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Abstract 23 
 The rate of carbon uptake by land plants depends on the ratio of leaf-internal to ambient 24 
carbon dioxide partial pressures1, here termed χ. This quantity is a key determinant of both primary 25 
production and transpiration and the relationship between them. But current models for χ are empirical 26 
and incomplete, contributing to the many uncertainties afflicting model estimates and future projections 27 
of terrestrial carbon uptake2,3. Here we show that a simple evolutionary optimality hypothesis4,5 28 
generates functional relationships between χ and growth temperature, vapour pressure deficit and 29 
elevation that are precisely and quantitatively consistent with empirical χ values from a worldwide data 30 
set containing > 3500 stable carbon isotope measurements. A single global equation embodying these 31 
relationships then unifies the empirical light use efficiency model6 with the standard model of C3 32 
photosynthesis1, and successfully predicts gross primary production as measured at flux sites. This 33 
achievement is notable because of the equation’s simplicity (with just two parameters, both 34 
independently estimated) and applicability across biomes and plant functional types. Thereby it 35 
provides a theoretical underpinning, grounded in eco-evolutionary principles, for large-scale analysis of 36 
the CO2 and water exchanges between atmosphere and land.	37 

Main  38 

 Current Earth System Models (ESMs) disagree even on the most basic processes in the global 39 
carbon cycle, including terrestrial CO2 uptake2,3 – suggesting a need to revisit foundational questions in 40 
ecosystem science7,8. Depending on their history and purpose, ESMs represent plant CO2 uptake either 41 
with the standard model of Farquhar et al.1, which accurately describes the instantaneous 42 
environmental and physiological controls of photosynthesis, or with the empirical light use efficiency 43 
(LUE) model, which can predict primary production over weeks to months6,9. These approaches have 44 
served for the past three decades as parallel frameworks for relating primary production to 45 
environmental drivers, but the connection between them remains tenuous9. Moreover, large-scale 46 
implementations of both require independent information to be provided, such as photosynthetic 47 
capacities (Vcmax and Jmax) and the ratio of leaf-internal (ci) to ambient (ca) CO2 concentrations (here 48 
termed χ) in the Farquhar model, and response functions for various environmental factors in the LUE 49 
model. There is no accepted general way to do this10,11, and as a result, different implementations of 50 
apparently the same model can give very different answers in different ESMs. 51 

The biochemical reactions of photosynthesis are critically dependent on the value of χ12. CO2 52 
diffuses into leaves through the stomata (microscopic pores in the leaf surface) towards the 53 
chloroplasts, where reducing power derived from solar energy is used to assimilate CO2 into organic 54 
forms through the Calvin cycle. χ is tightly regulated by the responses of stomatal aperture to 55 
environment. χ determines the availability of CO2 for assimilation, and thus constrains both the 56 
carboxylation- and electron transport-limited photosynthetic rates. However, current models that 57 
explicitly predict χ represent only its response to moisture, and even this is represented by several 58 
approximate and non-equivalent formulations (for more information on the theoretical background see 59 
Supplementary Methods S1)13. A firm basis for the prediction of χ is thus an essential step towards a 60 
first-principles representation of terrestrial plant carbon uptake. Here we derive a theory for the 61 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 19, 2016. ; https://doi.org/10.1101/040246doi: bioRxiv preprint 

https://doi.org/10.1101/040246


dependencies of χ on growing-season air temperature (Tg), vapour pressure deficit VPD (Dg), and 62 
elevation (z) based on the least-cost hypothesis4,5, which states that plants minimize the combined costs 63 
of maintaining the capacities for carboxylation (maintaining the activity of Rubisco, the primary 64 
carboxylating enzyme, and other photosynthetic proteins) and transpiration (maintaining living tissues 65 
to support water transport) required to achieve a given assimilation rate. The theory is tested against 66 
effective growing-season values of χ derived from a global compilation of stable carbon isotope (δ13C) 67 
measurements on leaves of C3 plants (Fig. S1). The additional hypothesis of co-limitation between 68 
carboxylation- and electron transport-limited photosynthetic rates is then used to provide a universal 69 
model of gross primary production (GPP), which unifies the Farquhar and LUE models. 70 

