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ABSTRACT 

The orbitofrontal cortex (OFC) has been implicated in both the representation of “state”, in studies 
of reinforcement learning and decision making, and also in the representation of “schemas”, in 
studies of episodic memory. Both of these cognitive constructs require a similar inference about 
the underlying situation or “latent cause” that generates our observations at any given time. The 
statistically optimal solution to this inference problem is to use Bayes rule to compute a posterior 
probability distribution over latent causes. To test whether such a posterior probability distribution 
is represented in the OFC, we tasked human participants with inferring a probability distribution 
over four possible latent causes, based on their observations. Using fMRI pattern similarity 
analyses, we found that BOLD activity in OFC is best explained as representing the (log-
transformed) posterior distribution over latent causes. Furthermore, this pattern explained OFC 
activity better than other task-relevant alternatives such as the most probable latent cause, the 
most recent observation, or the uncertainty over latent causes.  

 
SIGNIFICANCE STATEMENT 

 
Our world is governed by hidden (latent) causes that we cannot observe, but which generate the 
observations that we do see. A range of high-level cognitive processes require inference of a 
probability distribution (or “belief distribution”) over the possible latent causes that might be 
generating our current observations. This is true for reinforcement learning (where the latent 
cause comprises the true “state” of the task), and for episodic memory (where memories are 
believed to be organized by the inferred situation or “schema”). Using fMRI, we show that this 
belief distribution over latent causes is encoded in patterns of brain activity in the orbitofrontal 
cortex — an area that has been separately implicated in the representations of both states and 
schemas.  
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INTRODUCTION 

In recent years, cognitive neuroscientists studying reinforcement learning have recognized the 
importance of specifying representations of environmental “state” that capture the structure of the 
world in a predictive way (Gershman and Niv, 2010; Courville et al, 2006). At the same time, there 
has been renewed interest among cognitive neuroscientists in how memory encoding and 
retrieval are shaped by situation-specific prior knowledge (“schemas”, e.g. Tse et al, 2007). As 
work in this area progresses, it is important to clarify exactly what constitutes a schema and how 
schemas are formed.  
 
Whether inferring the current “state” or the currently relevant “schema”, agents are making 
inferences about the hidden variables that underlie and generate our observations in the world. 
This inference can be concretely formulated in terms of Bayesian latent cause models (e.g., 
Gershman, Blei, and Niv, 2010). According to this framework, states and schemas can be viewed 
as hidden (latent) causes that give rise to observable events. For example, if you arrive late to a 
lecture, the situation (whether this is indeed the department colloquium or you have accidentally 
walked in on an undergraduate class) affects your observations about the average age of the 
audience, the proportion of audience members that are taking notes, the type of information being 
presented, and so on. To decide whether you are in the right place, you can use Bayesian 
inference to infer a belief distribution over the possible situations that might have generated the 
current observations, i.e. a posterior probability distribution over latent causes, p(latent cause | 
observations) (Figure 1A). 
 
We hypothesized, based on the similarity of the underlying computations, that the inference 
related to these two cognitive constructs (states and schemas) might be implemented using the 
same neural hardware. Indeed, there is one area of the brain that has separately been implicated 
in representing states (Wilson et al, 2014) and also schemas (Schlichting and Preston, 2015; 
Richards et al, 2014; Ghosh and Gilboa, 2014; Ranganath and Ritchey, 2012; van Kesteren et al, 
2012; Tse et al, 2011) – the orbitofrontal cortex (OFC). Furthermore, previous univariate analyses 
in fMRI have implicated this region in encoding various summary statistical measures that are 
related to or are components of the posterior distribution, e.g. the posterior mean, likelihood of the 
current stimulus, and prior uncertainty (Ting et al, 2015; d’Acremont et al 2013; Vilares et al, 
2012). However, these studies have not investigated representations of a full probability 
distribution. 
 
Here, we used fMRI to investigate representation in OFC of posterior probability distributions over 
latent causes. In our experiment, we created a probabilistic environment in which participants 
were required to make inferences about the hidden causes that generated their observations. 
Participants viewed sequences of animal photographs, taken in one of four “sectors” in an animal 
reserve. They were tasked with judging the probability with which each sector generated the 
animal photographs, based on their previous experience observing animals in each sector. Using 
multivariate pattern similarity analyses of fMRI activity, we found that BOLD activity in the OFC 
was better explained by the posterior distribution over sectors (latent causes) than by a wide 
range of related signals, including the current stimulus, the most probable sector (the maximum a 
posteriori latent cause), or the uncertainty over latent causes (operationalized as the entropy of 
the posterior distribution). The present result advances our understanding of the function of the 
orbitofrontal cortex. It also unifies results from two different fields of cognitive neuroscience, 
inviting further investigation into the relationship between probabilistic inference, states, and 
schemas. 
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MATERIALS AND METHODS 
Participants 
 
32 participants (aged 18-34 years, 22 female) from the Princeton University community 
participated in exchange for monetary compensation ($20 per hour + up to $15 performance-
related bonus). All participants were right-handed. Participants provided informed written consent. 
The study was approved by the Princeton University Institutional Review Board. 
 
Experimental design  
 
The safari 
 
Participants were told that they were going on a safari, visiting an animal reserve that was divided 
into 4 different sectors. Each sector was associated with a different color, background image, 
background music, and location on a 2 by 2 map (randomized across participants). 
 
There were 5 different kinds of animals in the animal reserve. Every animal appeared in every 
sector, but with different likelihoods P(animal | sector). The likelihoods (not shown directly to the 
participants) were chosen so that none of the sectors were strongly identified with a single 
animal, and so that none of the animals were strongly identified with a single sector (Figure 1B; 
colors and animals were randomly assigned across participants).  
 
