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ABSTRACT 

Patient interactions with health care providers result in entries to electronic health records 
(EHRs). EHRs were built for clinical and billing purposes but contain many data points 
about an individual. Mining these records provides opportunities to extract electronic 
phenotypes that can be paired with genetic data to identify genes underlying common 
human diseases. This task remains challenging: high quality phenotyping is costly and 
requires physician review; many fields in the records are sparsely filled; and our 
definitions of diseases are continuing to improve over time. Here we develop and 
evaluate a semi-supervised learning method for EHR phenotype extraction using 
denoising autoencoders for phenotype stratification. By combining denoising 
autoencoders with random forests we find classification improvements across multiple 
simulation models and improved survival prediction in ALS clinical trial data. This is 
particularly evident in cases where only a small number of patients have high quality 
phenotypes, a common scenario in EHR-based research. Denoising autoencoders perform 
dimensionality reduction enabling visualization and clustering for the discovery of new 
subtypes of disease. This method represents a promising approach to clarify disease 
subtypes and improve genotype-phenotype association studies that leverage EHRs.  

Keywords: Electronic Health Record; Denoising Autoencoder; Unsupervised; Electronic 
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GRAPHICAL ABSTRACT

 

HIGHLIGHTS 

• Denoising autoencoders (DAs) can model electronic health records. 

• Semi-supervised learning with DAs improves ALS patient survival predictions. 

• DAs improve patient cluster visualization through dimensionality reduction. 
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INTRODUCTION 

Biomedical research often considers diseases as fixed phenotypes, but many have 

evolving definitions and are difficult to classify. The electronic health record (EHR) is a 

popular source for electronic phenotyping to augment traditional genetic association 

studies, but there is a relative scarcity of research quality annotated patients [1]. 

Electronic phenotyping relies on either codes designed for billing or time intensive 

manual clinician review. This is an ideal environment for semi-supervised algorithms, 

performing unsupervised learning on many patients followed by supervised learning on a 

smaller, annotated, subset. Denoising autoencoders (DAs) are a powerful tool to perform 

unsupervised learning [2]. DAs are a type of artificial neural network trained to 

reconstruct an original input from an intentionally corrupted input. Through this training 

they learn higher-level representations modeling the structure of the underlying data. We 

sought to determine whether applying DAs to the EHR could reduce the number of 

annotated patients required, construct non-billing code based phenotypes and elucidate 

disease subtypes for fine-tuned genetic association. 

The United States federal government mandated meaningful use of EHRs by 2014 to 

improve patient care quality, secure and communicate patient information, and clarify 

patient billing [3,4]. Despite not being designed specifically for research, EHRs have 

already proven an effective source of phenotypes in genetic association studies [5,6]. 

Initially, phenotypes were hand designed based on manual clinician review of patient 

records. These studies were limited by the time and cost inherent in manual review, but 

DAs can make use of unlabeled data [7]. After unsupervised pre-training the trained 

DA’s hidden layer can be used as input to a traditional classifier to create a semi-

supervised learner. This allows the DA to learn from all samples, even those without 

labels, and requires only a small subset to be annotated. Today, phenome-wide 

association studies (PheWAS) are the most prevalent example of EHR phenotyping, 

proving particularly effective at identifying pleiotropic genetic variants [8]. PheWASs 

often use algorithms based on the International Classification of Disease (ICD) codes to 

construct a phenotype. This coding system was designed for billing, not to capture 
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research phenotypes. DA constructed features are combinations of many components of 

clinical data and may provide a more holistic view of a patient than billing codes alone. 

Through extensive study, disease diagnoses can become more precise over time [9–13]. 

Cancers, for example, were historically typed by occurrence location and the efficacy of 

different treatments. As the mechanisms of cancer are better understood, they are further 

categorized by their physiological nature. The progression of subtypes in lung cancer 

illustrates the increased understanding over time [9]. Beginning with a single diagnosis 

based on occurrence in the lung, lung cancer has been divided into dozens of subtypes 

over several decades based on histological analysis, and genetic markers [10–13]. The 

unsupervised nature of DAs means that even if the definitions of a disease change, they 

would not need to be retrained. The ability to identify more homogenous phenotypes 

showed increased genotype to phenotype linkage in schizophrenia, bipolar disease [14], 

and Rett Syndrome [15–18]. Furthermore, type 2 diabetes subtypes have been discovered 

using topological analysis of EHR patient similarity [19]. The dimensionality reduction 

possible with a DA makes clustering and visualization more feasible. Subtyping exposes 

disease heterogeneity and may contribute to additional physiological understanding. 

