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Abstract

Zika is a fast spreading epidemic. So far it is known to have two transmission routes

one via mosquito and the other is via sexual contact. It is dangerous on pregnant women

otherwise it is mild or asymptomatic. Therefore we present a fractional order network model

for it.
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1 Introduction

Zika is a fast spreading epidemic. Within one year it has spread to more than 32 countries

including south, central and north America. One case appeared in Europe and in Australia.

Therefore it should be studied using networks [22]. So far it is known to have two transmission

routes one via mosquito and the other is via sexual contact. It is dangerous on pregnant women

otherwise it is mild or asymptomatic. Therefore we expect that in the future the second route

will be more difficult to control. Fractional order (FO) models [14-18] are quite useful in epidemic

models to predict the spread of diseases, how to prevent epidemics and so much more. Therefore

we present a fractional order network model for ZIKA. The benefit of simple models is that we

can average out some of this complexity and try to understand the big picture. Our model will

be useful as a conceptual tool for modeling the impact of interventions aiming to control the

disease.

In sec. 2 a brief introduction to FO calculus is given. In sec. 3 the model is given and

studied. Sec.4 contains our conclusions.

2 Fractional order calculus

Definition 1 The fractional integral of order  ∈ + of the function ()   0 is defined by

() =

Z 

0

(− )−1

Γ()
()  (1)

1

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 18, 2016. ; https://doi.org/10.1101/039917doi: bioRxiv preprint 

https://doi.org/10.1101/039917
http://creativecommons.org/licenses/by-nc-nd/4.0/


and the fractional derivative of order  ∈ (− 1 ) of ()   0 is defined by


∗ () = −() ∗ =




 (2)

The following properties are some of the main ones of the fractional derivatives and integrals

(see [6]-[8], [10], [12], [20], [21]).

Let   ∈ + and  ∈ (0 1) Then
(i)  : 

1 → 1 and if () ∈ 1 then   () = + ()

(ii) lim→ 

 () =  () uniformly on [a,b],  = 1 2 3 · · · 

where 1 () =
R 

() 

(iii) lim→0  () = () weakly.

(iv) If () is absolutely continuous on [ ] then lim→1
∗ () =

()




(v) If () =  6= 0 k is a constant, then 
∗  = 0

The following lemma can be easily proved (see [10]).

Lemma 1 Let  ∈ (0 1) if  ∈ [0  ] then ()|=0 = 0.

2.1 Equilibrium points and their asymptotic stability

Let  ∈ (0 1] and consider the system ([1]-[3], [11], [13])


∗ 1() = 1(1 2 3)


∗ 2() = 2(1 2 3)


∗ 3() = 3(1 2 3) (3)

with the initial values

1(0) = 1 and 2(0) = 2 and 3(0) = 3 (4)

To evaluate the equilibrium points, let


∗ () = 0⇒ (


1  


2  


3 ) = 0  = 1 2 3

from which we can get the equilibrium points 

1  


2  


3 .

To evaluate the asymptotic stability, let

() = 

 + ()

So the the equilibrium point (

1  


2  


3 ) is locally asymptotically stable if the eigenvalues

of the Jacobian matrix  ⎡⎢⎣
1
1

1
2

1
3

2
1

2
2

2
3

3
1

3
2

3
3

⎤⎥⎦
evaluated at the equilibrium point satisfiesis (|arg(1)|  2 |arg(2)|  2 |arg(3)| 
2) ([2], [3], [13], [19]).The stability region of the fractional-order system with order  is

illustrated in Fig. 1 (in which   refer to the real and imaginary parts of the eigenvalues,

respectively, and  =
√−1). From Fig. 1, it is easy to show that the stability region of the

fractional-order case is greater than the stability region of the integer-order case.
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The eigenvalues equation of the equilibrium point (

1  


2  


3 ) is given by the following

polynomial:

() = 3 + 1
2 + 2+ 3 = 0 (5)

and its discriminant ( ) is given as:

( ) = 18123 + (12)
2 − 43(1)3 − 4(2)3 − 27(3)2 (6)

using the results of Ref. [2], we have the following fractional Routh-Hurwitz conditions:

(i) If ( )  0, then the necessary and sufficient condition for the equilibrium point

(

1  


2  


3 ), to be locally asymptotically stable, is 1  0 3  0 12 − 3  0

(ii) If ( )  0 1 ≥ 0 2 ≥ 0 3  0then (1  

2  


3 ) is locally asymptotically stable for

  23. However, if ( )  0 1  0 2  0   23 then all roots of Eq. (5) satisfy the

condition |arg()|  2.

(iii) If ( )  0 1  0 2  0 12 − 3 = 0, then (

1  


2  


3 ) is locally asymptotically

stable for all  ∈ (0 1)
(iv) The necessary condition for the equilibrium point (


1  


2  


3 ), to be locally asymptot-

ically stable, is 3  0.

