that can be paired with genetic data to identify genes underlying common 
human diseases. This task remains challenging: high quality phenotyping is costly and 
requires physician review; many fields in the records are sparsely filled; and our 
definitions of diseases are continuing to improve over time. Here we develop and 
evaluate a semi-supervised learning method for EHR phenotype extraction using 
denoising autoencoders for phenotype stratification. By combining denoising 
autoencoders with random forests we find classification improvements across simulation 
models, particularly in cases where only a small number of patients have high quality 
phenotype. This situation is commonly encountered in research with EHRs. Denoising 
autoencoders perform dimensionality reduction allowing visualization and clustering for 
the discovery of new subtypes of disease. This method represents a promising approach 
to clarify disease subtypes and improve genotype-phenotype association studies that 
leverage EHRs.  

Keywords: Electronic Health Record; Denoising Autoencoder; Unsupervised; Electronic 
Phenotyping , Patient Stratification 
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GRAPHICAL ABSTRACT

 

INTRODUCTION 

Human diseases are complex and not perfectly understood. This means that while 

diseases are often considered as fixed phenotypes, many have evolving definitions and 

are difficult to classify. The electronic health record (EHR) is a popular source for 

electronic phenotyping to augment traditional genetic association studies, but there is a 

relative scarcity of research quality annotated patients [1]. Electronic phenotyping relies 

on either codes designed for billing or time intensive clinician review. This is an ideal 

environment for semi-supervised algorithms, particular those that perform unsupervised 

learning on many patients followed by supervised learning on a smaller, annotated, 

subset. 

Denoising autoencoders (DAs) are a powerful tool to perform unsupervised learning [2]. 

DAs are trained similarly to artificial neural networks but taught to reconstruct an 

original input from an intentionally corrupted input. Through this training they find 

higher-level representations modeling the structure of the underlying data. By applying 

DAs in the EHR we sought to determine whether they could reduce the number of 

labeled samples required, construct non-billing code based phenotypes and elucidate 

disease subtypes for fine-tuned genetic association. Unsupervised learning can also help 

to recognize misdiagnosed patients in the form of outliers and is robust to changing 

disease definitions over time. 
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EHRs were designed for billing and clinical usage and not optimized for research. 

Despite this, EHRs have already proven an effective source of phenotypes in genetic 

association studies [3,4]. Initially, phenotypes were hand designed based on manual 

clinician review of patient records. These studies were limited by the time and cost 

inherent in manual review, but DAs can make use of unlabeled data [5]. Semi-supervised 

learning can be performed using DAs to perform unsupervised pre-training. After 

learning the structure of the data, the DA’s hidden layer can be used as input to a 

traditional. This allows the DA to learn from all samples, even those without labels, and 

requires only a small subset to be annotated. Today, phenome-wide association studies 

(PheWAS) are the most prevalent example of EHR phenotyping, proving particularly 

effective at identifying pleiotropic genetic variants [6]. PheWASs often use algorithms 

based on the International Classification of Disease (ICD) codes to construct a 

phenotype. This coding system was designed for billing, not to capture human 

phenotypes. DA constructed features are combinations of all clinical data and may 

provide a more holistic view of a patient than billing codes alone. 

Through extensive study, disease diagnoses are becoming more precise over time [7–11]. 

Cancers, for example, were historically typed by occurrence location and the efficacy of 

different treatment types. As the mechanisms of cancer are better understood, they are 

further categorized by their physiological nature. The progression of subtypes in lung 

cancer illustrates the change over time for a previously poorly defined disease [7]. 

Beginning with a single diagnosis based on occurrence in the lung, it was later 

differentiated as small cell lung cancer and non-small cell lung cancer [8,9]. Non-small 

cell lung cancer was then broken up into squamous cell carcinoma, adenocarcinoma, and 

large cell carcinoma. Today these subtypes continue to be broken up based on the genetic 

locations and pathways of associated risk variants [10]. Higher-level subtypes have been 

found to differ in cell size, cell shape, tumor origin site and chemical properties and it is 

becoming clear that genome-phenotype associations to these subtypes are a many-to-one 

relationship [11]. The unsupervised nature of DAs means that even as the definitions of a 

disease change, they would not need to be retrained. Such refinements are not limited to 

cancer subtyping. The ability to produce more homogenous phenotypes increased 

genotype to phenotype linkage in schizophrenia, bipolar disease [12], and Rett Syndrome 
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[13–16]. Furthermore, type 2 diabetes subtypes have been discovered using topological 

analysis of EHR patient similarity [17]. The dimensionality reduction possible with a DA 

makes clustering and visualization more feasible. Subtyping exposes disease 

heterogeneity and will contribute to physiological understanding of complex diseases.  

