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Abstract

Identifying active cis-regulatory regions in the human genome is critical for understanding gene reg-
ulation and assessing the impact of genetic variation on phenotype. Based on rich data resources such
as the Encyclopedia of DNA Elements (ENCODE) and the Functional Annotation of the Mammalian
Genome (FANTOM) projects, we introduce DECRES, the first supervised deep learning approach for the
identification of enhancer and promoter regions in the human genome. Due to their ability to discover pat-
terns in large and complex data, the introduction of deep learning methods enables a significant advance
in our knowledge of the genomic locations of cis-regulatory regions. Using models for well-characterized
cell lines, we identify key experimental features that contribute to the predictive performance. Applying
DECRES, we delineate locations of 300,000 candidate enhancers genome wide (6.8% of the genome, of
which 40,000 are supported by bidirectional transcription data) and 26,000 candidate promoters (0.6%
of the genome).

In this article, we apply deep supervised analysis methods to identify the positions of active cis-regulatory
regions (CRRs), including both enhancers and promoters, across the human genome. CRRs play a crucial
role in precise control of gene expression. Promoters and enhancers act via complex interactions across time
and space in the nucleus to control when, where and at what magnitude genes are active. CRRs, through
interactions with proteins such as histones and sequence-specific DNA-binding transcription factors (TFs),
help specify the formation of diverse cell types and respond to changing physiological conditions. While gene
expression is ultimately a reflection of regulation across multiple processes, the key role of promoters and
enhancers has been a central focus of genome annotation for the past decade. The investment in generating
informative data for the detection of these regions has been immense, in part motivated by the anticipation
that advanced computational approaches would be able to transform the data into a reliable annotation of
the genome.

Promoters and enhancers were early discoveries during the molecular characterization of genes. While
promoters specify and enable the positioning of RNA polymerase machinery at transcription initiation sites,
enhancers modulate the activity of promoters from linearly distal locations away from transcript initiation
sites [1, 2]. The delineation between the classes has become increasingly challenging, with some literature
suggesting the two categories are the edges of a continuous spectrum of CRRs [3]. Indeed, it has long
been observed that sequences flanking transcription initiation regions can function as enhancers (promoter-
proximal regions), and in recent years, it has been observed that there are transcripts initiated at the edges
of active enhancers [4, 5]. For the purpose of this report, we address the two as distinct classes, but discuss
the relationship between our findings and the continuous class model.

The use of computational methods to detect the locations of promoters and enhancers has been a key
focus of bioinformatics for twenty years (see reviews [6] and [7]). With the advances of experimental pro-
cedures for profiling the properties of chromatin and RNA transcripts, a new wave of methods has arrived.
Given the small set of reliable enhancer annotations, it was appropriate that the first among these methods
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used unsupervised learning. For instance, both ChromHMM [8] and Segway [9] segment the genome into
sequence classes based on ENCODE project data [10], such as histone modification ChIP-seq (chromatin
immunoprecipitation followed by sequencing [11]) signals. Such unsupervised methods infer hidden states
based on observed signals, and then associate an element to each hidden state. The states are subsequently
labelled with biological functions based on enrichment for known examples. A test of predicted Enhancers
for the K562 leukemia cell line by the Combined method (unifying ChromHMM and Seqway annotations)
[12] using a high-throughput reporter gene assay [13] revealed that only 26% of predicted enhancers have
regulatory activity [14]. The assessment showed that the predicted Weak Enhancers, a class associated with
lower H3K27ac and H3K36me3 signals, unexpectedly drove higher gene expression than the predicted En-
hancers. It is evident that improvements are needed, potentially involving the use of additional experimental
features and alternative machine learning approaches.

Despite the limited set of precisely annotated active enhancers, supervised machine learning models have
been attempted to predict enhancer regions. In each case, a distinct definition of a suitable positive training
set of enhancers was taken. A random-forest method was used in [15] to classify TF bound regions with a
focus on observed binding patterns, generating sets of two-class classifiers to distinguish regions based on
binding activity and position relative to promoter regions. A random-forest based enhancer classification
method was devised in [16] with histone modification ChIP-seq data as features, using p300 bound regions
as the basis for training. Chen et al. applied multinomial logistic regression with LASSO regularization to
find key features for the classification of stem cell-specific functional enhancer regions [17]. Using STARR-
seq data, a new experimental approach for screening candidate enhancer sequences [18], dinucleotide repeat
motifs (DRMs) were found to be enriched in broadly active enhancers, leading to a proposition that a small
set of TF binding site motifs and DRMs might be sufficient for enhancer prediction [19].

