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Abstract 

Background  

Genetics plays an important role in coronary heart disease (CHD) but the clinical utility of a genomic risk 

score (GRS) relative to clinical risk scores, such as the Framingham Risk Score (FRS), is unclear.  

Methods  

We generated a GRS of 49,310 SNPs based on a CARDIoGRAMplusC4D Consortium meta-analysis of 

CHD, then independently tested this using five prospective population cohorts (three FINRISK cohorts, 

combined n=12,676, 757 incident CHD events; two Framingham Heart Study cohorts (FHS), combined 

n=3,406, 587 incident CHD events). 

Results 

The GRS was strongly associated with time to CHD event (FINRISK HR=1.74, 95% CI 1.61–1.86 per 

S.D. of GRS; Framingham HR=1.28, 95% CI 1.18–1.38), and was largely unchanged by adjustment for 

clinical risk scores or individual risk factors, including family history. Integration of the GRS with 

clinical risk scores (FRS and ACC/AHA13 score) improved prediction of CHD events within 10 years 

(meta-analysis C-index: +1.5–1.6%, P<0.001), particularly for individuals ≥60 years old (meta-analysis 

C-index: +4.6–5.1%, P<0.001). Men in the top 20% of the GRS had 3-fold higher risk of CHD by age 75 

in FINRISK and 2-fold in FHS, and attaining 10% cumulative CHD risk 18y earlier in FINRISK and 12y 

earlier in FHS than those in the bottom 20%. Furthermore, high genomic risk was partially compensated 

for by low systolic blood pressure, low cholesterol level, and non-smoking.  

Conclusions 

A GRS based on a large number of SNPs substantially improves CHD risk prediction and encodes 

decades of variation in CHD risk not captured by traditional clinical risk scores. 
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Introduction 

Early and accurate identification of individuals with increased risk of coronary heart disease (CHD) is 

critical for effective implementation of preventative lifestyle modifications and medical interventions, 

such as statin treatment1,2. To this end, risk scores such as the Framingham Risk Score (FRS)3 and the 

American College of Cardiology / American Heart Association 2013 risk score (ACC/AHA13)1, based on 

clinical factors and lipid measurements, have been developed and are widely used. Although the scores 

can identify individuals at very high risk, a large proportion of individuals developing CHD during the 

next 10 years remain unidentified. In particular, they do not provide sufficient discrimination at a younger 

age when implementation of preventative measures is likely to provide the greatest long-term benefit.  

 

Genetic factors have long been recognized to make a substantial contribution to CHD risk4. Although a 

positive family history is an independent risk factor for CHD, it may not completely and solely capture 

genetic risk. Recently, genome-wide association studies (GWAS) have identified 56 genetic loci 

associated with CHD at genome-wide significance5-9. Studies of the predictive power of the top single 

nucleotide polymorphisms (SNPs) at some of these loci either individually or in combination have 

typically shown small improvements in CHD risk prediction10-19, probably because together these variants 

only explain less than 20% of CHD heritability8. As demonstrated recently for other traits such as height 

and BMI20,21, the majority of unexplained heritability is likely hidden amongst the thousands of SNPs that 

did not reach genome-wide significance. Indeed, recent advances have shown that genomic prediction 

models that consider all available genetic variants can efficiently stratify those at increased risk of 

complex disease22,23. To leverage the maximum amount of information, we examined whether a genomic 

risk score (GRS) comprising a large number of SNPs, including those with less than genome-wide 

significance, could produce clinically relevant predictive power for CHD risk. 
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Methods 

A summary of the key methods for the study is given here. Additional details are provided in the 

Supplementary Appendix. 

 

Study design 

This study consisted of two main stages (Supplementary Figure S1). In stage 1, we utilized the large-

scale CHD genetic association dataset assembled by the CARDIoGRAMplusC4D consortium8 

(downloaded from http://www.cardiogramplusc4d.org) to construct a GRS. Briefly, 

CARDIoGRAMplusC4D tested associations of 79,128 SNPs in 63,746 CHD cases and 130,681 controls, 

including 6,222 SNPs that had shown nominal association with CHD in a prior GWAS meta-analysis24. 