Logit transformation of the predicted optimal value of χ (termed χο) yields remarkably simple 71 
theoretical partial relationships with each of the three environmental predictor variables 72 
(Supplementary Methods S2). The predicted effects of each variable are shown to be quantitatively 73 
consistent with those inferred from the data, within their uncertainties (Fig. 1, Table 1). Theory and 74 
data agree that logit (χ) rises by ~ 0.0545 per degree due to both increased assimilation costs (the 75 
affinity of Rubisco for CO2 versus O2 declines at higher temperatures) and reduced water transport 76 
costs (the viscosity of water also declines); falls by 0.5 per unit increase of ln Dg due to the increase in 77 
transpiration costs imposed by increasing D; and falls by ~ 0.0815 per km elevation due to reduced O2 78 
pressure (increasing the affinity of Rubisco for CO2) and increased transpiration costs (because the 79 
saturated vapour pressure of water remains constant while the actual vapour pressure, ceteris paribus, 80 
declines). Thus, χ increases with temperature by ~ 0.01 K–1, decreases with VPD by ~ 0.1 kPa–1, and 81 
decreases with elevation by ~ 0.01 km–1. By imposing the theoretical values for the three 82 
environmental effects on χ, we estimate an intercept of 1.189, close to the fitted value of 1.168. The 83 
fully linearized theoretical model is then: 84 

logit (χο)  =  0.0545 (Tg –25) – 0.5 ln Dg – 0.0815 z + 1.189        (1) 85 

which is statistically indistinguishable from the fitted model for χ (Table 1).  86 

Equation (1) yields χo = 0.77 under standard conditions (Tg = 25 ˚C, Dg = 1 kPa, z = 0 km). 87 
The predicted elevation effect increases with relative humidity (RH), becoming arbitrarily large as RH 88 
approaches 100% (Supplementary Methods S2). As predicted, the fitted (negative) slope of logit (χ) 89 
with elevation becomes larger with RH, most steeply at high RH (Fig. 1). Using an independent dataset 90 
of instantaneous CO2 and water exchange measurements14, we also show – consistent with equation (1) 91 
– that the single parameter determining the sensitivity of χο to VPD is influenced by temperature, but 92 
not by VPD (Table S1).  93 

 χo values from equation (1) are consistent with observed χ across biomes (r = 0.51) (Fig. 2). 94 
Highest values are in hot, wet, low-elevation sites (tropical forests), lowest in cold and/or dry and/or 95 
high-elevation sites (deserts, polar and alpine vegetation). χo ranges globally from 0.4 to almost 1.0 96 
(Fig. S2). The reduction from the equator towards mid-latitudes is due to aridity while that in high 97 
latitudes is due to declining temperatures (Fig. S3). The elevation effect on χ is long-known, but has 98 
not been satisfactorily explained15,16. By predicting it in the same framework that accounts for climate 99 
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effects, we have resolved a long-standing conundrum, showing that the unit cost of photosynthesis is 100 
reduced while that of transpiration is increased with elevation, leading to reduced χo. 101 

 Some published analyses focused on leaf δ13C as a palaeoclimate indicator15,17,18. Unlike the 102 
well-documented effect of aridity on δ13C, these analyses detected no temperature effect, even through 103 
it is predicted both by the earlier Cowan-Farquhar criterion19 and by the least-cost hypothesis4 and has 104 
been shown both in short-term experiments14,20 and in field data4. Mean annual precipitation (MAP) has 105 
previously been used to represent plant water availability; the lack of an observed temperature effect 106 
might then be an artefact, because MAP tends to increase with temperature. We showed a significant 107 
(but much weakened) effect of temperature when MAP was substituted for VPD (Table S2) based on 108 
our much larger data set. However the controlling variable is VPD, not MAP. 109 

