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Abstract
Background

Resource competition, and primarily competition for ribosomes, can lead to unexpected behavior
of genetic circuits and has recently gained renewed attention with both experimental and
theoretical studies. Current models studying the effects of resource competition assume a
constant production of ribosomes and these models describe the experimental results well.
However, ribosomes are also autocatalytic since they are partially made of protein and
autocatalysis has been shown to have detrimental effects on a system’s stability and robustness.
Additionally, there are known feedback regulations on ribosome synthesis such as inhibition of
rRNA synthesis via ppGpp.

Results

Here, we develop two-state models of ribosome and protein synthesis incorporating autocatalysis
and feedback to investigate conditions under which these regulatory actions have a significant
effect in situations of increased ribosome demand. Our modeling results indicate that for
sufficiently low demand, defined by the mMRNA level of synthetic genes, autocatalysis has little
or no effect. However, beyond a certain demand level, the system goes through a transcritical
bifurcation at which the only non-negative steady state is at zero ribosome concentration. The
presence of negative feedback, in turn, can shift this point to higher demand values, thus
restoring the qualitative behavior observed in a model with a constant ribosome production at
low demand. However, autocatalysis affects the dynamics of the system and can lead to an
overshoot in the temporal response of the synthetic genes to changes in induction level.

Conclusion

Our results show that ribosome autocatalysis has a significant effect on the system robustness to
increases in ribosome demand, however the existing negative feedback on ribosome production
compensates for the effects of the necessary autocatalytic loop and restores the behavior seen in
the system with constant ribosome production. These findings explain why previous models with
constant ribosome production reproduce the steady state behavior well, however incorporating
autocatalysis and feedback is needed to capture the transient behavior.
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Background

Ribosomes as a limited resource have gained renewed attention lately with numerous studies on
resource limitations in synthetic biology (1, 2, 3, 4). Ribosomes play a key role in gene
expression for both synthetic plasmid and host genes. In (5, 6, 7), the authors review the
importance of host cell-dependent factors in synthetic biology design, including the effects of
limited cellular resources in the expression of synthetic and host genes. The expression of a
constitutive gene or an endogenous gene may unexpectedly decrease when the expression of
another gene is increased due to sequestration of common resources such as RNA polymerases
and ribosomes, as shown experimentally between two plasmid genes in (1). In (3), Ceroni et al.
uses a chromosomal insertion of green fluorescent protein (GFP) to monitor gene expression
capacity to show that ribosome demand from synthetic constructs also affects chromosomal gene
expression, at least in the short term. While RNA polymerase is also a limited resource (8), it has
been shown that ribosomes present the main bottleneck both in protein synthesis and in cell
growth (1, 9, 4).

Resource competition has also been studied using computational models. Qian et al. showed
mathematically that resource competition can lead to hidden interactions that explain previous
experimental results (2). When two seemingly unrelated genes compete for the same resources,
the expression of one can lead to a decrease of expression in the other, leading to an effect
equivalent to repression. Similar effects are also seen in cell-free systems (10). In (17), Algar et
al used Ribosome Flow Model of translational elongation to show the importance of ribosome
sequestration in gene expression and provide insight on synthetic construct design to mitigate
such effects (17). In (16) the authors present a framework to calculate a network’s sensitivity to
competition using response coefficients from metabolic control analysis (18). Most models of
resource competition assume that ribosomes are present at a constant total level in the cell (1, 2,
10 and 17). These models predict the effects of resource competition behavior quite well;
however, we know that ribosomes are produced in an autocatalytic manner, which does not
guarantee a constant total ribosome concentration. In E. coli, ribosomes are composed of 55
protein subunits which make up 30% of ribosomes by weight (20). Ribosomes must therefore be
translated by ribosomes themselves, resulting in an autocatalytic loop, and total ribosome
concentration may change when the amount of mMRNA to be translated changes. In addition, the
autocatalysis adds to the resource competition problem since ribosomes also compete with
cellular or synthetic plasmid genes for the same pool of resources. This could lead to a drop in
the total ribosome concentration as synthetic gene expression is increased.