We extracted information on all these SNPs together with their associated CARDIoGRAMplusC4D 

weights (log odds) and used two case/control datasets, the Wellcome Trust Case/Control Consortium 

Coronary Artery Disease dataset (WTCCC-CAD)5 (1,926 cases and 2,938 controls) and the MIGen 

case/control dataset7 (Harps subset) (531 cases and 488 controls), to optimize the predictive value of this 

set of SNPs using linkage-disequilibrium (LD) thinning to derive a GRS. In stage 2, we assessed the 

predictive accuracy of this GRS with incident CHD events in the FINRISK and the Framingham Heart 

Study cohorts, comparing it to traditional risk factors and clinical risk scores. Secondary validation was 

also performed in the ‘Association of CHD Risk in a Genome-wide Old-versus-young Setting’ (ARGOS) 

study29 familial hypercholesterolemia study. Details of the final GRS used are available at 

http://www.inouyelab.org. 

 

Prospective Study cohorts 

We utilized two sets of prospective cohorts: (i) FINRISK, consisting of three prospective cohorts from 

Finland with 10–20 years of follow-up, from collections 1992, 1997, and 2002 (FR92, FR97, and FR02, 

respectively)25, and (ii) the Framingham Heart Study (FHS)26-28, with individuals of Western and 

Southern European ancestry taken from the Original and Offspring cohorts with 40–48 years of follow-

up. In total, the FINRISK consisted of n=12,676 individuals and the FHS of n=3,406 individuals, all of 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 26, 2016. ; https://doi.org/10.1101/041483doi: bioRxiv preprint 

https://doi.org/10.1101/041483
http://creativecommons.org/licenses/by/4.0/


 5 

whom had the requisite data and were independent of the CARDIoGRAMplusC4D stage-2 meta-analysis 

utilized to generate the GRS. Details of the cohorts are given in Table 1. The cohorts have been genome-

wide SNP genotyped (Illumina BeadArrays for FINRISK and Affymetrix 500K for FHS) and further 

imputed to the 1000 Genomes reference panel (Supplementary Methods). After genotype imputation 

and quality control, 69,044 autosomal SNPs of the 79,128 CARDIoGRAMplusC4D SNPs were available 

for subsequent analyses in the FINRISK, and 78,058 autosomal SNPs available in FHS. 

 

The outcome of interest in FINRISK was primary incident coronary heart disease (CHD) event, defined 

as myocardial infarction (MI), a coronary revascularization procedure, or death from CHD, before age 

75y (Supplementary Methods). Individuals with prevalent cardiovascular disease (CVD) at baseline 

were excluded from the analysis. We censored events for individuals with an attained age of >75y, as not 

all FINRISK cohorts had sufficient numbers of CHD events beyond that age. In FHS, we used the FHS 

definition of CHD, which included recognized/unrecognized MI, death from CHD, angina pectoris, and 

coronary insufficiency (Supplementary Methods). For FHS analyses, we excluded the Third cohort due 

to insufficient follow-up time (median 6.6 years, max 9.5 years), and for each individual we selected the 

first exam yielding the most complete set of non-missing clinical risk factors (for Original cohort: exams 

9, 10, 15, 20, and 22; for Offspring cohort: exams 1, 3, 4, 5, and 6). FHS individuals with prevalent CHD 

or <30 years of age at baseline were excluded, and for consistency with the FINRISK analysis, a 

censoring age of 75y was also applied to the FHS analyses. 

 

Secondary validation of the GRS was performed in the ARGOS study, a Dutch case/control dataset where 

all individuals had familial hypercholesterolemia (248 young cases with early CHD, 216 elderly controls 

without CHD), imputed to 1000 Genomes reference panel (74,135 SNPs of the 79,128 

CARDIoGRAMplusC4D SNPs were available; Supplementary Methods). 
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Statistical analysis 

Clinical risk scores were based on the FRS (Adult Treatment Panel III) for CHD and/or MI3, and the 

recent ACC/AHA13 risk score1 for atherosclerotic cardiovascular disease (ASCVD; see Supplementary 

Tables S1 and S2 for components and derivation of the scores). 