New laboratory methods are emerging, providing a refined resolution of CRR locations. The majority
of human DNA is transcribed, producing diverse types of RNA. In particular, transcripts generated at the
edges of enhancers, enhancer RNAs (eRNAs), allow for the experimental readout of active regulatory re-
gions. Global run-on and sequencing (GRO-seq) protocols [20] measure the 5’-end of nascent RNAs revealing
the divergent transcriptional signature of both transcriptionally active promoters and enhancers [5]. Using
GRO-seq signals, a support vector regression model (dReg) was developed to predict active transcriptional
regulatory elements [21]. The cap analysis of gene expression (CAGE) technique [22] captures the 5’-end
of RNA transcripts, enabling a precise determination of transcript initiation sites. Using CAGE, the FAN-
TOM5 Consortium has identified an atlas of transcriptionally active promoters [23] and a permissive set of
43,011 transcriptionally active enhancers characterized by bidirectional eRNAs [4] across hundreds of human
cell types and tissues. These enhancers were validated with high success rates ranging from 67.4% to 73.9%
[4]. Compared to protein-coding RNAs, eRNAs are believed to degenerate quickly, and only a small number
of tissues have been explored with sufficient depth to reveal eRNAs. While the FANTOM enhancer set is
therefore incomplete, it provides a uniquely large inventory of high-quality enhancers to use for the training
of machine learning approaches. An ensemble support vector machine method suggested the potential to
distinguish enhancers based on such data [24].

We have previously proposed and herein present the use of a deep feature selection (DFS) model for the
supervised prediction of CRRs [25]. Deep learning is a dramatic advance in the frontier of artificial intelligence
[26, 27, 28]. Unlike widely used linear models, deep learning approaches model complex systems and capture
human-understandable patterns. Driven by big and rich data, deep learning has been successfully applied in
various areas such as automatic image annotation and speech language processing [29]. Bioinformaticians have
started using this powerful tool for next-generation sequencing data mining, such as predicting the impact
of variations on exon splicing [30], detecting TF binding patterns [31], and predicting protein secondary
structures [32].

Our study stands on three important legs. First, the precisely annotated FANTOM promoters and
enhancers, which provide the largest experimentally defined collection of CRRs. Second, the ENCODE
project genome-wide feature data, such as histone modifications, TF binding, RNA transcripts, chromatin
accessibility, and chromatin interactions. Third, deep learning methods to distinguish CRRs based on the
available data. We unite the three components to create the DECRES model, with which we identify the
most comprehensive collection of CRRs across the human genome yet compiled.
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Results

Deep learning accurately distinguishes active enhancers and promoters from
background

We investigated the capacity of deep learning models to separate enhancers and promoters, and to distin-
guish them from other regions and between activity states. Training a deep three-layer feedforward neural
network over our labelled data from well-characterized cells (see Methods, Supplementary Tables 1 and 2),
we recorded the mean sensitivity, specificity, and overall accuracy (using 10-fold cross-validation) in Figure 1
and Supplementary Figure 1. For narrative convenience, hereafter we refer to active enhancer, active pro-
moter, active exon, inactive enhancer, inactive promoter, inactive exon, and unknown (or uncharacterized)
region as A-E, A-P, A-X, I-E, I-P, I-X, and UK, respectively. Under the assumption that active CRRs are
undergoing transcription, active applies to regions in which CAGE transcript initiation events are observed in
the tissue of focus, while inactive refers to regions detected in other tissues, but not in the focus tissue. First,
we are able to distinguish between active enhancers and promoters (A-E versus A-P) (Fig. 1A). We used
A-E and A-P as positive and negative training classes, respectively. Overall, we found that A-E and A-P are
highly separable, with the highest mean accuracy of 93.59% on GM12878 lymphoblastoid cells, and the lowest
of 87.78% and 88.14% on MCF7 and A549 cells, respectively (results correlate with smaller training sample
sizes). Second, we can distinguish active and inactive CRRs (either enhancers or promoters). From Figure 1B
and Supplementary Figure 1A, it can be observed that accuracies on GM12878, HelaS3, HepG3, and K562,
which have the largest training sets, are above 90% with small variances for both enhancers and promoters.
Consistent with larger promoter training data, all sets exceeded 90% accuracy, while for the smaller enhancer
sets, from A549 and MCF7 cells, lower accuracies with larger variances were obtained. In the rest of this
paper, we exclude A549 and MCF7 cell lines due to limited data availability. Third, not unexpectedly, it is
difficult to distinguish between inactive enhancers and promoters (Supplementary Fig. 1B). None of the mean
accuracies for the eight cell types exceeded 80%. As the properties of inactive sequences could be similar
for both enhancers and promoters in a cell of focus, we elected to group the inactive CRRs and assess the
capacity of our deep method to distinguish them from active CRRs. When grouping CRRs and seeking to
distinguish activity states, we obtained a mean accuracy higher than 90% across cells, for example 95.87%
on GM12878. It is evident that our deep approach has a strong capacity to distinguish between classes when
there is both sufficient training data and when the underlying biological classification is appropriate. Fourth,
we tested the applicability of predicting A-E and A-P from the super background (BG) class merging I-E,
I-P, A-X, I-X, and UK (Fig. 1C). The results are promising. If A-E and A-P are merged further to form a
super class (A-E+A-P), higher performance is achieved (Supplementary Fig. 1C).