No significant difference was found between woody and non-woody plants (Fig. S4). The 110 
most parsimonious interpretation for the statistical significance of plant functional type (PFT) 111 
differences in χ detected here and elsewhere is as an indirect effect caused by different PFTs’ climatic 112 
preferences14. This interpretation is strongly supported by Fig. S4, which shows that differences in 13C 113 
discrimination among PFTs are predicted correctly by the universal model. We did however show a 114 
slightly lower χ for evergreen needleleaf trees than the other PFTs (Fig. S4). This is consistent with 115 
higher intrinsic water use efficiency in conifer forests than broadleaf forests, and could be attributed to 116 
the lower permeability of gymnosperm wood (the consequence of narrower conducting elements)21. 117 
According to our analysis, the estimated water cost is 20% higher in gymnosperms, even though the 118 
resulting difference in χ from this component is slight (3%: Supplementary Methods S2). The slightly 119 
overestimated χ for evergreen needleleaf trees by the universal model, and the spread of observed χ 120 
values around the central tendency, suggest that distinguishing hydraulic influences on the controls of 121 
unit transpiration costs, in particular, might further improve predictability. 122 

We detected a significant negative response of χ to soil pH, explaining an additional 5% of 123 
variance. This finding is consistent with a soil-calcium restoration experiment that enhanced annual 124 
evapotranspiration by 20%22, and other findings of high χ on acid substrates23. The framework could be 125 
extended to consider N uptake costs, which may be higher (favouring investment in water transport) on 126 
less fertile soils. 127 

The co-limitation hypothesis, stating that the two photosynthetic processes of carboxylation 128 
and transport are coupled such that photosynthetic rates limited by those two processes are equal under 129 
typical daytime conditions, provides the necessary next step towards a universal model of GPP24,25. The 130 
hypothesis implies adjustment of Vcmax in time and space to match environmental conditions25. 131 
Extensive field measurements also point to an optimal maximum rate of electron transport, Jmax that 132 
maximizes the photosynthetic benefits minus the costs of maintaining the electron-transport chain26 133 
(Supplementary Methods S4). We can thereby eliminate both Vcmax and Jmax as independent predictors, 134 
to derive a first-principles model: 135 

GPP  =   φ0 Iabs m √[1 – (c*/m)2/3]             (2) 136 

where  137 
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m  =  (ca – Γ*)/{ca + 2Γ* + 3Γ*√[1.6 η* D β-1 (K + Γ*)-1]}       (3) 138 

 Here φ0 is the intrinsic quantum yield of photosynthesis (1.02 g C mol–1)27, Iabs is the absorbed 139 
photosynthetic photon flux density (PPFD, mol m–2

 s–1), Γ* is the photorespiratory compensation point 140 
(Pa), η* is the viscosity of water relative to its value at 25˚C, β represents the ratio of carboxylation and 141 
transpiration costs at 25˚C (β ≈ 240, estimated from the constant in equation 1), and c* is the unit 142 
carbon cost for the maintenance of electron transport capacity, ≈ 0.41 (estimated from observed 143 
Jmax:Vcmax ratios) (Fig. S5). LUE is the product of φ0, m and the square-root term in equation (2); thus, 144 
GPP is proportional to Iabs, which can be calculated from incident PPFD and remotely sensed green 145 
vegetation cover. Predicted monthly GPP compared well with monthly GPP derived from CO2 flux 146 
measurements (Fig. 3). Predicted global total annual GPP is 120 Pg C, within the accepted range28.  147 

Additional testable predictions arise, for example on the controls of net primary production 148 
(NPP). Our results intriguingly parallel findings from metabolic scaling theory, whereby monthly NPP 149 
was predicted and found to be proportional to growing-season length and biomass but to show a 150 
weakly negative response to temperature29. Many potential complications, such as the environmental 151 
dependencies of mesophyll conductance20, the influence of soil fertility factors on nutrient acquisition 152 
costs, and the differences among photosynthetic pathways, have been neglected so far; yet this 153 
simplistic model’s predictive skill suggests a promising route to an improved predictive understanding 154 
of terrestrial carbon and water cycling. 155 
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Table 1 | Regression summaries. Logit-transformed values of the ratio of leaf-internal to ambient CO2 252 
partial pressure (χ), derived from δ13C measurements, were regressed against the difference between 253 
growing-season mean temperature Tg and 25˚C (ΔTg, ˚C), the natural logarithm of growing-season 254 
mean VPD (ln Dg, kPa), and elevation (z, km). Theoretical values are partial derivatives with respect to 255 
each predictor, evaluated for standard conditions (Tg = 25 ˚C, Dg = 1 kPa, z = 0 km). 256 