 

GRSs were generated via thinning the CARDIoGRAMplusC4D SNPs by linkage disequilibrium (LD) 

thresholds and evaluated using logistic regression and area under receiver-operating characteristic curve 

(AUC) for each threshold (Supplementary Figure S2). To avoid overfitting we only used weights (log 

odds) from the CARDIoGRAMplusC4D stage-2 meta-analysis, which were not based on the WTCCC-

CAD or MIGen studies (see Supplementary Methods). We combined the estimates for WTCCC and 

MIGen-Harps using fixed-effects inverse-variance weighted meta-analysis. We compared the 

performance of our GRS with those of Tikkanen et al.11 and of Mega et al.30, which were based on 28 and 

27 SNPs associated with CHD at genome-wide significance, respectively. 

 

For analysis of FINRISK, we used Cox proportional hazard models to evaluate the association of the 

GRS with time to incident CHD events, stratifying by sex and adjusting for geographic location and 

cohort, using age as the time scale. Secondary analyses adjusted for one of the clinical risk scores (FRS or 

ACC/AHA13), or individual baseline variables and known risk factors (cohort, geographical location, 

prevalent type-2 diabetes, log total cholesterol, log HDL, log systolic BP, smoking status, lipid treatment, 

and family history). Family history in FINRISK was self-reported and was defined as having a 1st-degree 

relative who had experienced myocardial infarction before age 60. For FHS, we evaluated the association 

of the GRS with incident CHD using Cox proportional hazard models, stratifying by sex and adjusting for 

cohort (Original or Offspring), using age as the time scale. Family history was not available for both FHS 

cohorts and thus not considered in FHS analyses. Survival analyses allowing for competing risks were 

performed using the Aalen-Johansen estimator of survival and cause-specific Cox models 

(Supplementary Methods). Model discrimination of incident CHD event was evaluated in three groups 
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of individuals: (i) all individuals (n=12,676 in FINRISK, n=3,406 in FHS), (ii) individuals aged <60 

years at baseline (n=10,606 in FINRISK, n=3,218 in FHS), and (iii) individuals aged ≥60 years at 

baseline (n=2,070 in FINRISK, n=188 in FHS). 

 

Discrimination of incident CHD events within 10 years was assessed using Harrell’s C-index, and the 

difference in C-index between two models was assessed using the correlated jackknife test. Competing 

risk analyses were performed using the Aalen-Johansen empirical estimator of cumulative incidence and 

cause-specific Cox proportional hazard models. Risk reclassification was evaluated using continuous Net 

Reclassification Improvement, categorical Net Reclassification Improvement, and Integrated 

Discrimination Improvement. Meta-analysis of the discrimination statistics was performed using fixed-

effect inverse-variance weighting. Additional details on the statistical methods are provided in the 

Supplementary Methods. 

 

Role of funding source 

The sponsors had no role in the conduct or interpretation of the study. The corresponding authors had full 

access to all data in the study and had final responsibility for the decision to submit for publication. 

 

Results 
 
To construct an optimized GRS using the WTCCC and MIGen-Harps datasets, we first generated a series 

of GRSs, starting with the 79,128 CARDIoGRAMplusC4D SNPs then progressively lowering the r2 

threshold for LD to reduce the redundancy of predictive information and corresponding number of SNPs 

in the score (Methods and Supplementary Figure S1). An r2 threshold of 0.7 provided optimal 

discrimination of CHD cases and controls (WTCCC and MIGen-Harps meta-analysis OR=1.70 per S.D. 

of GRS, 95% CI 1.61–1.80; meta-analysis AUC=0.64, 95% CI 0.63–0.66), corresponding to 49,310 SNPs 

in WTCCC (Supplementary Figure S2). Of these 49,310 SNPs, 85.9% (42,364 SNPs) and 95% (46,773 

SNPs) were available in the FINRISK and FHS, respectively.  
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In analyses of incident CHD as a binary outcome in FINRISK, the 49K GRS showed similar odds ratios 

to WTCCC and MIGen-Harps (OR=1.72, 95% CI 1.59–1.86, per S.D.), but led to higher discrimination 

than in WTCCC and MIGen-Harps (AUC=0.73, 95% CI 0.71–0.75). In FHS, the association was weaker, 

OR=1.30 (95% CI 1.19–1.43, per S.D.), with AUC=0.65 (95% CI 0.62–0.67). 

 

Using survival analyses of time to incident CHD, within FINRISK the GRS had stronger association with 

CHD (HR=1.74, 95% CI 1.61–1.86, per S.D.) than the 28 SNP score studied by Tikkanen et al.11 

(HR=1.21, 95% CI 1.13–1.30, per S.D.) or the 27 SNP score used by Mega et al.30 (HR=1.21, 95% CI 

1.12–1.30 per S.D.) (Supplementary Results). In FHS, the GRS showed weaker but statistically 

significant association with CHD (HR=1.28 per S.D. of the GRS, 95% CI 1.18–1.38). The fixed-effect 

meta-analysis estimate for the GRS combining FINRISK and FHS was HR=1.66 (95% CI 1.55–1.78), 

however, heterogeneity was high (I2=89.2%, P=0.0023). For both FINRISK and FHS, the GRS showed 

improved prediction for incident CHD over the other risk scores composed of smaller numbers of SNPs 

(Supplementary Results and Supplementary Table 3).  