DECRES gives higher sensitivity and precision on FANTOM annotated regions
compared with ChromHMM and ChromHMM-Segway Combined methods

To assess the relative utility of our supervised deep method for CRR prediction, we compared it with the
unsupervised ChromHMM and ChromHMM-Segway Combined methods [8, 12] using FANTOM annotations
on five available cell types as reference (Fig. 2). It is intuitive that supervised approaches are preferred when
labelled training data is sufficient. Furthermore, both unsupervised methods were developed prior to public
release of the FANTOM5 data and are therefore at a disadvantage. However, these annotations are widely
used by the community and hence the relative performance of DECRES to the standard is of interest. Overall,
we observe that DECRES outperforms ChromHMM and Combined methods which in turn deliver similar
performance. These unsupervised methods consistently have lower sensitivities for active enhancer detection
and lower precision for active promoter detection. Using ChromHMM, the active enhancer sensitivity ranges
from 16.9% to 48.4% (numbers are consistent with the test on ENCODE predicted enhancers reported in
[14]), while our deep model ranges from 65.9% (K562) to 85.9% (GM12878). Moreover, ChromHMM achieves
a maximum precision of 64.8% for active promoter prediction, while the minimum for DECRES is of 81.5%.

Evaluation of DECRES performance with independent experimental data

As DECRES is trained on FANTOM regions, we sought two independent collections of laboratory validated
enhancers for assessing performance. A collection of predicted enhancers and negative regions (as reported
by the Combined ChromHMM and Seqway segmentation method) was previously tested using CRE-seq
[14]. In that study, only 33% of predicted regulatory regions were classified as positive in the experiment,
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compared to 7% for the negative set. Using DECRES trained on all available active regulatory regions
of K562 cells, we therefore validated our method on 388 regions showing active enhancer activity in K562
as validated by CRE-seq compared to the 300 control regions (Supplementary Table 3). Highly consistent
with the results above, 65.5% (254/388) of the experimentally validated regions were successfully predicted
as A-E; the remaining 134 regions were predicted as background (none were classified as promoters). For
the 812 tested predictions that were inactive in the Cre-seq experiment, DECRES classified 46.6% (378/812)
as positive. For the 300 control regions, DECRES predicted all to be negative (including the 21 that were
active in the CRE-seq experiment). Given that the sequences predicted by the Combined method display
characteristics that suggestive regulatory activity, the performance of DECRES is satisfactory. We wonder
is there any differences between the experimentally supported Combined predictions and the experimentally
not-supported Combined predictions. We drew the histogram of DECRES membership scores of 254 and
433 experimentally positive and negative Combined enhancers that were predicted as A-Es by DECRES
(Supplementary Fig. 2). It shows that the former set has more certainty (p = 0.014, Mann-Whitney rank
test).