Previous work in semi-supervised learning of the EHR relies on closed source 

commercial software [19], and natural language processing of free text fields to match 

clinical diagnosis [20,21]. We are not aware of any previous work performing semi-

supervised classification and clustering from quantitative structured patient data. 

We evaluate DAs for phenotype construction using four simulation models of EHR data 

for complex phenotypes, modify DAs to effectively handle missingness in data and use 

the DA to create cluster visualizations that can aid in the discovery of subtypes of 

complex diseases. We apply these methods to predict ALS patient survival and to 

visualize ALS patient clusters. ALS is a progressive neurodegenerative disorder, which 

attacks the neurons responsible for controlling muscle function [22]. ALS patients 

typically die within 3 to 5 years, but some patients can survive more than 10 years, the 

disease is considered clinically heterogeneous and predicting the rate of progression can 

be challenging [23]. 
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METHODS 

We developed an approach entitled, Denoising Autoencoders for Phenotype Stratification 

(DAPS), which constructs phenotypes through unsupervised learning. This generalized 

phenotype construction can be used to classify whether patients have a particular disease 

or to search for disease subtypes in patient populations. To evaluate DAPS, we created a 

simulation framework with multiple hidden factors influencing potentially overlapping 

observed variables. We evaluated the reduced DA models against feature-complete 

representations with popular supervised learning algorithms. These evaluations covered 

both complete datasets, as well as the more realistic cases of incompletely labeled and 

missing data. We developed a technique that uses the reduced feature-space of the DA to 

visualize potential subtypes. Finally, we evaluate DAs ability to predict ALS patient 

survival in both classification and clustering tasks. Each of these is fully described below 

and full parameters included in sweeps are available in the supplementary materials.   

 

Source code to reproduce each analysis is included in our repository 

(https://github.com/greenelab/DAPS) [24] and is provided under a permissive open 

source license (3-clause BSD). A docker build is included with the repository to provide 

a common environment to easily reproduce results without installing dependencies [25]. 

In addition, Shippable, a continuous integration platform, is used to reanalyze results in a 

clean environment and generate figures after each commit [26]. 

Unsupervised Training with Denoising Autoencoders 

DAs were initially introduced as a component in constructing the deep networks used in 

deep learning [27]. Deep learning algorithms have become the dominant performers in 

many domains including image recognition, speech recognition and natural language 

processing [28–33]. Recently they have also been used to solve biological problems 

including tumor classification, predicting chromatin structure and protein binding 

[2,34,35]. DAs showed strong performance early in the deep learning revolution but have 

been surpassed in most domains by convolutional neural networks or recurrent neural 

networks [27]. While these complex deep networks have surpassed the performance of 
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DAs in these areas, they rely on strictly structured relationships such as the relative 

positions of pixels within an image [30,36]. This structure is unlikely to exist in the EHR. 

In addition, complex deep networks are notoriously hard to interpret. DAs are easily 

generalizable, benefit from both linear and nonlinear correlation structure in the data, and 

contain accessible, interpretable, internal nodes [2]. Oftentimes the hidden layer is a 

“bottle-neck”, a much smaller size than the input layer, in order to force the autoencoder 

to learn the most important patterns in the data [36].  

We used the Theano library [37,38] to construct a DA consisting of three layers, an input 

layer x, a single hidden layer y, and a reconstructed layer z [27] (Figure 1A). Noise was 

added to the input layer through a stochastic corruption process, which masks 20% of the 

input values, selected at random, to zero.  

The hidden layer y was calculated by multiplying the input layer by a weight vector W, 

adding a bias vector b and computing the sigmoid (Formula 1). The reconstructed layer z 

was similarly computed using tied weights, the transpose of W and b (Formula 2). The 

cost function is the cross-entropy of the reconstruction, a measure of distance between the 

reconstructed layer and the input layer (Formula 3).  