DAs were initially introduced as a component in constructing the deep networks used in 

deep learning [18]. Deep learning algorithms have become the dominant performers in 

many classification problems including image recognition, speech recognition and natural 

language processing [19–24]. Deep learning techniques have recently been used with 

increasing popularity to solve biological problems including tumor classification, 

predicting chromatin structure and protein binding [2,25,26]. DAs showed strong 

performance early in the deep learning revolution but have been surpassed in most 

domains by convolutional neural networks or recurrent neural networks [18]. While 

complex deep networks such as convolutional neural networks have surpassed the 

performance of DAs in these areas, they rely on strictly structured relationships such as 

the relative positions of pixels within an image [21,27]. This structure is unlikely to exist 

in the EHR. In addition, convolutional neural networks and other deep networks (Deep 

belief networks, Recurrent Neural Networks etc.) are notoriously hard to interpret. DAs 

are easily generalizable, benefit from both linear and nonlinear correlation structure in the 

data, and contain accessible, interpretable, internal nodes [2]. Oftentimes the hidden layer 

is a “bottle-neck”, a much smaller size than the input layer, in order to force the 

autoencoder to learn the most important patterns in the data [27]. In patients diagnosed 

with the same disease, these important patterns may represent subtypes or other important 

patient clustering. 

We evaluate DAs for phenotype construction using four simulation models of EHR data 

for complex phenotypes, modify DAs to effectively handle missingness in data and use 

the DA to create cluster visualizations that can aid in the discovery of subtypes of 

complex diseases. 
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METHODS 

We developed a denoising autoencoder approach that constructs phenotypes through 

unsupervised learning. To evaluate the DA, we created a simulation framework that 

represents multiple hidden factors that affect numerous potentially overlapping observed 

variables. We evaluated the reduced DA models against feature-complete representations 

with popular supervised learning algorithms. These evaluations covered both complete 

datasets, as well as the more realistic cases of incompletely labeled and missing data. 

Finally, we developed a technique that uses the reduced feature-space of the DA to 

visualize potential subtypes. Each of these is fully described in its own section below, full 

parameters included sweeps are available in the supplementary materials.  Source code to 

reproduce each analysis is included in our repository 

(https://github.com/greenelab/DAPS) [28] and is provided under a permissive open 

source license (3-clause BSD). A docker build is included with the repository to provide 

a common environment to easily reproduce results without installing dependencies [29]. 

In addition, Shippable, a continuous integration platform, is used to reanalyze results and 

generate figures after each commit [30]. 

 

Unsupervised Training 

We used the Theano library [31,32] to construct a DA consisting of three layers, an input 

layer x, a single hidden layer y, and a reconstructed layer z [18] (Figure 1A). Noise was 

added to the input layer through a stochastic corruption process, which masks 20% of the 

input values, selected at random, to zero.  

The hidden layer y was calculated by multiplying the input layer by a weight vector W, 

adding a bias vector b and computing the sigmoid (Formula 1). The reconstructed layer z 

was similarly computed using tied weights, the transpose of W and b (Formula 2). The 

cost function is the cross-entropy of the reconstruction, a measure of distance between the 

reconstructed layer and the input layer (Formula 3).  

𝑦 = 𝑠 𝑊𝑥 + 𝑏      (Formula 1) 
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𝑧 = 𝑠 𝑊!𝑥 + 𝑏!      (Formula 2) 

𝑐𝑜𝑠𝑡 =  − [𝑥! log 𝑧!  !
!!! + (1− 𝑥!) log 1− 𝑧! ]      (Formula 3) 

 

Stochastic gradient descent was performed for 1000 training epochs, at a learning rate of 

0.1. Hidden layers of two, four, eight and sixteen hidden nodes were included in the 

parameter sweep with a 20% input corruption level. Vincent et al. [18] provide a through 

explanation of training for DAs without missing data. 