Procedure Overview 
 
The experiment consisted of two parts. In the first part, participants “toured” through the animal 
reserve, in order to learn (through experience) the likelihoods P(animal | sector) for each animal 
and each sector. In the second part of the experiment, participants were shown sequences of 
“photographs” of animals that were taken in an unknown sector, and were asked to infer the 
posterior probabilities of different sectors given the animals shown in each sequence, P(sector | 
animals shown).  
 
For each participant, the experiment took place across two consecutive days (see Table 1). 
 
   
Day 1   

“Tours” task 40 trials each tour 2 tours through each sector,  
going clockwise around the map 

“Tours” task 20 trials each tour 2 tours through each sector,  
sectors pseudorandomly ordered 

Day 2   

“Tours” task 30 trials each tour 2 tours through each sector,  
sectors pseudorandomly ordered 

“Tours” task 10 trials each tour 2 tours through each sector,  
sectors pseudorandomly ordered 

“Photographs” task 2 sessions x 20 trials each outside of the MRI scanner 

“Photographs” task 4 sessions x 30 trials each inside of the MRI scanner 

 
Table 1. Tasks performed by participants on Day 1 and Day 2. 
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Figure 1 – Task. A. Schematic showing the relationship between latent causes and observations 
in the world. Inference about the posterior probability over latent causes involves inverting the 
generative model. B. Animal likelihood distributions P(animal | sector) (not shown directly to 
participants). Colors and animals were randomized across participants. C. An example of the first 
few trials of a tour through sector YELLOW. Each tour began with an image of the safari map, 
indicating the current sector and its location, and lasted 30-40 trials. Each trial began with a 
prompt asking the participant to guess which animal would appear next, followed by the 
appearance of an animal. A fixation cross was presented for 0.2-0.8 secs before each question 
and each animal presentation. The animals were pseudorandomly drawn from the likelihood 
distributions for the current sector. The sector’s music played in the background, until the start of 
the next tour. D. An example of a trial in the “photographs” task. Each trial began with an image of 
the safari map with a question mark at its center, indicating that the current sector was unknown. 
Next, a sequence of 1-6 animals appeared (pseudorandomly drawn from a single sector). Finally, 
participants were prompted to guess which of two sectors (randomly chosen) was more (or, on 
half the trials, less) probable. Participants received feedback on their responses. A fixation cross 
was presented for the last 0.5 secs of each animal presentation. [Thanks to sciencewithme.com 
for the animal illustrations.] 
 
 
“Tours” task 
 
In the “tours” task (Figure 1C), participants were instructed that they would “tour” through the 
animal reserve, one sector at a time, in order to learn the animal frequencies in each sector (the 
animal likelihoods). One animal appeared on each trial, pseudorandomly chosen according to the 
likelihoods for that sector. Before each animal appeared, participants were shown a prompt, 
asking them to make a prediction about which of two animals (one correct and one randomly 
chosen) would appear next. The alternate (incorrect) option was chosen with uniform probability 
from the four other animals. To distinguish between the animals in the question prompt (which 
were not representative of the sector’s likelihood distribution) and the animals that were actually 
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drawn from the sector’s likelihood distribution, the question prompts were shown as text while the 
animals drawn from the safari sector were shown as pictures.  
 
In order for the sectors to form rich contexts, each sector was associated with a different color, 
background image, background music, and location on a 2 by 2 map (randomized across 
participants). Before the first trial of a tour through a sector, participants were shown the sector’s 
location on the map. Also, for the duration of a tour through a sector, animals were displayed on 
the sector’s color-matched backdrop image, and the music associated with that sector was 
played in the background. 
 
“Photographs” task 
 
On each trial of the “photographs” task (Figure 1D), participants were shown a sequence of 
animal “photographs”, without being told which sector the photographs were taken from. At the 
end of the sequence, participants were prompted to indicate which of two sectors (randomly 
chosen) was more (or less) probable. The two sector options for each question were chosen 
uniformly from the four sectors of the safari (and did not necessarily include the most or least 
likely sector). So, to perform well on the task, participants had to maintain a full posterior 
distribution over all four sectors (as opposed to estimating only the most probable sector, for 
instance). 
 
Participants received 10 cents for every correctly answered question, and they received feedback 
on every trial. So that more probable sectors were not consistently associated with higher 
monetary value, we asked which of the two sectors was more probable on half of the trials, and 
which was less probable on the other half of the trials. To eliminate confounds with motor plan, 
the positions of the two response options were pseudorandomly assigned between left and right. 
 
To encourage participants to update their inference of the sector probabilities after every animal 
presentation (as opposed to waiting until the time of the question to integrate over the animals 
observed), we varied the length of the sequences between 1 and 6 animals (so that the 
appearance of the question prompt was unpredictable), and participants were only allowed 2.5 
seconds to give a response after the appearance of the question. 
 
The posterior probability of each sector P(sector | animals seen) can be straightforwardly 
computed from the animal likelihoods, using Bayes rule (all sectors were equally likely a priori): 
 

𝑃 sector 𝑖  animals seen)  ∝ 𝑃 animals seen  sector 𝑖 )  ∗  𝑃(sector 𝑖 ) 
∝ 𝑃 animal 1  sector 𝑖 )  ∗ 𝑃 animal 2  sector 𝑖 )  ∗ …          (Eq. 1) 

 
Feedback for the responses was generated based on these posterior probabilities. Due to a bug 
in the code that was undetected during data collection, the feedback was incorrectly generated for 
some of the trials containing only one animal presentation (this affected approximately 10% of the 
trials). In our fMRI analyses, to account for learning from the incorrect feedback, we used each 
participant’s estimates of the likelihoods (collected at the end of the experiment) instead of the 
real likelihoods, and we also performed trial-by-trial behavioral model-fitting to model learning 
from feedback (see next section). 
 