Autocatalysis has been shown to have detrimental effects in the robustness of a system to
perturbations both in the steady state and temporal responses (25). Computational models of
protein translation incorporating ribosome autocatalysis have been analyzed to determine the
optimal ribosome concentration and allocation for maximal growth (18), while (14) looks at a
phenomenological model to study how the cell allocates resources in different growth conditions.
Other studies include a more detailed model of ribosome flow, incorporating stepwise translation
of individual codons (17). These models provide some insights on the effects of autocatalysis on
cellular growth, but not on the effect of autocatalysis on ribosome competition in particular. In
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this paper, we compare three models of ribosome production to explore the effects of the
ribosome autocatalysis on the steady state behavior of competing genes as well as on the
system’s stability and its transient response to perturbations.

It is known that ribosome production is tightly regulated in the cell based on nutrient level and
translational activity (23). When ribosome is bound to mRNA and encounters an uncharged
tRNA, it activates an enzyme called RelA (bound to ribosomes), which then produces an
intracellular signaling molecule, guanosine pentaphosphate (ppGpp). ppGpp then binds to a
protein called DksA and this complex inhibits rRNA transcription (21, 24). When amino acid
level is low, the levels of uncharged tRNA increases, however when translation activity is low,
the uncharged tRNA is less likely to encounter RelA bound to ribosomes. When translation
demand and ribosome levels are high, there is higher level of both RelA bound to ribosomes and
of DksA, resulting in inhibition of rRNA. Thus, there is a negative feedback on the ribosome
production. This feedback senses a combination of translational demand, ribosome level, and
amino acid level in the cell. Other models such as (12, 15) incorporates the feedforward
regulation from amino acid pool to ribosome synthesis while in this paper we focus on the
feedback loop from ribosome concentration. In (11, 33), the authors presented a model of protein
translation and cell growth with ppGpp feedback but this model does not incorporate ribosome
autocatalysis, modeling ribosomes only as composed of ribosomal rRNA (rRNA). In (31), the
authors discuss the effects of ppGpp feedback on growth rate and its consequence on gene
expression. The growth rate of cells also initially decreases upon expressing a synthetic gene, but
recovers after a few generations (11). The recovery is hypothesized to be due to the negative
feedback discussed above. Here, we explore the interplay between autocatalysis and the ppGpp-
dependent negative feedback on the expression of ribosome in the presence of synthetic mMRNA.

Theoretical analysis and simulations of our mathematical models show that autocatalysis leads to
a steeper decrease in free ribosome concentration in the presence of increasing synthetic demand
of ribosomes. However, negative feedback restores the steepness of the drop in ribosome
concentration to a level similar to the model incorporating constant ribosome production. The
negative feedback thus compensates for the deleterious effects of ribosome autocatalysis. This
suggests that previously reported resource competition models using a constant ribosome pool
would predict similar change in free ribosome level as the model with autocatalysis and feedback
within a range of synthetic mMRNA level. The autocatalytic system undergoes a transcritical
bifurcation where there is no positive steady state. A strong enough negative feedback can shift
the bifurcation point beyond physiologically relevant range of synthetic mRNA level (demand)
and thus maintain a stable ribosome steady state for high levels of synthetic mRNA.
Autocatalysis also has a significant effect on the dynamics of the system and results in
overshoots in the time response of the synthetic gene, but not in the free ribosome, as seen in
experiments (1).

Results
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To understand the effects of autocatalysis and negative feedback, in this paper we compare three
different one-state models of ribosome production, shown in Figure 1. The first model assumes a
constant production of ribosome. The second model incorporates autocatalytic production of
ribosomes, and the third adds a negative feedback regulation on the ribosome production. The
models described in the following sections were obtained by reducing a mechanistic model
including mass action binding kinetics between ribosomes and mRNA and protein translation by
using quasi-steady state approximation on bound ribosome-mRNA complexes (see
Supplementary Information Section A for details).