In the event of missing data, the cost calculation was modified to exclude missing data 

from contributing to the reconstruction cost. A missingness vector m was created for each 

input vector, with a value of 1 where the data is present and 0 when the data is missing. 

Both the input sample x and reconstruction z were multiplied by m and the cross entropy 

error was divided by the sum of the m, the number of non-missing features to get the 

average cost per feature present (Formula 4). This allowed the DA to learn the structure 

of the data from present features rather than imputation. 

 

𝑐𝑜𝑠𝑡 =  − [𝑥! log 𝑧!  !
!!! 𝑚! + (1− 𝑥!) log 1− 𝑧! 𝑚!] / 𝑐𝑜𝑢𝑛𝑡(𝑚)      (Formula 4) 

 

Full implementation and training details are available in the supplementary materials. 
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Fig. 1. A) Network diagram of DAs used for unsupervised pre-training. B) Supervised 
classification occurs using the pre-trained DA hidden nodes as input to a traditional 
classifier. C) Simulation model with example cases and controls under each rule set.  

 

Supervised Denoising Autoencoder Classifier 

To convert the DA to a supervised classifier, we first trained the DA in an unsupervised 

fashion (pre-training) (Fig 1A). We then applied a variety of traditional machine learning 

classifiers including, decision trees, random forests, logistic regression, nearest neighbors 

and support vector machines to the pre-trained unsupervised hidden layer values, y, of the 

DA (Figure 1B). Random forests applied to DA hidden nodes (DA+RF) were shown for 

all comparisons. Predictive performance was measured by comparing the AUROC using 

stratified 10-fold cross validation. The Scikit-learn library was used for the traditional 

classifiers [33]. The Support Vector Machine uses a radial basis function kernel. 
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Simulation Framework 

Patients were simulated from a set of abstract hidden input effects with a status of 1 or 0.  

These input effects shift the mean of 1 to N observed clinical variables chosen at random 

with replacement (Figure 1C). An example of a hypothetical condition a hidden input 

effect could represent is the familial hypercholesterolemia genotype. For a patient with 

the familial hypercholesterolemia genotype, the simulated clinical observations could 

represent increases in levels of total and low-density lipoprotein cholesterol, the 

deposition of cholesterol in extravascular tissues, corneal arcus and elevated triglyceride 

levels [34]. Some factors such as elevated triglyceride levels are not solely the result of 

the genetic predisposition and are related to environmental factors. Hypothetically 

additional hidden input effects on the same observed variable would represent these other 

factors. Because our goal is to evaluate methods for their ability to broadly capture these 

types of patterns, we generate randomized relationships between hidden and observed 

variables. This avoids overfitting our evaluation to specific phenotypes. 

Next, a confounding systematic bias was added to a random subset (33%) of the patients 

as a source of additional noise to simulate the variance accompanying data created by 

physicians, labs, hospitals or other spurious effects. 

Within the simulation combinations of hidden input effects determine case-control status 

under four models:  

1. All together/all relevant. Individuals have the same value (0 or 1) for 

all hidden input effects. Controls have all hidden effects set to 0. Cases 

have all hidden effects set to 1.  A model capturing any hidden input 

will be able to predict case/control status in this scenario. 

2. All independent /single effect relevant. Individuals have 0 to N 

(specified per simulation) hidden input effects chosen at random. One 

arbitrary effect (the last one) is used to determine case-control status. In 

controls, this is 0. In cases, this is 1. A model capturing the relevant 

hidden input will be able to predict case/control status in this scenario. 
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3. All independent/percentage based. Individuals have 0 to N (specified 

per simulation) of hidden input effects chosen at random set to 1. The 

percentage of hidden input effects on represents the probability of the 

patient being a case. A model capturing more hidden effects will be able 

to more accurately predict case/control in this scenario. 

4. All independent/complex rule based. Individuals have 0 to N 

(specified per simulation) of hidden inputs chosen at random set to 1. 