3 Fractional-order SIRS epidemic model on homogenous

networks.

Let () be the number of individuals in the susceptible class at time , () be the number of

individuals who are infectious at time  and () be the recovered or vaccinated individuals at

time  [22].
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The fractional-order SIRS epidemic model on homogenous networks is given by

1∗ () = − hi
 +  +

+ − ( + )

1∗ () =
hi

 +  +
− (+ + )

1∗ () =  − (+ )+  (7)

where 0  1 ≤ 1 and the parameters        and  are positive constants, and hi is
the average connectivity in the network neglecting the heterogeneity of the node degrees [22].

Which, together with  =  +  +, implies

1∗  = −  − 

Thus the total population size  may vary in time.

To evaluate the equilibrium points, let

1∗  = 0

1∗  = 0

1∗  = 0

then (  ) = (
(+)

(++)
 0 

(++)
) (∗ ∗ ∗) are the equilibrium points where,

∗ =
(+  + )

[0 + (0 − 1)] + hi] 

∗ =
(0 − 1)

[0 + (0 − 1)] + hi] 

∗ =
∗ + ∗
+ 



0 =
hi(+ )

(+ + )(+  + )
  = (+ + )  = (+  + )

For a disease-free equilibrium point (  ) = (
(+)

(++)
 0 

(++)
) we find that

 =

⎡⎢⎣ − − 
hi(+)
++



0
hi(+)
++

− (+ + ) 0

  −(+ )

⎤⎥⎦ 
and its eigenvalues are

1 = −  0

2 = −(+  + )  0

3 = −(+ + )(1−0)  0 if 0  1

Hence a disease-free equilibrium point (  ) = (
(+)

(++)
 0 

(++)
) is locally asymp-

totically stable if 0  1

For a unique endemic equilibrium point (  ) = (∗ ∗ ∗) the characteristic poly-
nomial is given by:

3 + 1
2 + 2+ 3 = 0
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where

1 =  + 2+  + 

2 = (− )2 + (+  + + ) + +  + 2

3 = [( + )− (+  + )]2 + [(+  + )(+ )− ]

 =
∗
∗

  =
∗
∗

 ∗ = ∗ + ∗ +∗

 = (+ + ) =
hi∗
∗



A sufficient condition for the local asymptotic stability of a unique endemic equilibrium point

(  ) = (∗ ∗ ∗) is

|arg(1)|  12 |arg(2)|  12 |arg(3)|  12 (8)

3.1 Numerical methods and results

An Adams-type predictor-corrector method has been introduced and investigated further in

([1]-[3], [4], [5], [9]). In this paper we use an Adams-type predictor-corrector method for the

numerical solution of fractional integral equations.

The key to the derivation of the method is to replace the original problem (7) by an equivalent

fractional integral equations

() = (0) + 1 [− hi
 +  +

+ − ( + )]

() = (0) + 1 [
hi

 +  +
− (+ + )]

() = (0) + 1 [ − (+ )+ ] (9)

and then apply the PECE (Predict, Evaluate, Correct, Evaluate) method.

The approximate solutions displayed in Figs. 2-7 for hi = 6  = 1  = 02  = 0001  =
01  = 000087  = 05 and different 0  1 ≤ 1. In Figs. 2-4 we take  = 03 (0) =

450 (0) = 550 (0) = 0 and found that a disease-free equilibrium point (
(+)

(++)
 0 

(++)
) =

(25187 0 74813) is locally asymptotically stable even if for a large fraction of the infected in-

dividuals at the initial time, the disease will eventually disappear where 0 = 0602236  1.

In Figs. 5-7 we take  = 0005 (0) = 800 (0) = 200 (0) = 0 and found that a disease-

free equilibrium point (
(+)

(++)
 0 

(++)
) = (95283 0 471698) is unstable where 0 =

227827  1 and a unique endemic equilibrium point (∗ ∗ ∗) = (386518 871414 450528) is
locally asymptotically stable even if for a small fraction of the infected individuals at the initial

time where the condition (8) is satisfied and the eigenvalues are given as:

1 = −00010814
23 = −0109533± 0236736
|arg(1)| =   12 |arg(23)| = 200415  12
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4 Conclusions

i- Zika is a fast spreading epidemic.

ii- It is dangerous on pregnant women otherwise it is mild or asymptomatic.

iii- So far it is known to have two transmission routes one via mosquito and the other is via

sexual contact.

Therefore we expect that in the future the second route will be more difficult to control.

Moreover the fact that Summer Olympics is expected in Brazil in 2016 makes it important to

study the epidemic quickly.

Our model will be useful as a conceptual tool for modeling the impact of interventions aiming

to control the disease.
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