� � ���� � �	     (Formula 1) 


 � ����� � ��	     (Formula 2) 

��� �  � ∑ ��� log�
�	 �

��� � �1 � ��	 log�1 � 
�	�      (Formula 3) 

Stochastic gradient descent was performed for 1000 training epochs, at a learning rate of 

0.1. Hidden layers of two, four, eight and sixteen hidden nodes were included in the 

parameter sweep with a 20% input corruption level. Vincent et al. [27] provide a through 

explanation of training for DAs without missing data. 

In the event of missing data, the cost calculation was modified to exclude missing data 

from contributing to the reconstruction cost. A missingness vector m was created for each 

input vector, with a value of 1 where the data is present and 0 when the data is missing. 

Both the input sample x and reconstruction z were multiplied by m and the cross entropy 

error was divided by the sum of the m, the number of non-missing features to get the 
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average cost per feature present (Formula 4). This allowed the DA to learn the structure 

of the data from present features rather than imputation. 

��� �  � ∑ ��� log�
�	 �

��� �� � �1 � ��	 log�1 � 
�	 ��� / ������	      (Formula 4) 

 

 

Fig. 1. A) Network diagram of DAs used for unsupervised pre-training. Input data is 
intentionally corrupted and then weights and biases are learned to minimize 
reconstruction cost when mapping the data to a hidden layer and back to a reconstructed 
layer. B) Supervised classification occurs using the pre-trained DA hidden nodes as input 
to a traditional classifier. C) Simulation model with example cases and controls under 
each rule set.  

 

Supervised Denoising Autoencoder Classifier 

To convert the DA to a supervised classifier, we first trained the DA in an unsupervised 

fashion (pre-training) (Fig 1A). We then applied a variety of traditional machine learning 
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classifiers including, decision trees, random forests, logistic regression, nearest neighbors 

and support vector machines to the pre-trained unsupervised hidden layer values, y, of the 

DA (Figure 1B). Random forests applied to DA hidden nodes (DA+RF) were shown for 

all comparisons. Predictive performance was measured by comparing the AUROC using 

stratified 10-fold cross validation. The Scikit-learn library was used for the traditional 

classifiers [39]. The Support Vector Machine uses a radial basis function kernel. 

 

Simulation Framework 

Patients were simulated from a set of abstract hidden input effects with a status of 1 or 0.  

These input effects shift the mean of 1 to N observed clinical variables chosen at random 

with replacement (Figure 1C). An example of a hypothetical condition a hidden input 

effect could represent is the familial hypercholesterolemia genotype. For a patient with 

the familial hypercholesterolemia genotype, the simulated clinical observations could 

represent increases in levels of total and low-density lipoprotein cholesterol, the 

deposition of cholesterol in extravascular tissues, corneal arcus and elevated triglyceride 

levels [40]. Some factors such as elevated triglyceride levels are not solely the result of 

the genetic predisposition and are related to environmental factors. Hypothetically 

additional hidden input effects on the same observed variable would represent these other 

factors. Because our goal is to evaluate methods for their ability to broadly capture these 

types of patterns, we generate randomized relationships between hidden and observed 

variables. This avoids overfitting our evaluation to specific phenotypes. 

Next, a confounding systematic bias was added to a random subset (33%) of the patients 

as a source of additional noise to simulate the variance accompanying data created by 

physicians, labs, hospitals or other spurious effects. 

Within the simulation combinations of hidden input effects determine case-control status 

under four models:  

1. All together/all relevant. Individuals have the same value (0 or 1) for all 

hidden input effects. Controls have all hidden effects set to 0. Cases have all 
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hidden effects set to 1.  A model capturing any hidden input will be able to 

predict case/control status in this scenario. 

2. All independent /single effect relevant. Individuals have 0 to N (specified per 

simulation) hidden input effects chosen at random. One arbitrary effect (the last 

one) is used to determine case-control status. In controls, this is 0. In cases, this 

is 1. A model capturing the relevant hidden input will be able to predict 

case/control status in this scenario. 

3. All independent/percentage based. Individuals have 0 to N (specified per 

simulation) of hidden input effects chosen at random set to 1. The percentage of 

hidden input effects on represents the probability of the patient being a case. A 

model capturing more hidden effects will be able to more accurately predict 

case/control in this scenario. 