A collection of 799 HepG2 or K562-specific enhancers defined by motifs of five activators and evolutionary
conversation were tested using a massively parallel reporter assay (MPRA) in [33]. In that study, 41% of
these enhancers were significantly expressed (p = 0.05, Mann-Whitney rank test). We used DECRES to
predict the classes of the MPRA positive and MPRA negative enhancers. Our result in Supplementary
Table 3 shows that 96.6% (200/207) and 98.5% (123/125) of the MPRA positive enhancers were respectively
predicted to be A-Es by DECRES for HepG2 and K562 cells, while 81.7% (223/273) and 92.3% (179/194)
of the MPRA negative enhancers were still predicted as A-Es for HepG2 and K562, respectively, but with
different (p = 6.6E − 7 and p = 3.4E − 6 for HepG2 and K562 respectively, Mann-Whitney rank test)
distributions of DECRES scores (Supplementary Fig. 2). It reflects an advantage of DRCRES: the class
membership scores in DECRES allow user select predictions with levels of confidences. Considering the fact
that the negative can include a certain amount of false negatives using p = 0.05 as threshold, the DECRES
performance on the negative set should not be explained with low specificity.

Including sequence properties beyond CpG islands does not improve performance
for CRR prediction but can inform analysis in the absence of laboratory feature
data

Recent studies confirmed that sequence properties can be important for the recognition of promoters and
enhancers [3, 5, 24]. It is recognized that the inclusion of CpG islands for promoter analysis improves
prediction, primarily for promoters associated to housekeeping genes [34]. For classification, we sought to
identify which (if any) additional sequence features contribute to the capacity to distinguish between active
promoters and enhancers. We trained the model with 351 sequence features (originally used in [24]) in multiple
scenarios. Results are displayed in Figure 3. First, a deep method restricted to sequence features (Fig. 3A)
delivered accuracies from 78.11% to 89.28%, confirming that sequence attributes are indeed informative.
Second, sequence features have a limited utility for distinguishing between active and inactive states of
enhancers (Fig. 3B) and promoters (Fig. 3C), which is logical. For example, on K562, the 10-fold cross-
validation accuracy using the sequence properties is only of 68.06%, while the accuracy using the NGS
features is as high as 93.85%. Using sequence features in the absence of experimental features has a lower
performance across all eight cell types (Fig. 3F). Finally, better results were not achieved by combining
experimental and sequence features. For instance taking the 10-fold cross validation of A-E versus A-P
versus BG on HelaS3, mean accuracies of 88% and 87.89% were obtained using the experimental features
and all features, respectively.

A few key features are sufficient

As experimental data can be time consuming and expensive to produce, we sought to determine the minimal
set of features most informative for CRR prediction. We used deep feature selection (DFS) models [25] for
two-class (A-E+A-P (or CRR) versus BG) and three-class (A-E versus A-P versus BG) classifications on four
cell types (GM12878, HelaS3, HepG2, and K562) which have 73-136 features available.

Figures 4A and B show the changes of test accuracies as the numbers of selected features increase for
the two-class and three-class classifications, respectively. In both cases, test accuracies increase dramatically
for the initial features, then performance stabilizes. A few key features are sufficient for a good prediction
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accuracy. To define an optimal number of features needed, we fit the curves in Figures 4 and selected
the intersection point for a line with slope of 0.25 (see Methods). Fewer features are needed for two-class
CRR prediction (4 features) compared to three-class models intended to distinguish between A-E, A-P and
background (8 features).

Figure 4C shows box plots of the top four selected features for two-class predictions. Using these features,
accuracies of 93.92%, 93.01%, 90.57%, and 91.83% were obtained for GM12878, HelaS3, HepG2, and K562,
respectively. For most features, the ranges of values are elevated in A-E and A-P relative to the background
categories. The majority of the selected features (11 out of 16) are TF binding ChIP-seq data, but each
set of four includes a histone modification. The box plots of H3K4me2 (included in 3 out of 4 models) and
H3K27ac, indicate that both histone marks distinguish A-E and A-P from background. From the literature,
H3K4me2 marks are prevalent at TF bound regions [35], and H3K27ac is enriched at the flanking regions of
active CRRs [2].

The distributions of the top eight features for three-class predictions (A-E, A-P, and BG) are given in
Supplementary Figure 3. Using the top eight features for each cell, accuracies of 87.39%, 88.65%, 85.88%, and
84.16% were achieved on GM12878, HelaS3, HepG2, and K562, respectively. CpG islands, H3K4me2, and
H3K27me3 were commonly selected features for the three-class models, in agreement with existing knowledge
that CpG islands mark promoter regions, and inactive regions are enriched for H3K27me3 [36, 2]. Moreover,
the well-known enhancer marker H3K4me1 [2] was selected for cell lines GM12878 and HelaS3. H3K4me3
was enriched in both A-E and A-P regions, but had a higher signal level on A-Ps than A-Es, consistent with
[3]. The box plots of all features are provided in Supplementary Figures 4-11.