 

In both FINRISK and FHS, the hazard ratios for GRS were not substantially attenuated by adjusting for 

FRS or ACC/AHA13 clinical risk scores, lipid treatment at baseline, other established risk factors 

(including family history in FINRISK), or 5 principal components of the genotypes (Supplementary 

Figures S3 and S4). The correlation between GRS and either FRS or ACC/AHA13 scores was close to 

zero with almost none of the variation in GRS explained by either clinical risk score (in both FINRISK 

and FHS, r2<0.004 between GRS and either FRS and ACC/AHA13; Supplementary Figure S5). To 

further test that the CHD risk conferred by the GRS was largely independent of the effects of cholesterol, 

we further validated the GRS in the ARGOS familial hypercholesterolemia study, with comparable 

results to those obtained in WTCCC/MIGen (OR=1.49, 95% CI 1.21–1.84 per S.D. of the GRS, adjusted 

for sex and 5 principal components) (Supplementary Methods). 
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To assess the potential clinical utility of the GRS, we compared its performance in discrimination of time 

to CHD event (C-index) with that of family history, the previously published 28-SNP Tikkanen score11 

the 27-SNP Mega score30, and the FRS and ACC/AHA13 clinical risk scores. We also assessed the 

incremental value of the GRS on top of the clinical risk scores. In both FINRISK and FHS, addition of 

GRS to either FRS or ACC/AHA13 scores provided statistically significant improvements in C-index, in 

FINRISK: +1.7% (P<10-6) and +1.6% (P<10-6) for FRS and ACC/AHA13, respectively; in FHS: +1.1% 

(P<0.0443) and +1.1% (P<0.0344) for FRS and ACC/AHA13, respectively  (Figure 1). Overall, fixed-

effects meta-analysis of the two studies showed that GRS improved the C-index by +1.6% (95% CI 0.01–

0.02, P<10-6; heterogeneity: I2=2.2%, Q=1.02, P=0.312) for FRS and GRS combined (FRS+GRS) over 

FRS alone and, similarly, +1.5% (95% CI 0.009–0.02, P<10-6; heterogeneity: I2=0%, Q=0.78, P=0.378) 

for ACC/AHA13+GRS over ACC/AHA13 alone (Figure 1). Larger increases in C-index were observed 

among older individuals, with the C-index of FRS+GRS compared to FRS alone increasing by 5.1% in 

individuals aged ≥60 years at baseline, while individuals aged <60 years at baseline showed C-index 

gains of 1.4% (Supplementary Figure S6). Within FINRISK, the GRS had higher C-index than family 

history (+1.9%, P<1.3×10-6). In meta-analysis, the GRS had higher C-index than the published scores of 

Tikkanen et al. and Mega et al. (meta-analysis C-index improvement +1.8–2.1%, both P<1×10-6) 

(Supplementary Results and Supplementary Table 3).  

 

We next assessed if the GRS improved the individual risk reclassification when added to clinical risk 

scores. Analyses within FINRISK and FHS are given in Table 2 for FRS and in Supplementary Table 

S4 for ACC/AHA13. Overall, meta-analysis of the two datasets showed that the categorical Net 

Reclassification Improvement (NRI) was 0.1 for both the FRS+GRS and ACC/AHA13+GRS, 

respectively (P<0.0001; Supplementary Figure S7). Meta-analysis of continuous NRI was 0.344 

(P<0.001) and 0.334 (P<0.001) for the FRS+GRS and ACC/AHA13+GRS, respectively (Supplementary 

Figure S8). Meta-analysis of IDI scores showed gains of 0.01 (P<0.001) and 0.009 (P<0.001) for 

FRS+GRS and ACC/AHA13+GRS, respectively, however IDI scores showed high heterogeneity across 

FINRISK and FHS (I2>97%, P<0.0001, Supplementary Figure S9). 
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The FRS+GRS model also showed consistently higher positive predictive value (PPV) at any given 

negative predictive value (NPV) for 10-year incident CHD events (Supplementary Figure S10). For 

example, in FINRISK, at an NPV of 96% the FRS+GRS achieved a PPV of 40%, compared with a PPV 

of 23% for FRS alone. In FHS, PPV for FRS+GRS and ACC/AHA13+GRS models was 12–13% at the 

same NPV, compared with PPV of 10% for the FRS or ACC/AHA13 scores (Supplementary Figure 

S10).  