4. All independent/complex rule based. Individuals have 0 to N (specified per 

simulation) of hidden inputs chosen at random set to 1. The sum of hidden 

effects determines case-control status (cases are even, controls are odd). A 

model must capture all hidden effects to successfully predict case/control in 

this scenario.  

Simulation model 3 was evaluated using the maximum expected accuracy due to the 

probabilistic nature of the simulation. In this model, case control odds were equal to the 

percentage of hidden input effects on. If there are 4 hidden input effects and 2 are on, the 

patient has a 50% chance of being a case and a 50% chance of being a control. A 

classifier cannot model this uncertainty and the maximum expected accuracy was 

calculated from a binomial distribution multiplied by the minority percentage as the best 

a classifier could do is learn the majority class. For example, in the case of 4 hidden 

effects the maximum expected accuracy is 68.75%.  

 

Supervised Classification Comparison 

If successfully trained, the hidden layer of a DA, y, captures the first n factors of variation 

in the data, where n is the number of nodes in the hidden layer. To test whether the DA 
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constructed useful features by learning the main factors of variation in the data we used 

the trained hidden layer as an input to a shallow classifier.  

To do this, we first completed unsupervised pre-training of the DA with all of the 

simulated samples. The hidden layer values, y, were calculated for all samples using the 

trained DA without any corruption and fed in as the features to a random forest to form a 

supervised classifier.  

Classification performance between DAs plus random forests (DA+RF) were compared 

against decision trees, random forests, nearest neighbors and support vector machines in a 

parameter sweep under each model (Table 1). Additional model parameters included in 

sweeps are included in the supplementary materials. All traditional classifiers were 

implemented with Scikit-learn [39]. Classification performance was compared using the 

AUROC with 10-fold cross validation across 10 independent replicates for each set of 

parameters. 

Table 1. Simulation Model 1 Parameter Sweep Specifications. 

Parameter Values 

Observed Variables 50, 100, 200, 400 

Effect Magnitude (x Variance) 1, 2, 4 

Hidden Input Effects 1, 2, 4, 8, 16 

Effected Observed Variables per Hidden Input Effect 5, 10 

Unlabeled Patients 10,000 

Labeled Patients 100, 200, 500, 1,000, 2,000 

Systematic Bias 0.1 applied to 0.33 of patients 

DA Hidden Nodes 1, 2, 4, 8 

 

Semi-Supervised Classification Comparison 

The supervised classification comparison was repeated but with additional patients 

simulated and utilized during the unsupervised pre-training of the DA. The additional 

patients were simulated at the same 50% case, 50% control ratio but their labels were 
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discarded after simulation. These additional patients were mixed with the original labeled 

patients and included in the unsupervised pre-training of the DA. The unlabeled samples 

were then discarded and the DA+RF was then provided the same, labeled, patient groups 

as the traditional classifiers. The labeled patient samples were run through the trained DA 

in the same manner as the unsupervised pre-training but without any corruption added to 

the data. The DA+RF and traditional classifiers were evaluated in a parameter sweep 

under each model using 10-fold cross validation.   

Missing Data Comparison 

The semi-supervised classification comparison was repeated five times with, 0%, 10%, 

20%, 30% and 40% of the data missing. Missing data was added at random per sample, 

depending on the specified percentage missing. 

Throughout these trials, the cost calculation was modified to exclude missing data from 

the cost and allow the DA to learn without imputing values (Formula 4). The traditional 

classifiers were trained using mean imputation for missing data. Mean imputation is 

particularly well suited for the simulation models because the observations were drawn 

from normal distributions, potentially giving an advantage to the non-DA algorithms that 

would not be available in many real datasets. 

As in the semi-supervised classification comparison trial, the DA+RF and traditional 

classifiers were evaluated under each model using 10-fold cross validation. 

Clustering and Visualization 

To interpret and visualize results, patient populations were clustered using principal 

components analysis (PCA) and t-Stochastic Neighbor Embedding (t-SNE) of the trained 

DA’s hidden nodes [41,42]. PCA and t-SNE were implemented with the Sci-kit learn 

library [39].  