The sum of hidden effects determines case-control status (cases are 

even, controls are odd). A model must capture all hidden effects to 

successfully predict case/control in this scenario.  

 

Supervised Classification Comparison 

If successfully trained, the hidden layer of a DA, y, captures the first n factors of variation 

in the data, where n is the number of nodes in the hidden layer. To test whether the DA 

constructed useful features by learning the main factors of variation in the data we used 

the trained hidden layer as an input to a shallow classifier.  

To do this, we first completed unsupervised pre-training of the DA with all of the 

simulated samples. The hidden layer values, y, were calculated for all samples using the 

trained DA without any corruption and fed in as the features to a random forest to form a 

supervised classifier.  

Classification performance between DAs plus random forests (DA+RF) were compared 

against decision trees, random forests, nearest neighbors and support vector machines in a 

parameter sweep under each model (Table 1). Additional model parameters included in 

sweeps are included in the supplementary materials. All traditional classifiers were 

implemented with Scikit-learn [33]. Classification performance was compared using the 

AUROC. 
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Table 1. Simulation Model 1 Parameter Sweep Specifications. 

Parameter Values 

Observed Variables 50, 100, 200, 400 

Effect Magnitude (x Variance) 1, 2, 4 

Hidden Input Effects 1, 2, 4, 8, 16 

Effected Observed Variables per Hidden Input Effect 5, 10 

Unlabeled Patients 10,000 

Labeled Patients 100, 200, 500, 1,000, 2,000 

Systematic Bias 0.1 applied to 0.33 of patients 

DA Hidden Nodes 1, 2, 4, 8 

 

Semi-Supervised Classification Comparison 

The supervised classification comparison was repeated but with additional patients 

simulated and utilized during the unsupervised pre-training of the DA. The additional 

patients were simulated at the same 50% case, 50% control ratio but their labels were 

discarded after simulation. These additional patients were mixed with the original labeled 

patients and included in the unsupervised pre-training of the DA. The unlabeled samples 

were then discarded and the DA+RF was then provided the same, labeled, patient groups 

as the traditional classifiers. The labeled patient samples were run through the trained DA 

in the same manner as the unsupervised pre-training but without any corruption added to 

the data. The DA+RF and traditional classifiers were evaluated in a parameter sweep 

under each model using 10-fold cross validation.   

Missing Data Comparison 

The semi-supervised classification comparison was repeated five times with, 0%, 10%, 

20%, 30% and 40% of the data missing. Missing data was added at random per sample, 

depending on the specified percentage missing. 
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Throughout these trials, the cost calculation was modified to exclude missing data from 

the cost and allow the DA to learn without imputing values (Formula 4). The traditional 

classifiers were trained using mean imputation for missing data. Mean imputation is 

particularly well suited for the simulation models because the observations were drawn 

from normal distributions, potentially giving an advantage to the non-DA algorithms that 

would not be available in many real datasets. 

As in the semi-supervised classification comparison trial, the DA+RF and traditional 

classifiers were evaluated under each model using 10-fold cross validation. 

Clustering and Visualization 

To interpret and visualize results, patient populations were clustered using principal 

components analysis (PCA) and t-Stochastic Neighbor Embedding (t-SNE) of the trained 

DA’s hidden nodes [35,36]. PCA and t-SNE were implemented with the Sci-kit learn 

library [33].  

Ten thousand patients (5,000 cases, 5,000 controls) with four hidden effects were 

simulated under model 1. PCA followed by t-SNE was performed initially on the raw 

input for comparison and then on the hidden nodes of the DA after every 10 training 

epochs. 

To test the ability to identify subtypes, we simulated 15,000 patients, 5,000 cases under 

model 1, 5,000 cases under model 2, and 5,000 controls. Input observations were 

compared to two, three and four-node DAs using PCA followed by t-SNE. 