Predictor Fitted coefficient Confidence intervals 

2.5%            97.5% 

Theoretical 

value 

 Model  

R2 

ΔTg 0.0515 0.0456  0.0575  0.0545 0.391 

ln Dg −0.5478 −0.6111 −0.4846  −0.5  

z −0.1065 −0.1315  −0.0815  −0.0815  

intercept 1.1680 1.0464 1.2896  1.189  

 257 
258 
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Figure 1 | Partial residual plots from the regression of logit-transformed χ against environmental 259 
predictors. χ, the ratio of leaf-internal to ambient CO2 partial pressures. ΔTg, = growing-season mean 260 
temperature Tg – 25˚C. ln Dg, natural logarithm of growing-season mean vapour pressure deficit. Inset 261 
shows elevation responses for relative humidity (RH, %) classes, compared to predicted responses 262 
(black dots) evaluated at the centre of each class.  263 
 264 
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Figure 2	 |	 Site-mean leaf-internal to ambient CO2 partial pressures (χ). Predictions from the 267 
theoretical model driven by three environmental variables (Table 1); observations from the global δ13C 268 
dataset. Mean and standard deviation are shown for each biome. Biome type for each site were 269 
assigned based on mega-biome classification from BIOME430 for consistency of definitions	 and 270 
wetland and alpine types from literatures records. The regression line through the origin is imposed as 271 
the black solid line; the dashed line is the 1:1 line.  272 
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Figure 3	 |	 Monthly gross primary production (GPP). Predictions from equations (2) and (3); 274 
observations based on CO2 flux data in the FLUXNET archive. The regression line through the origin 275 
is imposed as the black solid line; the dashed line is the 1:1 line.  276 
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Methods  279 

Theory for the environmental controls on χ 280 

According to the least-cost hypothesis4, optimal χ minimizes the combined costs of maintaining the 281 
capacities for carboxylation and transpiration: 282 

χ  = ξ/(ξ+√D), where ξ = √(bK/1.6a).        (4) 283 

The ratio of xylem repiration to transpiration capacity (a) depends inter alia on the viscosity of water; 284 
the ratio of mitochondrial respiration to carboxylation capacity (b) is generally taken as constant1. D is 285 
the vapour pressure deficit (VPD); K is the effective Michaelis-Menten coefficient of Rubisco.  286 

Logit transformation of (4) yields: 287 

logit (χ) = ln [χ/(1 − χ)] =  ½ ln b − ½ ln a + ½ ln K  − ½ ln D − ½ ln 1.6          (5) 288 

Temperature affects χ through a via viscosity, and K via the Michaelis-Menten coefficients for 289 
carboxylation and oxygenation. Elevation affects χ through K and D via the partial pressures of oxygen 290 
and water vapour respectively. Separating environmental effects from invariant quantities in (5) leads 291 
to the definition of a constant term: 292 

C = ½ (ln β + Kref − ln 1.6)                      (6) 293 

where Kref and β are the values of K and the ratio b/a, respectively, under standard conditions (T = 298 294 
K, z = 0). 295 

Using the Vogel equation for viscosity31, the Arrhenius equation for biochemical rate parameters and 296 
the barometric formula relating atmospheric pressure to elevation, we evaluated the partial derivatives 297 
of χ with respect to T, D and z at T = 298 K, z = 0 and D = 1 kPa. C was estimated as the intercept in a 298 
Generalized Linear Model (GLM) fitted to the data with imposed regression coefficients (the calculated 299 
partial derivatives) for all three environmental effects (Supplementary Methods S2).  300 