Ten thousand patients (5,000 cases, 5,000 controls) with four hidden effects were 

simulated under model 1. PCA followed by t-SNE was performed initially on the raw 

input for comparison and then on the hidden nodes of the DA after every 10 training 

epochs. 
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To test the ability to identify subtypes, we simulated 15,000 patients, 5,000 cases under 

model 1, 5,000 cases under model 2, and 5,000 controls. Input observations were 

compared to two, three and four-node DAs using PCA followed by t-SNE. 
 

ALS Survival Analysis 

Data used in the ALS Survival portion of this article were obtained from the Pooled 

Resource Open-Access ALS Clinical Trials (PRO-ACT) Database. In 2011, Prize4Life, 

in collaboration with the Northeast ALS Consortium, and with funding from the ALS 

Therapy Alliance, formed the Pooled Resource Open-Access ALS Clinical Trials (PRO-

ACT) Consortium. The data available in the PRO-ACT Database has been volunteered 

by PRO-ACT Consortium members. The PRO-ACT dataset includes 23 clinical trials 

covering 10,723 patients. We limit our survival analysis to the 3,398 patients with known 

death information, but perform unsupervised pre-training of the DA with all patients. 

 

Patient data includes quantitative demographic information, diagnosis history, family 

history, treatment history, vital sign readings, concomitant medications and laboratory 

tests.  Categorical variables were converted to one-hot encoding. Repeated or temporal 

measurements were encoded as the mean, minimum, maximum, count, standard deviation 

and slope across each repeat. Measurement scales were standardized and input features 

were normalized to be between 0 and 1. No imputation was performed on the input to the 

DA, K-nearest neighbors imputation (K=15) was performed for the raw comparison. 

 

Patient survival was predicted as the number of days from disease onset. Random Forest 

Regression using Scikit-learn with 1,000 estimators was performed on the raw data and 

the hidden layer of a 250 node DA trained for 1,000 epochs. Performance was evaluated 

using 10-fold cross validation. Cluster analysis using t-SNE was compared between PCA 

(2, 4, 8, and 16 components) on the raw input with the hidden layer of the DA. 
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RESULTS 

Case-Control DA Training Visualization 

We trained a DA and visualized the training process using PCA and t-SNE. These 

visualization techniques offer intuition and the ability to examine the sub-clusters. Given 

5,000 cases and 5,000 controls under simulation model 1, PCA and t-SNE alone did not 

yield defined clusters (Fig 2A). Figures 2B-F show the separation of cases from controls 

as the DA is trained. One thousand epochs of training via stochastic gradient descent 

were found to be sufficient for the convergence of reconstruction cost and stabilization of 

visualizations within simulated data (Figure 2 E and F, Supplemental Figure 1).  

 

Fig. 2 Case vs. Control clustering via principal components analysis and t-distributed 
stochastic neighbor embedding throughout the training of the DA. Controls are shown in 
yellow, cases are shown in red.  A.) Raw input B.) 0 training epochs C.) 10 training 
epochs D.) 100 training epochs E.) 1,000 training epochs F.) 10,000 training epochs. 
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Fully Supervised Comparison 

To examine the ability of DAs to learn the structure of the data we compare the predictive 

ability of classification algorithms applied to the DA constructed through unsupervised 

training. Random forests demonstrated a strong balance of performance and stability, and 

were used for all comparisons (Supplemental Figure 2). We then compare the DA plus a 

random forest classifier (DA+RF) to the top performing classifiers on raw input data 

(Table 2).  

Table 2. Mean Receiver Operating Curve Area Under Curve by method under 

simulation model 1. (10 Replicate, 10-fold cross validation) 

Patients DA+RF Random 

Forest  

Support Vector 

Machine 

Decision 

Tree 

Nearest 

Neighbors 

100 0.618 0.653 0.504 0.599 0.635 

200 0.637 0.610 0.449 0.589 0.608 

500 0.677 0.690 0.663 0.617 0.642 

1000 0.774 0.717 0.776 0.634 0.651 

2000 0.755 0.736 0.862 0.643 0.658 

Mean 0.692 0.681 0.651 0.616 0.639 

 

Key trends emerged under each model; with few patients SVMs had AUCs 

indistinguishable from those expected from a random classifier. As one would expect, 