The majority of DECRES’s genome-wide predictions are supported by other
methods

We trained 2- and 3-class multilayer perceptron (MLP) models (see Methods) using all reference (labelled)
data for training, in order to predict CRRs across the entire genome for six cell types (A549 and MCF7 were
excluded). The 2-class model identified 227,332 CRRs (adjacent regions were merged), which occupy 4.8%
of the genome (Supplementary Table 4). A total of 9,153 CRRs were ubiquitously predicted across all six
cell types. For the 3-class prediction, we obtained 301,650 A-E regions (6.8% of the genome) and 26,555
A-P regions (0.6% of the genome) together with 11,886 ubiquitous A-Es and ubiquitous 3,678 A-Ps. The
genome-wide predictions for all six cell types are available in Supplementary Data 1.

Next, we examined the overlap of our predicted CRRs with the Combined [12] and dReg [21] predictions
on GM12878, HelaS3, and K562 (Fig. 5A, B, and C). The majority of CRRs predicted by DECRES overlap
with the results from either Combined or dReg, specifically 86.13%, 76.13%, and 83.63% for GM12878,
HelaS3, and K562, respectively (Fig. 5A, B, and C). A subset (13.87% on GM12878, 23.87% on HelaS3, and
16.37% on K562) of DECRES predictions do not overlap with predictions from the other two tools. Notably,
a large portion of the Combined predictions (56.78% on HelaS3, 55.99% on GM12878, and 36.36% on K562)
do not overlap with those from the supervised methods, which is consistent with its low observed validation
rate [14]. DECRES predictions (see Fig. 5D for an example) have two distinguishing characteristics: a finer
resolution for both A-P and A-E regions, and the A-P regions tend to be wrapped by A-E regions. Indeed,
Fig. 5E shows that 51.73% - 70.75% of A-Ps are surrounded by A-Es, with the exception of K562 where
95.75% of A-Ps are wrapped by A-Es. It is unclear why K562 promoters display such strong properties.

We investigated how many among our genome-wide predictions are supported by the VISTA enhancer
set [37]. Despite that the majority of the VISTA enhancers are extremely conserved for development, we still
find that 37.1% (850/2,293) of experimentally confirmed and unconfirmed VISTA enhancers overlap with the
predicted A-Es, while merely 4.8% (110/2,293) of these VISTA enhancers overlap with the predicted A-Ps.
Results for experimentally confirmed VISTA enhancers are similar (482/1,196=40.30% and 60/1,196=5.02%
overlap A-Es and A-Ps, respectively), which suggests that our predicted active enhancers have real enhancer
functions. A proportion of the VISTA enhancers not overlapping our predictions could be active specifically
in other cell types than our focus cell lines.

Extending the FANTOM enhancer atlas

Due to the limited depth of CAGE signals for eRNAs, a portion of active (or transcribed) enhancers will not
have been detected in the original compilation of the enhancer atlas. Hence, we sought to identify additional
partially supported enhancers for which eRNA signals were below the original atlas threshold settings [4]. In
the previous work, a total of 200,171 bidirectionally transcribed (BDT) loci were detected across the human
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genome, using CAGE tags of 808 cell types and tissues. After excluding BDT loci within exons, a partially
supported set of 102,021 BDT regions remained, of which 43,011 balanced loci (similar eRNA levels on both
sides) constitute the FANTOM enhancer atlas [4]. In order to investigate whether more active enhancer
candidates can be detected for each of the six cell types, we trained a MLP on its active atlas regions, and
predicted classes for all 102,021 BDT sites. Among the 102,021 BDT loci, most were classified as negative
regions in a given cell (Supplementary Table 5), while on average 13,316 were predicted as A-Es and only 834
were predicted as A-Ps per cell type. A substantial number (6,535 on average) of inactive enhancers in the
original enhancer atlas were predicted as active by our model (see Supplementary Table 6), consistent with
the assumption that BDT data is incomplete for any given sample. On average 5,514 BDT loci excluded by
the original atlas, were predicted as A-Es per cell type. Over the six analyzed cell types, a total of 38,601
BDT loci were predicted as A-Es (Supplementary Data 2), of which 16,988 represent an expansion of the
original FANTOM enhancer atlas. Note that 21,398 out of 43,011 enhancers from the original FANTOM
enhancer atlas are not predicted as active in the six cells analyzed here, but these regions may be active in
the other 802 cells for which there are inadequate features to analyze.