Participants first performed 2 sessions (20 trials each) of the “photographs” task outside the MR 
scanner, to familiarize themselves with the task. They then performed 4 sessions (30 trials, 
approximately 11 minutes per session) inside the scanner. 
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Behavioral model-fitting  
 
To model participants’ posterior inference on the “photographs” task, as well as any learning from 
feedback, we performed trial-by-trial model-fitting of participants’ responses. We tested several 
classes of models: 
 

Bayesian_nolearning – This model assumed that participants were correctly computing 
the posterior distribution over sectors P(sector | animals seen) using Bayesian inference 
(as in Eq. 1). To obtain the model-derived likelihood of each behavioral response (and to 
capture stochasticity in participants’ behavior), we used a softmax on the posterior 
probabilities of the two options in each question prompt.  
 

𝑃 response = option 1 =
!

!!exp[!∗ ! sector = option 1  animals seen !! sector = option 2  animals seen))]
      (Eq. 2) 

 
where β is an inverse temperature parameter (β = 0 implies equal likelihood for both 
options). 
 
additive – In this model, instead of correctly multiplying the animal likelihoods together to 
obtain the posterior distribution over sectors (as in Eq. 1), we assumed that participants 
added the likelihoods together to obtain an “additive posterior” (normalized to sum to 1).  
 

"Additive posterior"  ∝   𝑃 animal 1  sector) + 𝑃 animal 2  sector) +⋯            
(Eq. 3) 

While statistically suboptimal, we might expect this from a simple associative mechanism 
that brings the sectors to mind in proportion to their association strength with the animals 
seen. Again, to determine response probabilities, we applied a softmax operator to the 
additive “posterior” probabilities for the two options in each question prompt. 

most/least voter – These models assumed that participants were only paying attention to 
the most common (and/or least common) animals in each sector, a similar strategy having 
been previously observed in a similar task (Gluck et al, 2002). During the trials, each animal 
appearance "voted" for (or against) the sectors in which it was the most common (or least 
common). To obtain the model-derived likelihood of each behavioral response, we used a 
softmax on the final tally at the end of each sequence. 

We tested several variants of this model, e.g. tallying only the positive votes, and/or 
allowing an animal to “vote” for (or against) a sector if it was one of the two most (or least) 
common animals in that sector. The magnitude of the positive and negative votes were 
either allowed to be two separate free parameters, or constrained to be equal to each other. 
Because the magnitude of the vote already served as a scaling parameter for the input to 
the softmax operator, the inverse temperature of the softmax was kept constant at 1. 

Bayesian_feedbackRL – These models were designed to account for learning from 
feedback during the “Photographs” task (including the incorrectly generated feedback). 
Here we assumed a reinforcement learning process, in which participants adjusted their 
internal estimates of the animal likelihoods after feedback about the two sectors in the 
question. These likelihoods were then used to compute the posterior distribution over 
sectors via Bayes rule.  
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Figure 2 – FeedbackRL model. An illustration of learning from feedback in the 
Bayesian_feedbackRL model, for a single trial (not real data). In this example trial, the 
participant saw a lion and an elephant, and was asked about sector BLUE and sector 
GREEN. The feedback indicated that sector BLUE was more probable. As a result, the 
likelihoods P(BLUE | elephant) and P(BLUE | lion) are adjusted towards 1 with learning rate 
αpos, and the likelihoods P(GREEN | elephant) and P(GREEN | lion) are adjusted towards 0 
with learning rate αneg.  
 

For the sector that feedback indicated to be more probable, likelihoods were adjusted 
upwards for all animals that were seen on that trial. For the sector that was indicated to be 
less probable, likelihoods were adjusted downwards for all animals seen on the trial (see 
Figure 2 for an example). 

𝑃 animal  more probable sector )new = 𝑃( animal | more probable sector )old     
+ 𝛼pos(1 − 𝑃( animal | more probable sector )old)  

𝑃 animal  less probable sector)new = 1 − 𝛼neg 𝑃 animal  less probable sector)old 
(Eq. 4) 

Estimates of the likelihoods were renormalized after each adjustment. The learning rates 
αpos and αneg were either allowed to be two separate free parameters, or they were 
constrained to be equal. 

For the initialization of the likelihoods, we tested two versions of the model: initialization at 
the true animal likelihoods, or initialization according to the participants’ subjective 
estimates of the likelihoods (collected at the end of the experiment, see below). 

Finally, the likelihoods were used to compute the posterior distribution over sectors via 
Bayes rule. Thus, posterior inference in the FeedbackRL model also used Bayes rule – the 
only difference from the “Bayesian_nolearning” model above is that the likelihoods (which 
enter into the posterior inference computation from Eq. 1) were adjusted on each trial 
according to feedback. 
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We tested several additional variants of this model. In one variant, participants only 
adjusted their likelihoods in response to “You are incorrect” feedback (instead of in 
response to all feedback). In another variant of the model, we scaled the learning rates 
separately for each animal according to how much that animal contributed to the final 
posterior distribution: 

𝛼eff, animal X = 𝛼 ∙ 𝑎𝑏𝑠  𝑃 more probable sector  appearances of animal X )
−  𝑃 less probable sector  appearances of animal X )  

(Eq. 5) 

In this variant, animals appearing multiple times in a trial would have higher effective 
learning rates, having contributed more to the final decision. 