A. Model with constant ribosome production

This model follows previous models with constant supply of ribosomes. Ribosomes (R) are
produced at a constant rate Vmax, €nsuring a constant steady state level of total ribosomes.
Ribosomes are sequestered by the translation process of various mRNAs, including total
ribosomal mRNA (mrr), which in the other two models will produce ribosomes, total MRNA of
synthetic genes (mpt), and other mRNAs in the cell (mcT), which we assume to be constant for
simplicity. Increasing mpt can be obtained experimentally by increasing either induction level of
the synthetic gene or its copy number. To simplify the analytical derivations, we assume that the
effective dissociation constant of ribosome binding to all MRNA types are the same. The main
conclusions do not depend on this simplifying assumption as will be illustrated through
simulation for the case where these values are different. The reduced order model (see SI Section
A for model reduction) for ribosome concentration can thus be written as:

Mgr + Mg +M
Ky, +R

¥, R=V_ —06R( Ty - SR (0.1)

where 9 is the dilution rate and Kp is the effective dissociation constant, which encompasses the
binding of ribosomes to mMRNA and dissociation both from spontaneous unbinding and
translation completion.

The total ribosome concentration is the sum of the free ribosomes and the ribosomes bound to
the different mMRNASs in the cell (SI Section A):

Mgr +Mer +M

Rior = R+R(—

K, +R ) 02)

In 2, this is given by R, = VTT“ (see Sl Section B).

The steady state concentration of free ribosomes can be obtained by setting R =0 to determine
how R depends on the demand mpr.

2
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Free ribosome level R drops as mpr is increased. The change in free ribosome concentration at a
given mpt concentration is described by the following nonlinear equation:

R*—R, =_l+ \/QN2 +4RTOTKD +2Qy My +mPT2 _\/QN2 +4RTOTKD

04
m 2 2m 04)

PT PT

where Q, =K, + My + m; — R;o; and Ro is the free ribosome concentration at mpr=0 (see Sl
Section E).

For low enough Rror, Q, is positive and thus the second term on the right hand side is positive.
When Rror is too high, Q,, can be negative yet the second term can still be positive if mpr is

high. This implies that the free ribosome level drops faster at lower demand (when mpr is low)
than at higher demand level. However, even when Q,, is negative, (1.4) is still bounded below by

-1 (see Fig S4), therefore the steepest drop is bounded below by a line with slope -1.

For our simulation, we set Vmax such that the total ribosome R, = ':;X = 7000, which is within

the range of experimental observations (26). Total MRNA concentration in the cell (mct) ranges
from 3000-8000 copies per cell, depending on the growth rate (28). For our analysis, we have
taken the average, which is mct=5500 copies/cell. The ribosomal promoter activity ranges
between 5-35% of the total promoter activity in the cell, depending on growth conditions (27).
This suggests that the total ribosomal mMRNA should be 5-35% of the total mMRNA in the cell. In
our simulations and analysis, mgt is chosen to be 10% of mcr, which lies within the observed
range. Other parameter values and their references are described in Table 1. For these values,
Q, > 0, therefore while R drops nonlinearly with mpr, the steepest drop for this constant

production model for high demand is bounded below by a line with slope -0.5. As Kp increases
(indicating weaker ribosome binding site (RBS) strength), the drop in ribosome becomes less
steep. This is consistent with the finding in (17) that stronger RBS (smaller Kp) significantly
decreases the robustness of ribosome level to increasing demand.

One of the main questions we would like to answer is how much demand can the cell withstand.
In this model with constant ribosome production, there is always a stable steady state with R>0.
1. Fig 2A shows the change in free ribosome level as we increase the demand, modeled as the
MRNA level of the synthetic gene (mpr). The black line in Fig 2A shows the result for the
constant production model using the parameter values described above. As previous studies
suggest that ribosomes instead of RNA polymerase are the bottleneck for protein expression, for
simplicity we assume that the other mRNA levels such as mct and mgr remain constant (1, 4).

B. Model with ribosome autocatalysis

In this model, ribosomes translate ribosomal mMRNAs (mgt) into more ribosomes. We assume
that the ribosome translation rate follows a Michaelis-Menten form:
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where k; is the translation rate constant.
There are two steady state solutions to the above equation, given by:

— ktmRT

R s2 5

=0, R ~M-K, (1.2)

sl

where M = mg; +mg; +m,; . For small mer (where ktmTRT— Mgy — Moy — Ky >m,; ), Re2>0and is
stable while Rs1=0 is an unstable steady state (see Sl Section D for details). When mpt increases
to a high enough level, the system undergoes a transcritical bifurcation where the R=0 steady
state becomes stable and the other steady state at R<0 becomes unstable (see SI Section D). In
practice, depletion of ribosomes in the cell will result in cell death.