SVMs were top performers at when the number of patients was high. Random forest 

classification performance scaled steadily with patient count. The DA+RF performed 

similarly to the random forest, showing that a 2-node DA is able to capture at least one of 

the input hidden effects. Capturing any signal is sufficient to accurately classify 

simulation model 1. 
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Semi-Supervised Comparison 

The full potential of the DA+RF is reflected in semi-supervised parameter sweep 

comparison for simulation model 1 (Fig 3A). Each set of parameters was evaluated with 

10 replicates and 10-fold cross validation for each replicate. With sufficient unlabeled 

examples, the DA method’s performance is high, even with very few labeled examples. 

Because of the extreme feature reduction, the traditional classifier on top of the DA is 

able to reach its learning capacity with very few labeled patients (Fig 3A). Efficient 

learning from labeled examples is critical in practical use cases because there are often 

few well-annotated cases due to the expense of clinician manual review. The 2-node DA 

plus random forest also showed strong performance in relation to an SVM when there 

were many observed clinical variables (Fig 3B) and when there were many hidden 

effects. The SVM again showed the highest performance at very high numbers (1000 or 

more) of labeled patients. The advantages of semi-supervised learning diminish as the 

number of labeled patients gets closer to the number of total patients. In addition, at high 

patient counts, a DA with more than 2 hidden nodes is required to capture the structure of 

the data with higher resolution. 
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Fig. 3 A) Classification AUC in relation to the number of labeled patients under 
simulation model 1 (RF – Random Forest, NN – Nearest Neighbors, DA – 2-node DA + 
Random Forest, SVM – Support Vector Machine). Unsupervised pre-training of the 2-
node DA was performed with 10,000 patients. Notch indicates 95% confidence interval 
for the median. Whiskers extend 1.5 times past the low and high quartiles. Points outside 
this range are denoted as dots and represent outliers. B) Heat Map showing the difference 
of DA+RFC and SVM methods in relation to the number of labeled patients and 
observed variables under simulation model 1. 
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These patterns repeat across the other simulation models, with more complex models 

requiring more hidden nodes to adequately model the structure of the data. In simulation 

model 2 (Fig 4A), both 4 and 8 node DAs outperform the 2-node DA. In simulation 

model 3, the probabilistic manner of simulation means that even a perfect classifier 

would be unable to classify all samples, so methods were compared on this model using 

expected maximum predictive accuracy of a perfect classifier. Under Model 3, the 4-node 

DA is the strongest performing, with median performance 5% better than the next best 

traditional classifier. The 4-node DA’s median 95% confidence interval was above any of 

the compared methods. Model 4 (Fig 4C, 4D) was the most difficult to classify as the 

classifier had to capture all of the hidden effects to be accurate. In several cases, no 

classifier did better than the expected performance of a random classifier. In fact, the 

SVM’s average AUC over the entire sweep was statistically indistinguishable from 

random performance. As expected, the 2-node performs worse than the 4 and 8-node 

DAs on model 4. The 2-node DA lacks sufficient dimensionality to capture more than 4 

hidden input effects.  

Clinical records often have empty fields, so algorithms must be robust to missing data. 

We evaluated the DA’s robustness in this situation. The DA is robust to missing data 

maintaining near-max classification performance across the missingness proportions 

tested (Supp. Fig 3, Supp. Fig 4). For these simulation models, the mean imputation used 

for non-DA approaches is an ideal strategy. DAs and SVMs show consistent performance 

even as the percent of data missing increases, suggesting that the DA is at least as robust 

as the ideal imputation method. 
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Fig. 4 Classification accuracy comparisons for models 2-4. Notch indicates 95% 
confidence interval for the median. Whiskers extend 1.5 times past the low and high 
quartiles. A) Classification Accuracy of model 2 (1, 2, 4 and 8 effects). B) Classification 
AUC normalized to simulation model 2 expected max predictive accuracy (1, 2, 4 and 8 
effects). C) Classification AUC of model 4 (1, 2, 4 and 8 effects). D.) Classification AUC 
of model 4 (parameter sweep results for 1, 2, 4 and 8 effects using only the parameter sets 
with 2,000 labeled patients) 
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Simulated Subtype Clustering Visualization 