 

RESULTS 

Case-Control DA Training Visualization 

We trained a DA and visualized the training process using PCA and t-SNE. These 

visualization techniques offer intuition and the ability to examine the sub-clusters. Given 

5,000 cases and 5,000 controls under simulation model 1, PCA and t-SNE alone did not 

yield defined clusters (Fig 2A). Figures 2B-F show the separation of cases from controls 
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as the DA is trained. One thousand epochs of training via stochastic gradient descent 

were found to be sufficient for the convergence of reconstruction cost and stabilization of 

visualizations within simulated data (Figure 2 E and F, Supplemental Figure 1).  

Fig. 2 Case vs. Control clustering via principal components analysis and t-distributed 
stochastic neighbor embedding throughout the training of the DA. A.) Raw input B.) 0 
training epochs C.) 10 training epochs D.) 100 training epochs E.) 1,000 training epochs 
F.) 10,000 training epochs. 
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Fully Supervised Comparison 

To examine the ability of DAs to learn the structure of the data we compare the predictive 

ability of classification algorithms applied to the DA constructed through unsupervised 

training. Random forests demonstrated a strong balance of performance and stability, and 

were used for all comparisons (Supplemental Figure 2). We then compare the DA plus a 

random forest classifier (DA+RF) to the top performing classifiers on raw input data 

(Table 2).  

Table 2. Mean Receiver Operating Curve Area Under Curve by method under 

simulation model 1. 

Patients DA+RF Random 

Forest  

Support Vector 

Machine 

Decision 

Tree 

Nearest 

Neighbors 

100 0.618 0.653 0.504 0.599 0.635 

200 0.637 0.610 0.449 0.589 0.608 

500 0.677 0.690 0.663 0.617 0.642 

1000 0.774 0.717 0.776 0.634 0.651 

2000 0.755 0.736 0.862 0.643 0.658 

Mean 0.692 0.681 0.651 0.616 0.639 

 

Key trends emerged under each model; with few patients SVMs had AUCs 

indistinguishable from those expected from a random classifier. As one would expect, 

SVMs were top performers at when the number of patients was high. Random forest 

classification performance scaled steadily with patient count. The DA+RF performed 

similarly to the random forest, showing that a 2-node DA is able to capture at least one of 

the input hidden effects. Capturing any signal is sufficient to accurately classify 

simulation model 1. 
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Semi-Supervised Comparison 

The full potential of the DA+RF is reflected in semi-supervised parameter sweep 

comparison for simulation model 1 (Fig 3A). The DA method’s performance is high, 

even with very few labeled examples, when the sufficient unlabeled examples are 

available. Because of the extreme feature reduction, the traditional classifier on top of the 

DA is able to reach its learning capacity with very few labeled patients (Fig 3A). 

Efficient learning from labeled examples is critical in practical use cases because there 

are often few well-annotated cases due to the expense of clinician manual review. The 2-

node DA plus random forest also showed strong performance in relation to an SVM when 

there were many observed clinical variables (Fig 3B) and when there were many hidden 

effects. The SVM again showed the highest performance at very high numbers (1000 or 

more) of labeled patients. 
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Fig. 3 A) Classification AUC in relation to the number of labeled patients under 
simulation model 1 (RF – Random Forest, NN – Nearest Neighbors, DA – 2-node DA + 
Random Forest, SVM – Support vector machine). Unsupervised pre-training of the 2-
node DA was performed with 10,000 patients. B) Heat Map showing the difference of 
DA+RFC and SVM methods in relation to the number of labeled patients and observed 
variables under simulation model 1. 
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These patterns repeat across the other simulation models, with more complex models 

requiring more hidden nodes to adequately model the structure of the data. In simulation 

model 2 (Fig 4A), both 4 and 8 node DAs outperform the 2-node DA. In simulation 

model 3, the probabilistic manner of simulation means that even a perfect classifier 

would be unable to classify all samples, so methods were compared on this model using 

expected maximum predictive accuracy of a perfect classifier. In this model, case control 

odds were equal to the percentage of hidden input effects on. If there are 4 hidden input 

effects and 2 are on, the patient has a 50% chance of being a case and a 50% chance of 

being a control. A classifier cannot model this uncertainty and the maximum expected 

accuracy was calculated from a binomial distribution multiplied by the minority 

percentage as the best a classifier could do is learn the majority class. For example, in the 

case of 4 hidden effects the maximum expected accuracy is 68.75%. Under Model 3, the 