 

We next examined how variation in genomic risk translated into differences in cumulative lifetime risk of 

CHD, using Kaplan-Meier estimates stratified by GRS quintiles for men and women separately (Figure 

2). As expected, cumulative risk increased with age for both sexes, with men displaying higher absolute 

risk than women. In both sexes there were substantial differences in cumulative risk between GRS groups 

with 1.7-fold (in FHS) to 3.2-fold (in FINRISK) higher cumulative risk by age 75 in those in the top 

quintile of GRS versus bottom quintile. When considering clinically relevant levels of risk, FINRISK 

men in the top quintile of genomic risk achieved 10% cumulative risk 18 years earlier than those in the 

bottom quintile (ages 52 and 70, respectively), with a comparable difference of 12 years in FHS (ages 51 

and 64). Women in the top quintile of genomic risk achieved 10% cumulative risk by age 69 (FINRISK) 

and 64 (FHS), whereas women in the bottom quintile did not achieve 10% risk by age 75 in FINRISK, or 

by age 73 in FHS. Estimated lifetime CHD risk in FINRISK showed no evidence of being affected by 

competing risks (incident CHD versus non-CHD death) (Supplementary Methods and Supplementary 

Figure S11). Similarly, a cause-specific competing-risk Cox analysis of the GRS in FINRISK, adjusting 

for geographical location and cohort, resulted in a similar hazard ratio as standard Cox analysis 

(HR=1.70, 95% CI 1.61–1.86). 

 

We next sought to investigate to what degree high genomic risk for CHD could be compensated for by 

low levels of clinical risk factors at baseline, and vice-versa. When considering baseline smoking status in 

both FINRISK and FHS, Kaplan-Meier analysis showed a substantial increase in cumulative risk of CHD 
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in men who smoked and also in the top quintile of genomic risk, relative to either non-smokers or 

smokers at low genomic risk (Figure 3 for FINRISK and Supplementary Figure S12 for FHS). Similar 

but weaker trends were observed for women in the top versus bottom quintiles of genomic risk. To test 

whether there was evidence for smoking affecting CHD hazard differently based on an individual’s 

genomic background, we used a Cox model allowing for an interaction term between the GRS and 

smoking; the interaction was not statistically significant in FINRISK (P=0.91) and FHS (P=0.49). 

 

We also examined the potential compensatory effects of baseline systolic blood pressure and total 

cholesterol, divided as tertiles of high, medium, and low levels (Supplementary Figures S13 and S14). 

For both systolic blood pressure and total cholesterol, we observed the expected trends in CHD risk for 

high, medium and low levels. However, males with high versus low levels of systolic blood pressure or 

total cholesterol showed greater absolute CHD risk if they were in the top versus bottom quintiles of 

genomic risk. 

 

Notably, in both FINRISK and FHS, women in the bottom quintile of genomic risk showed smaller 

differences in cumulative CHD risk when stratified by smoking. For tertiles of systolic blood pressure or 

total cholesterol, low genomic risk women in FINRISK showed similarly small differences in risk, but the 

effects in FHS for this subgroup were not consistent. Cox models allowing for interactions between the 

GRS and systolic blood pressure or total cholesterol did not show statistically significant interactions in 

either FINRISK or FHS (P>0.2 for all). 

Discussion 

We have generated a GRS for CHD based on 49,310 SNPs and, using three prospective FINRISK and 

two FHS prospective cohorts, demonstrated that the GRS is associated with incident CHD events 

independently of established and widely-used clinical risk scores or individual CHD risk factors, 

including family history. Secondary validation in a familial hypercholesterolemia study (ARGOS) 

showed that GRS was also associated with CHD in this group of high-risk individuals. Subsequently, 
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combining the GRS with established risk scores improved 10-year CHD risk prediction in FINRISK and 

FHS.  We have also shown that the GRS can be leveraged to achieve meaningful lifetime CHD risk 

stratification, and that the impact of traditional CHD risk factors such as smoking, blood pressure, and 

cholesterol, vary substantially depending on the underlying genetic risk, thus offering the potential for 

both earlier and more targeted preventative efforts.  