Functional and motif enrichment analysis

We performed functional enrichment analysis on the genome-wide predicted A-Es and A-Ps using GREAT
[38]. For GM12878 cells, 79% of predicted enhancer regions are more than 5 kilobase pairs (kbps) away
from gene TSSs (Fig. 6A), while 47% of predicted promoters are less than 5 kbps to the annotated gene
TSSs (Fig. 6B). Similar statistics were obtained for the remaining five cell types. Annotation analyses of the
GM12878-specific CRRs shows that proximal genes are associated to: immune response from gene ontology
(GO) annotations (Fig. 6C); B cell signalling pathways from MSigDB Pathway annotations (Fig. 6D); and
leukemia from disease ontology annotations (Fig. 6E). Results are consistent with the lymphoblastoid lineage
of the cells. Next, we performed functional enrichment analysis on the BDT-supported predicted enhancers
not previously reported in the FANTOM enhancer atlas (NiA, ”not in atlas”). Results are fully consistent
with the above analysis (Supplementary Fig. 12).

We further carried out motif enrichment analysis on the predicted cell-specific CRRs and NiA enhancers
using HOMER [39]. The predicted regions are enriched for motifs similar to JASPAR binding profiles [40]
(Fig. 6F and Supplementary Fig.s 12-22) both associated to TFs maintaining general cell processes and TFs
with selective roles in cell-related functions. For instance, motifs for Jun-, Fos-, and Ets-related factors
were enriched in regions from all six cell types (Fig. 6F, Supplementary Fig.s 12-22). These TFs regulate
general cellular progresses such as differentiation, proliferation, or apoptosis [41, 42]. Cell-appropriate TF
enrichments were observed for each cell (summarized in Supplementary Table 7). For example, RUNX1 and
other Runt-related factors, which play crucial roles in haematopoiesis, are observed in GM12878 (Fig. 6F and
Supplementary Fig. 12) [43]. C/EBP-related factors that regulate genes involved in immune and inflammatory
responses are expressed in cervix (Supplementary Fig.s 13 and 14) [44]. HNF1A, HNF1B, FOXA1, FOXA2,
HNF4A, and HNF4G factors regulate liver-specific genes (Fig.s 13 and 14) [45, 46]. NFY factors cooperate
with GATA1 to mediate erythroid-specific transcription in K562 (Supplementary Fig.s 21 and 22) [47].

Discussion and conclusion

We show that using FANTOM data for training, supervised deep learning methods are able to accurately
predict active enhancers and promoters across the human genome. We demonstrate that cell-specific data
outperforms universal data (e.g. sequence), and highlight key experimental features that tend to be incorpo-
rated into predictive models when available. We explore the relative performance of 2- and 3-class models to
group or separate enhancers and promoters. Finally, we deliver a comprehensive collection of annotations,
that label 6.8% of the genome as enhancers and 0.6% as promoters in one or more of six well-characterized
cells.

Accurate annotation of regulatory regions across the human genome is essential for genome interpretation.
With genome sequencing transitioning to a standard clinical test in the next few years, the ability to move
beyond the analysis of protein-coding alterations has the potential to greatly enhance our capacity to explain
observed genetic disorders. By demonstrating the suitability of supervised deep learning methods to provide
such labels, we now enter into a new stage of genome annotation. In the next few years, we can anticipate
that laboratories working with specific cell types will compile genome-scale feature data and subsets of eRNA-
supported regulatory sequences, allowing the broad identification of reliable regulatory regions. As raised in
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the introduction and demonstrated in this report, deep learning methods are well suited for this challenge.
Our study brings together a large collection of high-throughput data from global projects to allow for

supervised annotation. One key challenge in such analysis is the depth of validation performed. In this report,
validation is assessed using existing collections of reliable enhancers, including CAGE [4], and laboratory
validated sets from CRE-seq [14], and transgenic mouse assays [37]), showing that the supervised approach
nears 85.9% sensitivity. The capacity to use supervised approaches is important, as unsupervised approaches
are limited. While we compare to multiple laboratory validated sets retrospectively, a prospective assessment
would have broad value. Given the cost of such prospective testing, we propose that due to the arrival of
sufficient data for supervised approaches on a large-scale, it is time to conduct a global prospective assessment,
such as enabled within the DREAM Challenge program (http://dreamchallenges.org). Such a test for
annotation of cis-regulatory regions in the human genome would inspire the machine learning community to
push the performance limit of supervised CRR-prediction methods.