Testing the theory with global δ13C data 301 

Vascular-plant leaf stable carbon isotope data were compiled from published and unpublished sources 302 
by Cornwell et al. (submitted). The data can be downloaded from Dryad (Data link 303 
http://datadryad.org/review?doi=doi:10.5061/dryad.3jh61). Inferred carbon isotope discrimination (Δ) 304 
values for 3549 leaf samples of C3 plants32 (Supplementary Methods S3) were converted to estimates 305 
of χ by a standard method. The Climatic Research Unit CL2.0 10-minute gridded monthly 306 
climatology33 of mean, maximum and minimum temperatures and relative humidity provided mean 307 
temperature (Tg, ˚C) and vapour pressure deficit (Dg, kPa) values for the period with daily mean 308 
temperatures > 0˚C. Logit (χ) values were entered in a GLM with ΔTg = Tg – 25˚C, ln Dg, and site-309 
specific elevation (z, km) as predictors. Standard errors estimated by the GLM were combined 310 
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quadratically with standard errors for the uncertainty of the Rubisco discrimination parameter b’, the 311 
latter obtained by generating 104 normally distributed values of b’ (mean = 27, standard deviation = 312 
0.27) and repeating the estimation of χ and the GLM fitting 104 times with different b’ values.   313 

Light-use efficiency model 314 

The model proposed by Wang et al.8 assumed that the electron-transport and Rubisco-limited rates of 315 
photosynthesis (AJ, Ac) are co-limiting under typical daytime conditions24,25,34, allowing GPP to be 316 
predicted from AJ. LUE is the product of φ0 and the CO2 limitation term (denoted here by m) in the 317 
model of ref. 8. Incorporating the exact equation for χo (equation 8 in ref. 4) yields: 318 

,       (7) 319 

However, (7) implies that the light response of AJ is linear up to the co-limitation point, i.e. the 320 
maximum electron-transport rate (Jmax) is arbitrarily large. In reality Jmax limitation can be be 321 
significant, especially at high temperatures. We therefore modify (7) to consider a non-rectangular 322 
hyperbola relationship between AJ and Iabs

35,36: 323 

       (8) 324 

We further assume that there is a cost associated with Jmax equal to the product of Jmax and a constant 325 
(c*), and that optimal Jmax maximizes the benefit (AJ) minus this cost. The optimal ratio Jmax/Vcmax at the 326 
growth temperature is then: 327 

Jmax
Vcmax

= 4
ci + K( )

ci − Γ
*( ) ci + 2Γ*( )2
c*

3         (9) 328 

where ci = χca, and c* can be estimated from data in ref. 26. We evaluated (9) at each grid cell in the 329 
CRU CL1.0 climatology37 and regressed the results against Tg (Fig. S5), indicating a strong relationship 330 
consistent with observations26. The LUE model is accordingly revised to (Supplementary Methods S4):  331 

,                   (10) 332 

 333 

AJ =ϕ0Iabsm m = ca − Γ
∗

ca + 2Γ
∗ + 3Γ∗ 1.6Dη∗

β K + Γ∗( )

AJ =ϕ0Iabsm
1

1+ 4ϕ0Iabs
Jmax

⎛
⎝⎜

⎞
⎠⎟

2

AJ =ϕ0Iabsm 1− c*

m
⎛
⎝⎜

⎞
⎠⎟

2
3

m = ca − Γ
∗

ca + 2Γ
∗ + 3Γ∗ 1.6Dη*

β K + Γ∗( )
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GPP data-model comparison 334 

Equations (2)-(3) yielded modelled site-specific monthly GPP values for comparison with values 335 
independently derived from eddy-covariance measurements of CO2 exchange in the Free and Fair Use 336 
subset of the FLUXNET archive, using a consistent gap-filling procedure (Supplementary Methods 337 
S5). For the modelled values, monthly LUE was estimated based on temperature and vapour pressure 338 
extracted from CRU time-series (TS 3.22) data at 0.5˚C resolution38 and site-observed ca. Monthly 339 
absorbed PPFD was estimated as the product of PPFD (0.45 times the WATCH incident surface 340 
shortwave radiation39, divided by 0.22 J µmol–1) and the MODIS Enhanced Vegetation Index (EVI), 341 
equated to the fraction of photosynthetically active radiation absorbed by foliage40. To match the 342 
WATCH data resolution, EVI was upscaled to the 0.5˚ grid cell in which each site was located. 343 
 344 
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