In a post-experiment questionnaire, we asked participants to provide their estimates for the 
animal likelihoods in each sector. For each of the models above, we tested versions using (a) the 
actual animal likelihoods, and (b) subjective estimates of the animal likelihoods. For the few 
participants who provided likelihood estimates that did not sum to 1, we normalized the estimates. 
To avoid taking logarithms of 0, we converted estimated likelihoods of 0 to 0.01 (and 
renormalized).  
 
For each of the models, we also tested versions in which the earlier and/or later animals in each 
sequence were given extra weight. To model these primacy/recency effects, we fit a power law 
function for each participant to give more weight to the earlier and/or later animals in each 
sequence (e.g. 1w, 2w, … for animal 1, animal 2, …). The likelihoods were exponentiated by this 
weighting and renormalized. If modeling both recency and primacy, the weightings for each were 
summed. We tested versions in which the recency and primacy free parameters w were either 
allowed to be two free parameters, or they were constrained to be equal. 
 
 
 

Model Free parameters Mean ± SE Range 

Bayesian_nolearning β - softmax inverse temperature 4.04 ± 2.22 [0, ∞] 

additive β - softmax inverse temperature 7.04 ± 3.46 [0, ∞] 

mostleast_voter 
(voting for or against the 
sectors in which an animal was 
the most or least common) 

v_pos - size of positive vote 
v_neg - size of negative vote 

1.69 ± 3.39 
0.754 ± 1.39 

[0, ∞] 
[0, ∞] 

Bayesian_feedbackRL 
(learning from all feedback, no 
scaling of learning rates, and 
αpos  = αneg) 

α - learning rate  
β - softmax inverse temperature 

0.0515 ± 0.161 
4.82 ± 2.52 

[0, 1] 
[0, ∞] 

 
Table 2. Free parameters and parameter fits, for the best-fitting model for each class. The 
best-fitting models for all classes did not model recency or primacy biases, and used each 
participant’s subjective estimates of the animal likelihoods rather than the actual likelihoods. For 
model classes that had additional variants, the best-fitting settings are described in parentheses. 
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Free parameters for each model were fit to each participant’s behavioral data separately, using  
Matlab’s “fmincon” function, with at least ten random initializations for each model and each 
participant. The best-fitting parameters (the maximum likelihood estimates) were used to 
evaluate, for each participant and each model, the (geometric) mean likelihood per trial (i.e., the 
exponentiated log likelihood per trial, without any penalization for number of parameters), the 
Akaike information criterion (AIC), and the Bayesian Information Criterion (BIC), in order to 
compare the models and determine which best accounted for participants’ behavior. 
 
fMRI acquisition and pre-processing 
 
Functional brain images were acquired using a 3T MRI scanner (Siemens, Skyra) and 
preprocessed using FSL (http://fsl.fmrib.ox.ac.uk/fsl/). An echoplanar imaging sequence was 
used to acquire 36 slices (3mm thickness with 1mm gap, repetition time (TR) = 2s, echo time (TE) 
= 27ms, flip angle = 71º). To increase signal in the OFC, slices were angled approximately 30 
degrees from the axial plane towards a coronal orientation (Deichmann et al, 2003). For each 
participant, there were 4 scanning runs in total (approximately 11 minutes each). The functional 
images were spatially filtered using a Gaussian kernel (full width at half maximum of 5mm), and 
temporally filtered using a low-pass cutoff of 0.0077Hz. We performed motion correction using a 
six-parameter rigid body transformation to co-register functional scans, and then registered the 
functional scans to an anatomical scan using a 6-parameter affine transformation.  
 
The motion regressors (and their derivatives) were residualized out from the functional images, as 
were the mean timecourses for cerebrospinal fluid and white matter (segmentation was 
performed using FSL’s “FAST” function), and also the mean timecourse for blood vessels 
(estimated by taking voxels with the top 1% in standard deviation across time). Then, the 
functional images were z-scored over time. All analyses were performed for each participant in 
participant space, and then spatially normalized by warping each participant’s anatomical image 
to MNI space using a 12-parameter affine transformation. 
 
Region of interest – Suborbital sulcus 
 
Our region of interest (ROI) was determined as the intersection of two sets of brain areas. The 
first set of areas, the orbitofrontal cortex, has been postulated to be involved in the representation 
of “state”, due to evidence from studies of human and animal reinforcement learning (Wilson et al, 
2014). The second set of areas, sometimes referred to as the “posterior medial network”, has 
been postulated to be involved in the computation and representation of “schemas” or “context” 
(Ranganath and Ritchey, 2012), as the set of areas with high connectivity with parahippocampal 
cortex (PHC). The intersection of these sets of areas is the suborbital sulcus, a medial subregion 
of the orbitofrontal cortex (Figure 6A). Using Freesurfer (Destrieux et al, 2010), the ROI was 
drawn as the anatomically parcellated cortical region centered on the voxel with maximal resting-
state functional connectivity to PHC (Libby et al, 2012). 
 
Representational similarity analysis 
 
If the suborbital region of interest (ROI) contains a multivariate representation of the posterior 
distribution over latent causes, then patterns of neural activity in this area should be more similar 
for pairs of timepoints at which the posterior distribution was similar, and they should be dissimilar 
for pairs of timepoints at which the posterior distribution was dissimilar. Therefore, to test whether 
multivariate patterns of activity in the ROI might be representing the posterior distribution over 
sectors, we performed a representational similarity analysis (RSA; Kriegeskorte et al, 2008).  
 