Enhancers and promoters have both common and distinct characteristics. In our cross-validations, we
show that A-E and A-P are highly separable (Fig. 1A), while better mean accuracy can be obtained if A-E
and A-P are merged together rather than being treated separately (Fig. 1E and F). Both continuous (merging
enhancers and promoters together) and distinct models (treating enhancers and promoters separately) have
limitations. While a continuous model may overlook functional differences, a distinct model may overem-
phasize such differences. A potentially better prediction model might require two hierarchical steps. It could
first distinguish CRRs from the background genome, then assign a continuous score to each candidate region
indicating the likelihood of being an enhancer. Further clustering and subtyping may be necessary.

Two other deep learning models might be beneficial to improve annotations of non-coding regions. One
method is convolutional neural network, which can take into account the shape information of various features.
The other one is bidirectional recurrent neural network, which can consider the information from adjacent
context. It can be potentially applied to annotate regulatory domains or complexes where exons, introns,
promoters, enhancers, silencers, and insulators form cohorts for specific functionalities.

We anticipate that the collection of regulatory region annotations provided in this study will have broad
utility for genome interpretation, and that the demonstration of the sufficiency of training data and the utility
of deep learning supervised methods for CRR prediction will move the discussion to a highly applied period
of high-quality annotation. Understanding how CRRs interact and how they link to their target genes is the
key to decipher the cis-regulatory mechanism. We expect that further development of integrative machine
learning methods is crucial to reconstruct such a gene regulatory system.

Methods

Data

For the purpose of supervised analysis, we collected feature data from ENCODE [10] along with the transcrip-
tionally active enhancers and promoters from eight matched cell types catalogued by the FANTOM effort
[23, 4]. These cell types include A549, GM12878, HelaS3, HepG2, HMEC, HUVEC, K562, and MCF7. For
each cell type, we defined seven classes of labelled regions, including A-E, I-E, A-P, I-P, A-X, I-X, and UK.
The libraries of enhancers and promoters were downloaded from http://fantom.gsc.riken.jp/5/data.
A-Es and I-Es were defined as FANTOM enhancers with TPM>0 (tags per million) and TPM=0, re-
spectively. A-Ps and I-Ps were randomly selected FANTOM promoters with TPM>5 and TPM=0, re-
spectively. A-X and I-X were defined based on exons’ transcription levels measured by RNA-seq (ftp:
//hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC). An exon with peak-max greater than 200
(equal to 0) was defined as A-X (I-X). The UK regions were sampled from the genome regions excluding all
FANTOM CAGE tags, all exons, and DNaseI open regions. The numbers of labelled regions used in this
study are listed in Supplementary Table 1. For each cell type, we built a comprehensive feature set, inte-
grating histone modification and TF binding ChIP-seq, DNase-seq, RNA-seq, FAIRE-seq, and ChIA-PET
data from the ENCODE project (http://www.broadinstitute.org/~anshul/projects/encode/rawdata/
signal/mar2012/pooledReps/bigwig/macs2signal/foldChange and ftp://hgdownload.cse.ucsc.edu/

goldenPath/hg19/encodeDCC).
These features characterize the activities of enhancers and promoters in cell-specific aspects. Additionally,

CpG islands and phastCons evolutionary conservation scores were included, because it is well recognized that
some regulatory regions are highly GC-rich and extremely conserved. For each labelled region, the mean value
of feature signals fall within a bin centered at the region was taken as the feature value using bwtool [48].
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We tried different bin sizes including 200, 500, 1,000, 2,000, and 4,000 bps. Since 200 bps worked the best
in cross-validation tests, we used it throughout our analyses. The numbers of features used for each cell
type and the numbers of common features between any pair of them are given in Supplementary Table 2.
A combined list of features is provided in Supplementary Data 3. Our labelled data are downloadable from
https://github.com/yifeng-li/DECRES.