We determine from (2.2) the change in free ribosome concentration and find that in this case it
decreases linearly with met, with slope given by (see Sl Section E):

Ro—Ry =1 (1.3)
mPT

While the slope in this case doesn’t change with parameters, the autocatalytic system undergoes
a bifurcation and the bifurcation point is parameter-dependent. In particular, beyond a certain
demand, there is no positive non-zero steady state, there is only a steady state at R=0. We can
analytically solve for the bifurcation point and find that there is a positive steady state R>0
(which is stable, see SI Section D for details) when:

Mer .9 (1.4)
(mRT + mCT + mPT) + KD kt
Total MRNA

While Eq (2.3) shows that the slope does not change, Eq (2.4) shows that the bifurcation point is
parameter dependent and moves to higher demand mpr as the dissociation constant Kp is
increased (see Fig 3). To estimate the demand or mper from a high copy number plasmid, we
assume that 1 nm = 1 molecule of mRNA and note that a high copy number plasmid such as
pUC can have 500-700 copy number (29). Assuming an average of 2-3 mRNA transcripts per
gene copy for highly expressed genes (30), the external demand given by a high copy plasmid
would be around 1000-2100 mRNA copies. Using parameter values taken from literature (see
Table 1), we see in Fig 3 that the bifurcation point for a range of Kp is within the range of gene
expression from a high copy plasmid, indicating that without feedback the autocatalytic system is
not robust enough to prevent the free ribosome concentration to collapse to zero. In Fig 2, we see
that the autocatalysis introduces a significant drop in the free ribosome level as the demand is
increased. The drop is much steeper in the autocatalytic case than in the constant ribosome
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production case, indicating that autocatalysis reduces the robustness of free ribosome
concentration to external demand.

The bifurcation point solution in (2.4) shows that the minimum ribosomal to total mMRNA ratio
required for a stable R>0 steady state increases with the dilution rate 6. This suggests that as
growth rate increases (which would increase the dilution rate), the cell must produce more
ribosomal mRNA to maintain a positive free ribosome concentration. This is consistent with the
observation in (27) according to which the ratio of ribosomal promoter activity (relative to other
promoters) increases with growth rate. This result implies that the correlation between ribosome
production relative to other cellular proteins and the growth rate is not simply that cells with
more ribosomes can grow faster, but in fact, as the growth rate increases, more mgr is required to
maintain a stable positive steady state.

In general, the RBS strength for different genes will be different. We have also analyzed a model
using different effective dissociation constant Kp; for ribosomal and cellular mMRNA and Kp: for
the synthetic mRNA. In this case, the equations for the steepness of ribosome decline or the
bifurcation point are not as simple, however numerical solutions show that the bifurcation point
depends on the ratio of ribosomal mRNA to total mMRNA (see Fig S7), as is the case for
Kp1=Kp2=Kp as shown in Eq (2.4). Additionally, the difference between the two Kps determine
the steepness of ribosome decline as shown in Fig S4. It is also interesting to note that for
Kp1=Kbpy, a transcritical bifurcation occurs, while when the two dissociation constants are
distinct (K, # K, ), the system passes through a transcritical bifurcation followed by a

pitchfork bifurcation (Fig 4). In each case, there are additional steady state solutions for R<0, but
the negative steady states are biologically irrelevant. Fig S6 shows that the main results still hold
in the models where K, # K, : the model with constant ribosome production has no bifurcation

and R drops slowly as mpr is increased; in the autocatalytic model, R drops much faster and R
eventually passes through a bifurcation. Fig S6 also shows that the bifurcation in this model with
Koy, # Ky, also still occurs within the expression level of a high copy number plasmid. Fig S6

shows that the bifurcation point depends on the ratio between mrr and total MRNA, just like in
the Kp1=Kp2=Kp case.