We first computed the similarity of the posterior distribution over sectors for every pair of 
timepoints during which we expected the posterior distribution to be updated (i.e. at the times of 
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the animal appearances). This provided us with the similarity matrix for the posterior. We also 
computed the similarity of the neural pattern in the ROI for every pair of timepoints—the similarity 
matrix for the ROI. Then we computed the Spearman rank correlation of these two matrices 
(taking only the upper triangle and excluding the diagonal). We denote this Spearman correlation 
as the similarity match between the posterior and the ROI (Figure 3). We expected the similarity 
match to be positive, i.e. that the neural patterns in the ROI should be more similar for pairs of 
timepoints at which the posterior distribution over sectors was more similar. 
 
We also computed the similarity match for the ROI with other signals, to compare with the 
similarity match between the ROI and the posterior distribution over latent causes. This is 
important because the similarity structure for the ROI could potentially be correlated with the 
similarity structure of the posterior distributions for reasons other than the fact that the posterior 
distribution is represented in this area. For example, the posterior distribution is, on average, 
more similar for pairs of timepoints at which the same animal is presented—if the suborbital ROI 
represents the animal currently presented, we would also find a positive similarity match between 
the ROI and the posterior distribution. We therefore compared the similarity match between the 
ROI and each alternate model, to determine the model that best explained the similarity structure 
of the neural data.  
 

 
Figure 3 – Representational similarity analysis. An illustration of the representational similarity 
analysis (not real data). We first computed the similarity structure for the posterior distribution (or 
any alternative model; see Table 3) by computing the normalized correlation of the posterior at 
every timepoint with every other timepoint. We also computed the neural similarity structure for 
our region of interest (or for each searchlight in the whole-brain analysis), by computing the 
normalized correlation between patterns of activity at every timepoint with every other timepoint. 
To evaluate the representational similarity match between the neural data and the model, we then 
computed the Spearman correlation between the two matrices (using only the upper triangle of 
each matrix, excluding the diagonal). 
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Model Description Similarity measure  
for two timepoints 

posterior 
Vector [4x1] containing the posterior 
probability of each sector  
P(sector | animals seen so far) 

normalized correlation* 

log posterior  

Vector [4x1] containing the natural 
logarithm of the posterior probability 
for each sector  
log[P(sector | animals seen so far)] 

normalized correlation* 

current animal An integer ∈ {1,2,3,4,5} indicating 
which animal is currently on screen 

1 if the same animal 
0 otherwise 

entropy A scalar indicating the entropy of the 
posterior distribution over sectors –abs[entropy(t1) – entropy(t2)] 

maximum a posteriori  
(MAP) 

An integer ∈ 1,2,3,4  indicating 
which sector has the highest 
posterior probability 

1 if the same sector 
0 otherwise 

p(MAP) A scalar indicating the probability of 
the maximum a posteriori sector –abs[p(MAP(t1)) – p(MAP(t2))] 

posterior_MAPonly 

The posterior [4x1], zeroed for all 
sectors except the maximum a 
posteriori sector (i.e. a signal that 
contains both MAP and p(MAP) 
information)  

normalized correlation* 

time A scalar indicating the seconds 
passed since the start of the session –abs[time1 – time2] 

posterior – feedbackRL 

Vector [4x1] indicating the posterior 
distribution over sectors, computed 
using the likelihoods updated on 
each trial using the best-fitting 
feedbackRL model (free parameters 
fitted for each participant) 

normalized correlation* 

MAP – feedbackRL 

An integer ∈ 1,2,3,4  indicating the 
most probable sector according to 
the best-fitting feedbackRL model 
(free parameters fitted to each 
participant) 

1 if the same sector 
0 otherwise 

 
Table 3. Models used in the representational similarity analysis, and the similarity measure 
used to derive the similarity matrix. *The normalized correlation of vectors x and y is 
x � y/(||x|| * ||y||), and is equivalent to the cosine of the angle between the two vectors. It behaves 
differently than the more commonly used Pearson correlation; for example, the posterior 
distributions [0.24 0.25 0.25 0.26] and [0.26 0.25 0.25 0.24] have Pearson correlation of -1 but 
normalized correlation of 0.9994. We used normalized correlation because this measure accords 
better with intuition regarding the similarity of posterior distributions and quantities derived from 
posterior distributions; however, similar results were observed when using Pearson correlations 
instead. 
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The set of alternate models used for this comparison included the log-transformed posterior 
distribution (since many signals in the brain are known to be represented in log space; e.g. Yang 
and Shadlen, 2010; Gibbon, 1977; Longo and Lourenco, 2007), the current stimulus, the 
maximum a posteriori (MAP) sector (most probable sector), the entropy of the posterior 
distribution (a proxy for overall uncertainty), the probability of the maximum a posteriori sector (a 
proxy for confidence, acting approximately as the converse of the entropy), and temporal distance 
between measurements (because fMRI pattern similarity is known to vary as a function of the 
temporal distance between measurements). We also included models of the posterior and MAP 
that were instead derived using the Bayesian_feedbackRL model (given that this was the best 
inference model after Bayesian_nolearning, as determined from behavioral model-fitting, 
described above). See Table 3 for a full list of models tested. 
 
To investigate the specificity of the result to our region of interest, we also performed a whole-
brain “searchlight” analysis, using 25-voxel spherical searchlights. As with the region of interest, 
we computed the similarity of the neural patterns in each searchlight, to obtain the neural 
similarity matrix for the searchlight. We then computed the Spearman correlation of the similarity 
matrix for each searchlight with each of our models. The analysis was repeated for a searchlight 
centered on every voxel in the brain. 
 
For both the ROI and searchlight analyses, the neural pattern for each animal appearance was 
averaged over the two TRs during which the animal appeared on the screen (after correcting for 
the hemodynamic lag with a 4 second shift). Similarity for neural patterns was computed using 
normalized correlation, to accord with the similarity measure used for the posterior-based models 
(similar results are obtained when using Pearson correlation instead). Searchlight results are 
displayed on an inflated brain, using the AFNI SUMA surface mapper 
(http://afni.nimh.nih.gov/afni/suma).  
 