Deep learning for classification

Based on the Deep Learning Tutorials (deeplearning.net/tutorial) and Theano (deeplearning.net/
software/theano), we implemented a deep learning package named DECRES (DEep learning for identifying
Cis-Regulatory ElementS and other applications) which is available at https://github.com/yifeng-li/

DECRES. We applied a supervised deep model – feedforward neural network (also known as multilayer per-
ceptrons or MLP) for the detection of regulatory regions. Along the data flow in the model structure, it has
three hidden layers with 256, 128, and 64 hidden units, respectively. In order to control model complexity,
l2-norm was used as a regularization term with control parameter 0.01. The maximum number of allowed
iterations was set to 1,000. The initial learning rate was set to 0.1, and was reduced as the number of
iterations increases. Using batch-size 100, stochastic gradient descent was employed to optimize the model
parameters. The momentum term with control parameter 0.1 was added to the update rule in order to
stabilize the optimization. Hyperbolic tangent activation function was used. It is well-known that the model
selection of neural networks is time consuming, we thus manually selected the above control parameter setting
by trying a variety of settings, rather than resort to an automatic model searching method though it may
further improve the performance. When evaluating the classification performance of various experiments,
10-fold cross-validation was used to split a labelled data set into training and test sets. A training set was
further partitioned into a training subset for model learning and a validation subset for early termination.
Before predicting regulatory regions in the whole genome, all labelled data of a cell type were used to train
the network.

Feature selection

Our newly devised deep feature selection (DFS) model [25] was used to select subsets of discriminative
features. Addressing the limitations of sparse linear models for feature selection, DFS is able to model the
non-linearity of the features and select a single subset of features for multi-class data. The main idea of DFS
is to add a one-to-one linear layer (named feature-selection layer) to the above described feedforward neural
network. For the i-th input feature xi, the output of the feature-selection layer becomes wixi. Thus, the
parameter of this layer is a vector w. By shrinking w, some of its elements turn to zeros, such that the
corresponding features do not contribute to the classification at all. The upper hidden layers of the model
have the capability of modelling the non-linear interactions in the data. The feature selection layer allows
to select a single subset of features for multi-class problem. Aiming at trading off the size of feature subset
and accuracy, we designed a method based on curving fitting that was applied in Fig. 4. Denoting a size of
feature subset and corresponding test accuracy by x and y respectively, we first fit function y = 2s

π arctan(kx)
where k and s are scale parameters. Once done, a point can be chosen on the curve given a proper tangent

value (say t) using xt = 1
k

√
2ks−tπ
tπ and yt = 2s

π arctan(kxt). Since the values come from different scales on

x and y axes, we qualitatively used t = 0.25. The DFS model and described feature-subset-selection method
were included in the DECRES package.
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Figure 1: The mean performance and standard deviation of 10-fold cross-validations using the MLP model
on our labelled data of eight cell types. A-E: Active Enhancer, A-P: Active Promoter, A-X: Active Exon,
I-E: Inactive Enhancer, I-P: Inactive Promoter, I-X: Inactive Exon, UK: Unknown or Uncharacterized, BG:
I-E+I-P+I-X+UK.
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Figure 2: Comparison of the supervised method (Deep Learning) and unsupervised methods (ChromHMM
and Combined) on five FANTOM annotated test sets. The ENCODE segmentations were downloaded
from http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgSegmentation. We
relabelled the annotations of ChromHMM and Combined. For ChromHMM segmentations, the Tss, TssF,
and PromF classes were merged to A-P; the Enh, EnhF, EnhW, EnhWF classes were merged to A-E; and
the rest were denoted by BG. When processing the Combined annotations, TSS and PF were relabelled to
A-P; E and WE were relabelled to A-E; and the rest to BG.
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Figure 3: Comparing the 10-fold cross-validation performances on our labelled regions using different feature
sets. NGS means our next generation sequencing feature set. Sequence means the set of 351 sequence
properties used in [24]. NGS+Sequence means the combination of these two sets.
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Figure 4: Feature analysis. (A) Accuracy versus the number of features incorporated into the model for
2-class prediction (distinguishing active CRRs (A-E + A-P) from BG (background: A-X, I-E, I-P, I-X and
UK). The annotated points indicate where a line with slope 0.25 intersects a fitted curve). (B) Accuracy
versus the number of features for a 3-class prediction (distinguishing A-E, A-P and BG). Points as described
for (A). (C) For the top 4 features of the 2-class models generated for four well-characterized cell lines,
box-plots depict the range of observed feature values (log2 scale) for 7 sequence classes.
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Figure 6: Functional and motif analysis of the genome-wide predictions on cell line GM12878. (A) The
distance from the predicted A-Es to gene TSSs. (B) The distance from the predicted A-Ps to gene TSSs.
(C,D,E) Top 20 enriched biological processes, pathways, and diseases, respectively, in the predicted cell-
specific CRRs. (F) Enriched de novo motifs in the predicted cell specific CRRs. Column 4: the families of
best-matched TFs. Column 5: the best match scores.
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