 

A distinctive feature of our analysis compared with previous studies11,30 examining the predictive utility 

of GRS for CHD is that the best predictive model was achieved here with SNPs that did not necessarily 

reach genome-wide or even statistical significance in previous GWA studies. Genome-wide SNP models 

have been applied successfully to other heritable human traits which seem to follow an “infinitesimal” 

genetic architecture, such as height20. These results highlight the differing goals of GWAS and of 

genomic prediction: the stringent detection of causal genetic variants involved in the disease process 

versus the construction of a model that robustly and maximally predicts future disease. While stringent 

procedures for minimizing the false positive rate of associated loci in GWAS are appropriate, these 

concerns are less relevant in construction of GRSs, especially when there are a large number of weakly 

correlated SNPs22 and when rigorous internal and external validation is performed.  

 

While population stratification is a potential confounder of genomic prediction studies, our use of a large 

worldwide multi-ethnic meta-analysis to develop the GRS together with two fully independent 

prospective validation datasets and three independent case/control datasets minimizes this potential. Our 

GRS was constructed from the CARDIoGRAMplusC4D stage-2 meta-analysis and the FINRISK and 

FHS individuals are both independent of that study and of broadly European ancestry; thus it is unlikely 

that the GRS is substantially confounded by fine-scale population structure within these cohorts. Further, 

the LD-thinning threshold to maximize prediction was determined in the WTCCC and MIGen datasets 

prior to applying the GRS to ARGOS, FINRISK, or FHS. Nevertheless, for some measures, GRS gains 

were less pronounced in FHS than in FINRISK. This may partly be due to the different definitions of 

CHD in these studies or to differences in environmental exposures. In addition, the FRS was developed in 
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the FHS, leading to potential over-estimation of its association with CHD in the current analysis. Hence, 

there may be benefit from future development of population-specific GRSs, which may yield greater 

predictive power within each population. 

 

The association of the GRS with incident CHD was not substantially attenuated by traditional risk factors 

or clinical risk scores derived from these risk factors. Furthermore, the GRS was strongly associated with 

CHD in a study consisting purely of individuals with familial hypercholesterolemia. These results suggest 

that genomic risk exerts its effect on CHD risk through molecular pathways that are largely independent 

of the effects of cholesterol, systolic blood pressure, and smoking. A hitherto unresolved question has 

been the extent to which a family history would capture any information that may be provided through 

genetic analysis. Here, we clearly demonstrate the superior performance of direct genetic information 

over self-reported family history of CHD, which is often incomplete and imprecise in practice and is 

influenced by family size and competing causes of death. 

 

While we observed improvements in discrimination (C-index) resulting from adding the GRS to the 

clinical risk scores when considering adults of all ages, the improvements were substantially higher in 

older individuals (>60 years old). Rather than being driven by age-related differences in the effect of the 

GRS, these results are likely driven by differences in the clinical risk scores between the younger and 

older adults. Unlike the GRSs, the clinical risk scores showed substantial differences across ages, driven 

by temporal changes in the underlying risk factors as well as age itself. Beyond the aims of identifying 

older adults with high CHD risk, the invariance of genomic risk makes it particularly useful for CHD risk 

prediction earlier in life, in young adulthood or before, when traditional risk factors are typically not 

measured and less likely to be informative of risk later in life. 

 

Stratifying individual baseline smoking, systolic blood pressure, and total cholesterol levels measures into 

genomic risk groups revealed substantial differences in cumulative risk patterns. Importantly, this 

demonstrates that improved lifestyle may compensate for the innate increased CHD risk captured by the 
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GRS. For men with high genomic risk, modifiable risk factors showed large effects on cumulative CHD 

risk. For women, the observed impacts of smoking, systolic blood pressure, and total cholesterol were 

low or not detectable in the low genomic risk group, particularly in FINRISK, however, we could not 

determine whether this was due to inadequate statistical power or other biological effects and further 

studies in larger cohorts of women are necessary to determine any clinical implications. 