Statistics and confidence intervals 
 
Unless stated otherwise, all statistics were computed using random-effects bootstrap distributions 
on the mean by resampling participants with replacement (Efron & Tibshirani, 1986). All 
confidence intervals in the text are given as standard error of the mean. 
 
To test the reliability of searchlight results across participants, we used the “randomise” function 
in FSL (http://fsl.fmrib.ox.ac. uk/fsl/fslwiki/randomise) to perform permutation tests and generate a 
null distribution of cluster masses for multiple comparisons correction (using FSL’s “threshold-free 
cluster enhancement”, P < 0.05 two tailed).  
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RESULTS 
 

Participants learned the animal likelihoods in the “Tours” 
 

We evaluated participants’ final learning of the likelihood of each animal in each sector using 
performance from the last set of tours on the last day. In those tours, the participants chose the 
more likely animal 73 ± 3% of the time. Note that even if participants had perfect knowledge of the 
animal likelihoods, we would not expect participants to choose the more likely animal 100% of the 
time, due to probability matching, the well-documented behavior in which humans and animals 
match their choice probabilities to the probability of each option being correct, rather than 
choosing the most likely option every time (e.g. Vulkan, 2000; Erev and Barron, 2000). With 
perfect knowledge of the animal likelihoods and a probability matching policy, participants would 
be expected to choose the more likely animal only 69% of the time. 
 

In a post-experiment questionnaire, we asked participants to estimate the animal likelihoods 
P(animal | sector) for every animal and every sector. These estimates were close to the true 
likelihoods, on average (Figure 4A). The mean KL-divergence of the estimated likelihoods from 
the real likelihoods was 0.13 ± 0.015. As discussed below, we used these participant-estimated 
likelihoods in our neural analyses, in lieu of the correct likelihoods. 

 
Performance on “Photographs” task suggested maintenance of posterior distributions 
over sectors 
 

During the fMRI scan sessions, participants correctly chose the more (or less) probable sector 
67 ± 1% of the time, which is significantly above chance (t-test p < 1e-12). Moreover, logistic 
regression on participants’ responses showed that, the larger the difference in posterior 
probability between the correct and incorrect options, the more likely participants were to choose 
the correct answer (Figure 4B). Again, as in the Tours task, we expected stochasticity in 
participants’ behavior due to probability matching. With perfect probability matching and perfect 
inference of the sector posteriors, we would expect participants to choose the correct option 73% 
of the time. 
 

 
Figure 4 – Behavioral performance. A. Participants’ subjective estimates of the animal 
likelihoods P(animal | sector), for each animal and each sector, collected in a post-experiment 
questionnaire. Gray bars indicate the true likelihoods, black intervals indicate the mean estimates 
± SEM. B. Logistic regression on participants’ responses during the fMRI scan sessions suggests 
that participants learned and utilized the full posterior distributions (each line shows logistic 
regression for one participant). The x-axis indicates the difference in posterior probability between 
the first and second options in the question. The y-axis indicates the probability that a participant 
would indicate that the first option has higher posterior probability than the second option. Mean 
regression parameters across participants: slope = 1.8 ± 0.040, intercept = -0.04 ± 0.15. 
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Note that the two sector options in each question were chosen at random, and therefore required 
participants to discriminate between posterior probabilities for any possible pair of sectors. 
Interestingly, participants performed similarly well whether or not questions included the 
maximum a posteriori (MAP; most probable) sector (accuracy 69 ± 2% for questions including the 
MAP, 66 ± 1% for questions not including the MAP; not significantly different). This result further 
indicates that participants were tracking the full posterior distribution, and not just the MAP sector. 
 
 
 

 

Figure 5 – Behavioral model-fitting. Akaike information criterion (AIC), Bayes information 
criterion (BIC), and (geometric) mean likelihood per trial (i.e. the exponentiated mean log 
likelihood per trial, without penalization for number of parameters) for the best-fitting model in 
each class (mean ± SEM across participants) suggest that the Bayesian models explained the 
behavioral data best. Note that better model fits are indicated by low AIC and BIC scores, but 
high mean likelihood. Results are shown for model fits using the participant estimates of the 
likelihoods or using the actual (true) likelihoods. 
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Trial-by-trial behavioral model-fitting suggested that participants were approximately 
Bayesian 
 
The relative performance of the behavioral models is shown in Figure 5, and the mean parameter 
fits are shown in Table 2. For model comparison, we used the best-performing version from each 
class of models (these settings described in Table 2). 
 
The two Bayesian models (with and without feedbackRL) performed best, explaining the data 
about equally well. Overall, the model with feedbackRL was the best model according to AIC, but 
the Bayesian model without learning was the best model according to BIC, which penalizes more 
strongly for extra parameters. 
 
The additive model performed worse than the Bayesian models, indicating that participants were 
accumulating evidence multiplicatively, in accordance with the optimal strategy (Eq. 1). None of 
the heuristic inference models that we tested (the most-least voter class of models) could 
successfully outperform the Bayesian models. Nor did we identify any significant effect of recency 
or primacy (any small improvements in the model likelihoods were not justified by the increased 
number of parameters). We therefore concluded that participants were Bayesian or near-
Bayesian in their inference. 
 