C. Model with ribosome autocatalysis and negative feedback

Regulation via ppGpp depends on the concentrations of free ribosome and the proteins RelA and
DksA. Since RelA and DksA are translated by ribosomes, this feedback ultimately depends on
the free ribosome concentration. In the third model, thus we incorporate negative feedback
regulation on ribosome production, where ribosome production is inhibited by free ribosome
concentration, modeled below using the Michaelis-Menten enzyme inhibition form:

s - Ro Vk,Rm, _6R(mRT+mCT+m
-

(Kp +R)(K, +R) Ky +R

PT)_ SR (2.1)
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where K| is the inhibition constant and V is a normalizing constant to maintain the same
R(mp7=0) steady state as Xa. Other parameter values and the references are given in Table 1.

Solving for the steady state concentration of R we find three possible solutions. The third
solution is negative, while the non-negative solutions are given by (see SI Section E):

(K, +KD+M)+\/(K| +KD+M)2+4(W‘F;“RT—(M TKK,)

(2.2)

Rsl = O’ Rsz = 2
For low mer, the R=0 equilibrium point is unstable while the other two equilibria are stable,
however physiologically the R<O steady state is irrelevant (see Fig S3). As mpr is increased, the
system passes through a transcritical bifurcation where the R=0 equilibrium point becomes stable
and we have two R<O0 equilibria, one of which is stable and the other unstable.

The change in free ribosome concentration is given by (see Sl Section E):

Rsz —
mPT 2 2mPT
in which 2.3)

Q =K, +Ky,+M,Q. =K, + Ky + M + m;

Vk.m Vk m
R, L \/Q|2+4(t5RT—(M +K)K,) —\/QC2+4(‘5RT—(mRT +me + Ko )K,)
4+

When negative feedback is introduced, the drop in ribosome concentration can reach similar
levels as in the non-autocatalytic model with constant ribosome production, depending on the
feedback strength. When the feedback is strong enough (K is low), the autocatalytic system with
feedback can maintain steady state ribosome concentrations above the constant production
system for any mer level, for example when K;=1000-2000 nm as shown in Fig 5. In this case,
the second term on the right hand side of equation (3.3) is always positive, therefore the drop in
ribosome concentration is again bounded below by a line with slope of -0.5. However, when

2m,. K, >m,.>+2m,. (K, + Mg, +m.;) , the second term on the right hand side of Eq. (3.3) is
no longer positive and ribosome concentration can drop below the lower bound of the constant
production case. The free ribosome level drops faster with increasing demand when the feedback

is weak (K is high), as shown in Fig 5. The feedback must therefore be strong enough to
maintain robustness of the steady state ribosome concentration to changes in demand.

It is important to note that the negative feedback does not remove the bifurcation, but simply
shifts the bifurcation point to a higher demand level. When there is negative feedback, a positive
non-zero steady state exists when (SI Section D):

Mer S K, 0o
(Mg +Myr +m; )+ K, VK

Total MRNA

(2.4)
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Note that since we set V so that the total ribosome level at zero demand is the same as in the
other two models Zn and Xa (R1o=7000), V is large. In both cases we see from equation (3.4) that
it is the ratio between ribosomal mMRNA (mrr) over the total mMRNA (plus the effective
dissociation constant) that determines whether there is a positive steady state. Taking K, # K,

shifts the bifurcation just as we see in the system with no feedback, as shown in Fig S5, however
the main results still hold (see Fig S6). When Kp2 < Kbpy, this indicates that the RBS for the
induced gene is stronger, and R drops faster and the system goes through bifurcation to R=0 at
lower demand, which is consistent with the results in (1).

D. Temporal Dynamics

Our previous analytical and simulation results only pertain to the steady state behavior of
ribosome concentration, however the dynamics of the system are equally important. In (1), the
authors designed a plasmid construct consisting of an inducible fluorescent protein and a
constitutive reporter protein. The authors note overshoots in the time responses of the induced
gene at high induction. To simulate the temporal response of the induced gene, we add a second
species to our models: a protein P, which is translated at maximal rate ki by R from synthetic
MRNA, mpt. P is also diluted with rate 6. To capture induction of P, we increase the value of
mpt. Note that the differential equation for P is the same for all three systems Xn, Za, and Zr.