 

Given recent advances and reduced cost of genotyping microarrays and sequencing-based technologies 

and their cost efficiency, determination of genome-wide SNP variants (including the 49,310 SNPs used 

here) is no longer beyond the realm of clinical application. In this context, our results, if validated in 

further studies and across different populations, suggest a potential paradigmatic shift in the current CHD 

screening strategy which has existed for over 40 years – namely determination of genomic risk at an early 

stage with screening later in life through traditional clinical risk scores to complement background 

genomic risk. Based on early genomic risk stratification, individuals at higher risk may benefit from 

earlier engagement with nutritionists, exercise regimes, smoking cessation programs or be initiated early 

on medical interventions such as statin therapy or blood-pressure lowering medications to minimize 

future CHD risk. In this context it is notable that Mega et al. 30 recently demonstrated that the GRS of 27 

CHD-associated SNPs better predicted which individuals would benefit most, both in relative and 

absolute terms, from statin treatment. In a study of type 2 diabetes, Florez et al. 31 has shown that the 

effects of increased genetic susceptibility to disease can be ameliorated by lifestyle (diet and exercise) 

and therapeutic (metformin) interventions. Similar possibilities exist for CHD, whereby early targeted 

prevention strategies based on genomic CHD risk may be implemented well in advance of clinical risk 

scores attaining predictive capacity at later ages32. Such early risk stratification will offer increased 

efficiency in allocating both therapeutic resources and lifestyle modifications with the potential for 

subsequent delay of onset of traditional risk factors and incident CHD risk. 

 

While our study demonstrates both the independent and incremental predictive power provided by our 

GRS, it is important to note that even when combined with such scores, the overall positive predictive 
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value still remains modest for an acceptable negative predictive value (Supplementary Figure S10). 

Furthermore, despite overall improved reclassification of 10 year risk, some individuals who went on to 

develop an incident event were reclassified at a lower risk by the addition of the GRS compared to their 

initial classification using a clinical score (Table 3 and Supplementary Table S4), emphasizing the 

limitations of the current GRS. In this context, it should be noted that our GRS based on a starting list of 

79,128 common SNPs tested by the CARDIOGRAMplusC4D consortium could be further improved. 

Future studies that construct GRSs using increased sample sizes and capturing the full spectrum of 

common and rare variants9,33 will likely provide additional gains in prediction and risk stratification. 

 

In summary, this study has demonstrated the potential clinical utility of genome-scale GRS for CHD, 

both for early identification of individuals at increased CHD risk and for complementing existing clinical 

risk scores. 
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Tables 

Table 1: Characteristics of the FINRISK and FHS cohorts.  

Study 
 

FINRISK 
 

Framingham Heart Study 

Cohort 
 FR92 

(n=3547) 
FR97 
(n=4761) 

FR02 
(n=4368) 

Total 
FINRISK 
(n=12,676) 

 FHS 
Original 
(n=950) 

FHS 
Offspring 
(n=2456) 

Total FHS 
(n=3406) 

Men 
 1578 

(44%) 2316 (49%) 1919 (44%) 5813 (46%) 
 

370 (39%) 1179 (48%) 1549 (45%) 

Women 
 1969 

(56%) 2445 (51%) 2449 (56%) 6863 (54%) 
 

580 (61%) 1277 (52%) 1857 (55%) 

Baseline age, 
years 

 43.59 
(11.31) 

46.68 
(13.15) 

47.12 
(13.01) 45.97 (12.7) 

 
53.7 (6.09) 40.66 

(7.47) 44.3 (9.21) 

Current smoker 
 1027 

(29%) 1148 (24%) 1162 (27%) 3337 (26%) 
 

422 (44%) 948 (39%) 1370 (40%) 

Blood pressure, 
systolic, mm 
Hg 

 134.79 
(19.13) 

135.02 
(19.62) 

134.94 
(20.24) 

134.93 
(19.7) 

 131.54 
(19.35) 

122.64 
(15.98) 

125.12 
(17.45) 

Cholesterol, 
total, mmol/L 

 
5.6 (1.12) 5.54 (1.06) 5.62 (1.14) 5.58 (1.11) 

 
6.14 (1.08) 5.21 (0.98) 5.47 (1.09) 

Cholesterol, 
HDL, mmol/L 

 
1.41 (0.35) 1.42 (0.35) 1.52 (0.43) 1.45 (0.38) 

 
1.3 (0.37) 1.33 (0.39) 1.32 (0.39) 

Prevalent type 2 
diabetes 

 
119 (3%) 299 (6%) 278 (6%) 696 (5%) 