4-node DA is the strongest performing, with median performance 5% better than the next 

best traditional classifier. Model 4 (Fig 4C, 4D) was the most difficult to classify as the 

classifier had to capture all of the hidden effects to be accurate. In several cases, no 

classifier did better than the expected performance of a random classifier. In fact, the 

SVM’s average AUC over the entire sweep was indistinguishable from random 

performance. As expected, the 2-node performs worse than the 4 and 8-node DAs on 

model 4. The 2-node DA lacks sufficient dimensionality to capture more than 4 hidden 

input effects. 
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Fig. 4 A) Classification Accuracy of model 2 (1, 2, 4 and 8 effects). B) Classification 
AUC normalized to simulation model 2 expected max predictive accuracy (1, 2, 4 and 8 
effects). C) Classification AUC of model 4 (1, 2, 4 and 8 effects). D.) Classification AUC 
of model 4 (parameter sweep results for 1, 2, 4 and 8 effects using only the parameter sets 
with 2,000 labeled patients) 
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Semi-Supervised Missing Data Comparison 

Clinical records often have empty fields, so algorithms must be robust to missing data. 

We evaluated the DA’s robustness in this situation. The DA is robust to missing data 

maintaining near-max classification performance across the missingness proportions 

tested (Fig5, Supp. Fig 3). For these simulation models, the mean imputation used for 

non-DA approaches is an ideal strategy. Figure 5B shows consistent performance 

between the DA and SVM even as the percent of data missing increases, suggesting that 

the DA is at least as robust as the ideal imputation method. 
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Fig. 5. A) Classification AUC in relation to the amount of missing data under simulation 
model 1. B) Heatmap showing difference of DA and SVM in relation to supervised 
patient count and percent of missing data.  

 

Simulated Subtype Clustering Visualization 

We evaluated the DAPS’ ability to perform patient stratification. To perform this 

analysis, we simulated 5,000 cases from each of two different models (1 and 2) to 

represent a disease with two subtypes. An additional 5,000 controls were simulated. We 

then visualized the DA constructed from this set of patients using PCA followed by 

tSNE. In the input data, the subtypes are relatively overlapping (Fig 6A). A DA with two 

nodes was also unable to separate this number of subtypes (Figure 6B). Visualizations 

constructed from DAs with three (Figure 6C) or four (Figure 6D) were able to effectively 

separate both subtypes of cases from each other and from controls.  
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Fig. 6 Case vs. Control clustering via principal components analysis and t-distributed 
stochastic neighbor embedding after training the DA for controls and cases generated 
from a combination of models 1 and 3. A). Raw input. B.) 1,000 training epochs with 2 
hidden nodes. C.)  1,000 training epochs with 3 hidden nodes. D.) 1,000 training epochs 
with 4 hidden nodes. 
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DISCUSSION 

In this study, we presented a semi-supervised learning approach using DAs to model 

patients in the EHR. Competitive supervised classification accuracy with a large degree 

of feature reduction indicates the DA successfully learned the structure of the high-

dimensional EHR data. DAs are particularly well suited to the EHR because their 

unsupervised nature allows the formation of a semi-supervised classifier and the ability to 

utilize large un-annotated patient populations to improve classification accuracy.  The 

dimensionality reduction of DAs allows clustering of the reduced feature set for the 

visualization and determination of subtypes. These clusters may reveal disease subtypes, 

fine-tuned targets for genotype-phenotype association. The DA models are easily de-

constructible because they use a simple model for the traditional classifier with 

transparent node compositions that can be traced back to inputs. In addition, our method 

proposes a straightforward modification to the DA to enable it to process missing data 

without imputation.  

PheWASs are a powerful tool to leverage the vast clinical data contained in the electronic 

health record but currently suffer from the reliance on billing codes or manual clinician 

annotation. Denny et al. [1] call out the need for increased accuracy in phenotype 

definition in the original PheWAS publication, particularly for rare phenotypes or 

phenotypes that do not directly correspond with a billing code. In addition, several 

studies have found increased genetic linkage via subtyping [12–16,37]. Li et al. [17] 

presented a powerful example of EHR subtyping of patients with type 2 diabetes using a 

similar methodology, but they utilized Ayasdi, a commercial, closed source topology data 

analysis software tool. Our method is built on free, open source libraries that will 

continue to be improved and our software is accessible for the research community. 