We evaluated the DAPS’ ability to cluster patients for subtype identification. To perform 

this analysis, we simulated 5,000 cases from each of two different models (1 and 2) to 

represent a disease with two subtypes. An additional 5,000 controls were simulated. We 

then visualized the DA constructed from this set of patients using PCA followed by t-

SNE. In the input data, the subtypes are relatively overlapping (Fig 5A). A DA with two 

nodes was also unable to separate this number of subtypes (Figure 5B). Visualizations 

constructed from DAs with three (Figure 5C) or four (Figure 5D) nodes were able to 

effectively separate both subtypes of cases from each other and from controls.  
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Fig. 5 Case vs. Control clustering via principal components analysis and t-distributed 
stochastic neighbor embedding after training the DA for controls and cases generated 
from a combination of models 1 and 2. Controls are shown in yellow, subtype 1 (model 
1) is shown in red, subtype 2 (model 2) is shown in blue. A). Raw input. B.) 1,000 
training epochs with 2 hidden nodes. C.) 1,000 training epochs with 3 hidden nodes. D.) 
1,000 training epochs with 4 hidden nodes. 

 

ALS Survival Analysis 

We evaluated the DAPS’ ability to predict ALS patient survival (Fig 6A) with ten-fold 

cross validation. Both models used a random forest regressor to predict survival to 

compare predictions between the raw imputed data and the hidden layer of a 250 node 

DA. Next we performed t-SNE clustering to compare PCA with the hidden layer of the 

DA (Fig 6B-C, Supp. Fig. 6). The visualization constructed from the hidden layer of the 

DA shows several clear clusters with low patient survival as well as a more 

heterogeneous cluster with longer survival. PCA produced some patterns but did not 

produce any clear clustering. 
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Fig. 6 A.) Ten-fold cross validation survival prediction. Mean absolute error in days. 
Notch indicates 95% confidence interval for the median. Whiskers extend 1.5 times past 
the low and high quartiles. Points outside this range are denoted as dots and represent 
outliers. B.) PCA (2 components) followed by t-SNE. C.) t-SNE of the DA (250 nodes) 
hidden layer. All cluster coloring was determined by rank of days survived. Light colors 
indicate longer survival. 
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DISCUSSION 

In this study, we presented a semi-supervised learning approach using DAs to model 

patients in the EHR. Competitive supervised classification accuracy with a large degree 

of feature reduction indicates the DA successfully learned the structure of the high-

dimensional EHR data. DAs are particularly well suited to the EHR because their 

unsupervised nature allows the formation of a semi-supervised classifier and the ability to 

utilize large un-annotated patient populations to improve classification accuracy.  The 

dimensionality reduction of DAs allows clustering of the reduced feature set for the 

visualization and determination of subtypes. These clusters may reveal disease subtypes, 

fine-tuned targets for genotype-phenotype association. The DA models are easily de-

constructible because they use a simple model for the traditional classifier with 

transparent node compositions that can be traced back to inputs. In addition, our method 

proposes a straightforward modification to the DA to enable it to process missing data 

without imputation.  

PheWASs are a powerful tool to leverage the vast clinical data contained in the electronic 

health record but currently suffer from the reliance on billing codes or manual clinician 

annotation. Denny et al. [1] call out the need for increased accuracy in phenotype 

definition in the original PheWAS publication, particularly for rare phenotypes or 

phenotypes that do not directly correspond with a billing code. In addition, several 

studies have found increased genetic linkage via subtyping [14–18,43]. Li et al. [19] 

presented a powerful example of EHR subtyping of patients with type 2 diabetes using a 

similar methodology, but they utilized Ayasdi, a commercial, closed source topology data 

analysis software tool. Our method is built on free, open source libraries that will 

continue to be improved and our software is accessible for the research community. 

DA nodes and clusters of nodes provide composite variables that may better approximate 

and represent the condition of the subject. These additional phenotype targets may 

provide more homogeneous targets for genotype associations. Beyond genotype to 

phenotype association, these visualizations may also help clinicians to understand the 

level of heterogeneity for a specific disease and to make treatment associations among 
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sub-clusters of patients. While further work is required to analyze the makeup and 

meaning of the ALS survival clusters recognized by DAPS, they suggest a helpful 

starting point for investigation. 