As shown in Figure 5, using the participants’ subjective estimates of the animal likelihoods (from 
the post-experiment questionnaire) provided a better fit for all models, as compared to using the 
real animal likelihoods. This may be surprising for the feedbackRL model, given that the 
participant estimates were elicited at the end of the experiment, but were used in the model to 
initialize estimates of the likelihoods. However, the low learning rates (see Table 2 for average fit 
learning rates; also, 19% of participants had fitted learning rates of 0) suggest that changes in the 
likelihoods throughout the experiment were small relative to the differences between the real and 
estimated likelihoods. The low learning rates also explain why the feedbackRL model fit the data 
similarly well to a Bayesian model that did not allow for changes of the likelihood during the task – 
the models are nested (identical for learning rates of zero) and similar for low learning rates. 
 
Representational similarity analysis suggests that suborbital sulcus contains a 
representation of the (log) posterior distribution over latent causes 
 
Figure 6B shows the representational similarity match of the suborbital sulcus with each of the 
models, relative to the representational similarity match with the best model – the logposterior. 
For all of the alternative models tested, 95% or more of our bootstrap samples showed better 
representational similarity match for the logposterior than for the alternative model.  
 
Because the posterior distribution tends to be more similar for neighboring timepoints compared 
with more distant timepoints, and that might also be the case for neural patterns, we took special 
care to verify that the logposterior model was superior to the alternative (control) time model. This 
was indeed the case. Moreover, we found that the temporal model displayed negative 
representational similarity match with the neural patterns, because BOLD patterns for neighboring 
timepoints tended to be anti-correlated. This result was not dependent on our linear model for 
temporal distances—because we used Spearman’s rank correlation to compute representational 
similarity match, the negative similarity match result would be observed for any other model of 
temporal distance that falls off monotonically (e.g. an exponential model). Therefore, since the 
posterior distribution showed positive similarity match while the temporal model showed negative 
similarity match, we can conclude that any positive correlations between the similarity matrices 
for the posterior distribution and time cannot be responsible for the representational similarity 
result for the posterior distribution. 
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Figure 6 – Representational similarity match for each model in the ROI. A. Region of interest 
– the suborbital cortex, a medial subregion of the orbitofrontal cortex (OFC). See Methods for a 
description of how the region was defined. B. Representational similarity match for each of the 
models tested (Table 3), relative to the best model for the data (the logposterior), ordered by 
mean representational similarity match. The logposterior model showed the highest mean 
representational similarity match. The plots show bootstrap distributions on the within-participant 
differences, for each of the models compared with the logposterior. For all of the alternative 
models tested, 95% or more of our bootstrap samples showed a better match for the logposterior 
than for the alternative model. 
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Searchlight results for the representational similarity analysis are shown in Figure 7. The 
orbitofrontal and ventromedial prefrontal cortex showed significantly greater representational 
similarity match for the logposterior model compared to every other model (p < 0.05 corrected, for 
every comparison), except for the entropy and the posterior models. It also showed greater 
representational similarity match for the logposterior than entropy using a more liberal threshold 
of p < 0.05 uncorrected. 
 

 
 
Figure 7 – Wholebrain searchlight result.  
Brain areas that passed both of the following criteria: 
(1) significantly higher representational similarity 
match with the logposterior model as compared with 
every other model from Table 3 except the posterior, 
the posterior from the feedbackRL model, and the 
entropy, at p < 0.05 with whole-brain correction for 
every comparison; (2) higher representational 
similarity match with the logposterior compared to 
the entropy, at p < 0.05 uncorrected. The map is 
displayed on the orbital/ventral surface of an inflated 
brain. 
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DISCUSSION 

Because the underlying structure of the world is often not directly observable, we must make 
inferences about the underlying situations or “latent causes” that generate our observations. The 
statistically optimal way to do this is to use Bayes rule to infer the posterior distribution over latent 
causes. Based on previous studies implicating the orbitofrontal cortex (OFC) in the representation 
of the current context or situation (related to the ideas of “state” in studies of reinforcement 
learning, and “schemas” in studies of episodic memory), we hypothesized that the OFC might 
represent a posterior probability distribution over latent causes, computed using approximately 
Bayesian inference. To test this, we asked participants to make inferences about the probability 
of possible situations, in an environment where the situation probabilistically generated their 
observations. 

Using representational similarity analysis of fMRI activity during the inference task, we found that 
patterns of activity in the suborbital sulcus within the OFC were indeed best explained as 
representing a posterior distribution over latent causes. Searchlight analyses implicated OFC 
more generally in this representation. Furthermore, participants’ behavioral performance showed 
that they had access to a full posterior distribution over the latent causes for their choices; using 
trial-by-trial model fitting, we showed that participants’ behavior was best explained as using 
Bayesian inference.  

Our study provides evidence that the OFC represents a full posterior distribution over situations, 
as opposed to the best guess of the situation (the maximum a posteriori; MAP) or other summary 
measures of the distribution such as the overall uncertainty. We operationalized uncertainty as 
the entropy of the distribution—the highest entropy occurs when the distribution is completely flat 
(i.e., the participant is maximally uncertain about which latent cause generated the observations), 
and the lowest entropy occurs when the distribution is fully loaded on one latent cause (i.e., the 
participant is absolutely certain about which latent cause generated the observations). Our 
similarity analyses showed the entropy to have widespread positive similarity match in many 
areas of cortex, which we might expect because entropy should be correlated with the difficulty of 
the task, and so entropy might therefore be correlated with greater overall activity in many regions 
of the brain. Nonetheless, in greater than 95% of our bootstrap samples, activity in the OFC was 
better explained by the posterior distribution than by the entropy. Furthermore, searchlight 
analyses showed the specificity of this result. 