 
19 (2%) 39 (2%) 58 (2%) 

Lipid lowering 
treatment 

 
43 (1%) 117 (2%) 231 (5%) 391 (3%) 

 
- - - 

Anti-
hypertensive 
treatment 

 
302 (9%) 569 (12%) 582 (13%) 1453 (11%) 

 
57 (6%) 75 (3%) 132 (4%) 

Follow up, 
years 

 18.49 
(3.77) 13.82 (2.88) 9.47 (1.51) 13.63 (4.53) 

 29.91 
(11.32) 

31.95 
(8.44) 

31.38 
(9.38) 

Incident CHD 
event (before 
age 75) 

 
261 (7%) 324 (7%) 172 (4%) 757 (6%) 

 
173 (18%) 414 (17%) 587 (17%) 

 

Categorical variables are shown as counts and percentages, continuous variables (age, follow-up time, 

cholesterol, and blood pressure) as means and standard deviations. Sample sizes are for participants with 

GWAS data after quality control and all other exclusions. Lipid lowering treatments were not assessed in 

FHS due to an insufficient number of exams with this information. 
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Table 2:  Reclassification of incident CHD event risk within 10 years for combined FRS + GRS 

compared to FRS only, in the FINRISK and FHS cohorts. 

All individuals 
  FINRISK  FHS 
  FRS+GRS  FRS+GRS 
  0–7.5% 7.5–10% 10–20% 20–100%  0–7.5% 7.5–10% 10–20% 20–100% 

FRS 

0–7.5% 9566 218 138 6  2482 88 4 0 

7.5–10% 368 190 223 21  122 165 83 1 

10–20% 299 290 767 298  11 74 339 19 

20–100% 1 14 114 156  0 0 5 13 
 
Incident CHD present 
  FINRISK  FHS 
  FRS+GRS  FRS+GRS 
  0–7.5% 7.5–10% 10–20% 20–100%  0–7.5% 7.5–10% 10–20% 20–100% 

FRS 

0–7.5% 110 21 19 2  67 6 0 0 

7.5–10% 22 12 28 4  5 11 6 0 

10–20% 22 24 108 78  2 5 43 4 

20–100% 0 2 17 48  0 0 0 1 
 
Incident CHD absent 
  FINRISK  FHS 
  FRS+GRS  FRS+GRS 
  0–7.5% 7–10% 10–20% 20–100%  0–7.5% 7.5–10% 10–20% 20–100% 

FRS 

0–7.5% 9456 197 119 4  2415 82 4 0 

7.5–10% 346 178 195 17  117 154 77 1 

10–20% 277 266 659 220  9 69 296 15 

20–100% 1 12 97 108  0 0 5 12 
           
NRI (categorical) 
[95% CI] 0.1461 [ 0.0881– 0.204 ] ; P < 1×10-6  0.0331 [ -0.0369 – 0.1031 ] ; P < 0.35378 

NRI (continuous) 
[95% CI] 0.3708 [ 0.2847 – 0.4569 ] ; P < 1×10-6  0.2489 [ 0.0871 – 0.4107 ] ; P < 0.00256 

IDI (continuous) 
[95% CI] 0.0279 [ 0.0215 – 0.0342 ] ; P < 1×10-6  0.0052 [ 0.0021– 0.0083 ] ; P < 0.00098 

 

* In FINRISK, 7 individuals of the 12,676 were excluded in this analysis due to missing clinical 

measurements. 
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Figures 

Figure 1: Difference in C-index (95% CI) for time to incident CHD event within 10y, relative to the 

reference model in the FINRISK and FHS cohorts. Reference models used age as the time scale, 

stratified by sex (FINRISK: adjusted for cohort and geographic location; FHS: adjusted for cohort). 

Family history was not available for all of the FHS cohorts and thus not considered here. P-values are 

from the correlated jackknife test. 
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Figure 2: Kaplan-Meier cumulative risk of incident CHD event by genomic risk group for men and 

women in the FINRISK and FHS cohorts. Showing the cumulative risk in quintiles 0–20%, 40–60%, 

80–100%. The vertical bars along the x-axis indicate the age at which each risk group attains a 

cumulative CHD risk of 10%. Dashed lines indicate 95% CI. 
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Figure 3: Kaplan-Meier curves for incident CHD event risk stratified by GRS quintiles and 

smoking status at baseline, for men and women in the FINRISK cohorts. 
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