Our work provides an important contribution but additional analysis and challenges 

remain. The transition from simulated data and relatively homogenous clinical trial data 

to diverse multi-disease real world clinical data will likely require additional steps.. In 

addition, in our simulations we assume a preprocessing step has already been performed 

to handle the compound structure present in the EHR. This step is necessary to transform 

categorical, free text, images and temporal data to suitable input for the DA. The PRO-

ACT ALS clinical trial data does not currently include any free text or images. 

Future work will focus on developing tools to examine and interpret constructed 

phenotypes (hidden nodes) and clusters. In addition, we will develop a framework for 

evaluating the significance of constructed clusters for genotype to phenotype association. 

We expect  We anticipate high weights indicate important contributors to node 

construction revealing relevant combinations of input features. Finally we will construct a 

scheme for determining optimal hyper parameter (i.e. hidden node count) selection. 
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Semi-Supervised Learning of the Electronic Health Record 
with Denoising Autoencoders for Phenotype Stratification 
(DAPS) 
 

SUPPLEMENTARY MATERIALS 

Parameter Sweep Specifications 

Supp. Table 1. Simulation Model 2 Parameter Sweep Specifications. 

Parameter Values 

Observed Variables 100 

Effect Magnitude (x Variance) 5 

Hidden Input Effects 1, 2, 4, 8 

Effected Observed Variables per Hidden Input Effect 5, 10 

Unlabeled Patients 10,000 

Labeled Patients 100, 200, 500, 1000, 2000 

Systematic Bias 0.1 applied to 0.33 of patients 

DA Hidden Nodes 2, 4, 8 

 

Supp. Table 2. Simulation Model 3 Parameter Sweep Specifications. 

Parameter Values 

Observed Variables 100 

Effect Magnitude (x Variance) 5 

Hidden Input Effects 1, 2, 4, 8 

Effected Observed Variables per Hidden Input Effect 10 

Unlabeled Patients 10,000 

Labeled Patients 100, 200, 500, 1000, 2000 

Systematic Bias 0.1 applied to 0.33 of patients 

DA Hidden Nodes 2, 4, 8 
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Supp. Table 3. Simulation Model 4 Parameter Sweep Specifications. 

Parameter Values 

Observed Variables 100 

Effect Magnitude (x Variance) 10 

Hidden Input Effects 1, 2, 4, 8 

Effected Observed Variables per Hidden Input Effect 5 

Unlabeled Patients 10,000 

Labeled Patients 100, 200, 500, 1000 

Systematic Bias 0.1 applied to 0.33 of patients 

DA Hidden Nodes 2, 4, 8, 16 

 

Supp. Table 4. Missing Data, Simulation Model 1 Parameter Sweep Specifications. 

Parameter Values 

Observed Variables 100 

Effect Magnitude (x Variance) 2 

Hidden Input Effects 2, 4, 8, 16 

Effected Observed Variables per Hidden Input Effect 10 

Unlabeled Patients 10,000 

Labeled Patients 100, 200, 500, 1000 

Systematic Bias 0.1 applied to 0.33 of patients 

DA Hidden Nodes 2, 4, 8 

Missing Data 0, 0.1, 0.2, 0.3, 0.4 
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Supp. Figure 1. Denoising Autoencoder Reconstruction Cost vs. Training Epochs 
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Supp. Figure 2. ROC AUC comparisons for traditional classifiers across model 1 with 
DA hidden nodes as inputs.  
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Supp. Figure 3. A) Classification AUC in relation to the amount of missing data under 
simulation model 1. B) Heatmap showing difference of DA and SVM in relation to 
supervised patient count and percent of missing data.  
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Supp. Figure 4. A) Classification AUC in relation to the amount of missing data under 
simulation model 3. B) Heatmap showing difference of DA and SVM in relation to 
supervised patient count and percent of missing data. 
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Supp. Figure 5. A.) Histogram of ALS patient survival in days. 
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Supp. Figure 6 ALS patient clustering using Principal Components Analysis. Color 

indicates survival length, by ranking. Lighter colors survived longest. A) Four 

Principal Components. B) Eight Principal Components. C) Sixteen Principal 

Components. 
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