Our results, using multivariate analysis, build on previous fMRI studies that have used univariate 
analyses in OFC to investigate a range of summary statistical quantities that are related to the 
posterior distribution, but which do not capture the full distribution. These studies have shown that 
univariate activation of the ventromedial PFC (which includes or is similar to our ROI) is 
correlated with a variety of summary statistics, e.g. expected reward (Ting et al, 2015), reward 
uncertainty (Tobler et al, 2007; Critchley et al, 2001), variance of the prior distribution in a sensory 
task (Vilares et al, 2012), and marginal likelihood of the current stimulus (d’Acremont et al 2013). 
Our experiment employed several key features — (a) multivariate neural analysis (b) four different 
latent causes, and (c) dissociation of latent cause from both reward and motor plan — that 
allowed us to identify orbitofrontal representation of a full posterior distribution over latent causes 
that was separate from value, and which explained neural activity in the area better than any 
single summary statistic that we tried. Our result may therefore explain why evidence for different 
summary statistics was found in different studies—these are all components of the full posterior 
distribution, or correlates of it. 

Our study also builds on previous work in the fields of reinforcement learning and episodic 
memory that has implicated the OFC in representations of the current situation or context. In 
reinforcement learning, a belief distribution over states is necessary for optimal decision-making 
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when the state of the world is not directly observable (partially observable Markov decision 
processes; Kaelbling et al, 1998). The OFC has long been implicated in reinforcement learning 
and decision-making in a wide range of settings; a recent review provides a unifying explanation 
for these results by postulating that the OFC represents inferred states in partially observable 
situations (Wilson et al, 2014). In theories of episodic memory, it is believed that we organize our 
memories according to an inferred “schema” that specifies the situation and stores previously 
learned relationships that a new memory can be incorporated into (Tse et al, 2007; Hupbach et 
al, 2008). These schemas seem to be represented or processed in the ventromedial prefrontal 
cortex (vmPFC, an area of the brain that is similar to our ROI; for reviews, see Schlichting and 
Preston, 2015; van Kesteren et al, 2012; Ranganath and Ritchey, 2012). For example, Tse et al 
(2011) showed evidence that activation of rat mPFC is highest immediately after memory 
encoding that should involve incorporating new information into existing schemas. Ezzyat and 
Davachi (2011) showed that greater activation of ventromedial PFC in humans during memory 
encoding is correlated with how strongly those memories are associated with other memories in 
the same “event”, consistent with the idea that vmPFC is involved in schemas that are bound to 
memories. Our results confirm the involvement of OFC in representations of the current situation, 
and additionally show that this representation in OFC takes the form of a distribution over 
possible situations. 

Finally, our work also builds on previous studies investigating neural circuits involved in the 
“weather prediction” task, very similar to ours, in which one of two “weather” outcomes is 
probabilistically predicted by sequences of cards. Knowlton et al (1996) implicated the striatum in 
the learning of these probabilistic associations. In our task, participants learned the animal 
likelihoods outside the MR scanner, and thus we could not assess the brain areas involved in the 
learning phase. However, our results are compatible with Knowlton et al’s insofar as the OFC 
may use associations learned by the striatum (in our experiment, the animal likelihoods) to make 
inferences when presented with new observations (in our experiment, the “photographs” task). 
More recently, Yang and Shadlen (2007) used the weather-prediction task to show representation 
of a decision variable in parietal cortex that took the form of the log likelihood ratio between two 
options. In our experiment, we decorrelated the posterior probability from both decision variables 
and stimulus-reward associations, and we also investigated representations of the posterior 
probability over latent causes before the decision period. We conjecture that the OFC contains 
representations of the current state or situation in terms of a posterior distribution over the 
possible states, a representation that is likely used by downstream areas, e.g. parietal cortex, for 
decision making. 

Previous work on the weather-prediction task also showed that most individuals employed 
heuristic strategies in inferring the weather (Gluck et al, 2002). In our experiment, we explored 
several heuristic models of participants’ inference, but were not able to find any that predicted 
participants’ behavior better than the optimal Bayesian models. There are several reasons why 
our task may have discouraged the use of heuristics. First, the animal likelihoods in our 
experiment were designed to avoid one-to-one mappings between observations and latent 
causes. Second, the task environment had four possible latent causes (instead of two), and the 
task itself required rank-ordering all four latent causes rather than just estimating the maximum a 
posteriori, thus increasing complexity and leading to the inadequacy of simple heuristics. Finally, 
we provided participants with a large amount of training on the probabilistic model of the world, so 
that heuristics may have been less necessary. 

The posterior distribution we found in the OFC was best modeled as being represented in log 
space. Representation in log space may be advantageous because addition can then replace the 
multiplicative operation required to accumulate evidence in non-log space (e.g. across animal 
presentations, in our experiment); the ability of neurons to add is well-characterized, while it is 
less clear to what extent neurons can multiply (Yuste and Tank, 1996; Peña and Konishi, 2001; 
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Gabbiani et al, 2002). Indeed, neural representation in log space is common in many domains, 
e.g. decision variables (Yang and Shadlen, 2010), time (Gibbon, 1977) and numbers (Longo and 
Lourenco, 2007). 

To summarize, we designed a task in which participants’ observations were probabilistically 
generated by unobserved “situations” or “latent causes”, and found evidence that OFC represents 
a probability distribution over possible latent causes. A representation of the log posterior 
distribution explained OFC activity better than alternatives such as the best guess of the current 
situation, or overall uncertainty in the current situation. This finding was further supported by 
behavioral evidence that participants had access to the full probability distribution for decision-
making, and used Bayesian inference to compute the probability distribution. Our results may 
explain why previous studies of OFC have found evidence for representation of various summary 
statistical quantities in OFC (these are in fact components of the full posterior probability 
distribution). Our results may also unify findings from disparate literatures on reinforcement 
learning and episodic memory, which separately implicate the OFC in representations of the 
current situation. 
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