DA nodes and clusters of nodes provide composite variables that may better approximate 

and represent the condition of the subject. These additional phenotype targets may 

provide more homogeneous targets for genotype associations. Beyond genotype to 

phenotype association, these visualizations may also help clinicians to understand the 
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level of heterogeneity for a specific disease and to make treatment associations among 

sub-clusters of patients. 

Our work provides an important contribution but challenges remain. Most importantly, 

the transition from simulated data to real world clinical data requires an additional patient 

selection step, in order to find suitable patients to perform the unsupervised pre-training 

step. In addition, we assume a preprocessing step has already been performed to handle 

the compound structure present in the EHR. This step is necessary to transform 

categorical, free text, images and temporal data to suitable input for the DA. 

Future work will focus on developing tools to examine and interpret constructed 

phenotypes (hidden nodes) and clusters. We anticipate high weights indicate important 

contributors to node construction revealing relevant combinations of input features. In 

addition, we will develop a framework for evaluating the significance of constructed 

clusters for genotype to phenotype association. Finally we will construct a scheme for 

determining optimal hyper parameter (i.e. hidden node count) selection. 
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Semi-Supervised Learning of the Electronic Health Record 
with Denoising Autoencoders for Phenotype Stratification 
(DAPS) 
	

SUPPLEMENTARY MATERIALS 

Parameter Sweep Specifications 

Supp. Table 1. Simulation Model 2 Parameter Sweep Specifications. 

Parameter Values 

Observed Variables 100 

Effect Magnitude (x Variance) 5 

Hidden Input Effects 1, 2, 4, 8 

Effected Observed Variables per Hidden Input Effect 5, 10 

Unlabeled Patients 10,000 

Labeled Patients 100, 200, 500, 1000, 2000 

Systematic Bias 0.1 applied to 0.33 of patients 

DA Hidden Nodes 2, 4, 8 

 

Supp. Table 2. Simulation Model 3 Parameter Sweep Specifications. 

Parameter Values 

Observed Variables 100 

Effect Magnitude (x Variance) 5 

Hidden Input Effects 1, 2, 4, 8 

Effected Observed Variables per Hidden Input Effect 10 

Unlabeled Patients 10,000 

Labeled Patients 100, 200, 500, 1000, 2000 

Systematic Bias 0.1 applied to 0.33 of patients 

DA Hidden Nodes 2, 4, 8 
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Supp. Table 3. Simulation Model 4 Parameter Sweep Specifications. 

Parameter Values 

Observed Variables 100 

Effect Magnitude (x Variance) 10 

Hidden Input Effects 1, 2, 4, 8 

Effected Observed Variables per Hidden Input Effect 5 

Unlabeled Patients 10,000 

Labeled Patients 100, 200, 500, 1000 

Systematic Bias 0.1 applied to 0.33 of patients 

DA Hidden Nodes 2, 4, 8, 16 

 

Supp. Table 4. Missing Data, Simulation Model 1 Parameter Sweep Specifications. 

Parameter Values 

Observed Variables 100 

Effect Magnitude (x Variance) 2 

Hidden Input Effects 2, 4, 8, 16 

Effected Observed Variables per Hidden Input Effect 10 

Unlabeled Patients 10,000 

Labeled Patients 100, 200, 500, 1000 

Systematic Bias 0.1 applied to 0.33 of patients 

DA Hidden Nodes 2, 4, 8 

Missing Data 0, 0.1, 0.2, 0.3, 0.4 
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Supp. Figure 1. Denoising Autoencoder Reconstruction Cost vs. Training Epochs 
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Supp. Figure 2. ROC AUC comparisons for traditional classifiers across model 1 with 
DA hidden nodes as inputs.  
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Supp.	Figure	3.	A) Classification AUC in relation to the amount of missing data under 
simulation model 3. B) Heatmap showing difference of DA and SVM in relation to 
supervised patient count and percent of missing data.	
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