F" — kthPT R

— 5P 3.1
Ky +R 3.1

It is important to note the following observations from (1): 1) the overshoot is only seen in the
induced gene (P), while both ribosomal and other endogenous genes display a smooth response
with no transients, and 2) the overshoot does not occur at lower demand but emerges as the
demand/induction level is increased.

Simulations of Xa show that there can indeed be an overshoot in the expression of the induced
gene P when mer is high enough; there is no overshoot in the free ribosome level (Fig 6B),
which is consistent with the experimental observations in (1). The difference in transient
responses between P and R can be explained using control theory and is due to the distinct
transfer functions obtained by taking P or R as the system output, as detailed in SI Section H. As
mer is increased even higher, there is a spike in P before both P and R drops to zero. This
overshoot only occurs in the autocatalytic system, while the system with no autocatalysis
displays no overshoot (Fig 6A), indicating that incorporating autocatalysis in the model is
important to capture the dynamics of the system’s response.

At the experimentally relevant range of demand (achievable by expressing synthetic genes on a
high copy number plasmid), the steady state response of the autocatalytic system with strong
feedback can be quite similar to the case with constant ribosome, which is consistent with the
fact that previously published models using constant ribosome pool predicts the resource
competition behavior quite well. However, the two systems can display very different behavior
in the transient response. The autocatalytic system with feedback still displays overshoot in P
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when the demand is high enough as shown in the time response plots in Fig 6C. This overshoot
occurs only in the autocatalytic system with and without feedback, but no overshoot occurs in the
non-autocatalytic system, no matter how high the demand is (Fig 6A). The simulations shown in
Fig 6 are from the nonlinear model, but we can explain the emergence of the overshoots by
analyzing the linearized systems using control theoretic tools (see SI Section H). Additionally, to
validate the results from the reduced model, we simulate the time responses for the non-reduced
models, which display the same results (see Figs S12, S13, and S14 in Sl Section I).

Discussion

In this paper, we explored the effects of autocatalysis and feedback in ribosome production in
terms of resource competition and system robustness in both steady state and transient responses.
We showed that autocatalysis in ribosome production results in a bifurcation where beyond a
certain level of demand, the only positive steady state is at R=0. In this condition, the cell is
depleted of ribosomes, thus no protein translation can occur, resulting in cell death. Autocatalysis
thus greatly affects the robustness of the system at steady state. However, the detrimental effects
of autocatalysis can be mitigated by negative feedback. The feedback regulation does not remove
the bifurcation, however, but simply shifts it to a higher demand level. A strong enough negative
feedback can shift the bifurcation point to a demand level that is physiologically unachievable,
therefore guaranteeing robustness for physiologically relevant values of mMRNA levels. The
negative feedback also leads to an increase in total ribosome concentration as we increase the
demand, which is consistent with the hypothesis presented in (11), where the authors measure the
cost of unneeded proteins in the cell. In (11), Shachrai et al found that this cost is reduced after
several generations of exponential growth and hypothesize that it is due to the correction in
ribosome levels to compensate for increased translation demand. From an evolutionary point of
view, autocatalysis in ribosome production may be unavoidable as protein subunits may be
required for better functionality and stability of the ribosome complex. Therefore, the negative
feedback may have evolved to compensate for the detrimental effects of this necessary
autocatalytic mechanism.

Some simplifying assumptions were made in our models to facilitate analysis. We have assumed
that production of ribosomes follow a first order Hill function, however we show in SI Section C
that the results also hold for higher order Hill functions. As discussed above, we also simplified
the model by assuming the same ribosome dissociation constant (Kp) for all mMRNAs, however in
Sl Section F we show that the general results hold for distinct RBS strengths (different Kps) for
different mRNA types.

We have shown a relationship between the ratio of ribosomal mMRNA over total mMRNA to the
bifurcation point, indicating that higher ribosome production leads to higher robustness. We can
also explain the correlation between the ratio of ribosome production over other cellular proteins
and the growth rate where higher growth rate requires higher ribosome production to maintain
robustness. Even though our model does not include the effects of ribosome concentration on
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growth rate (and vice versa), it shows that higher ribosome concentration is necessary to achieve
stability at higher growth rates.

Conclusion

While negative feedback can recover the steady state responses of the autocatalytic system to the
level seen in the system with constant ribosome production, autocatalysis still has a notable
effect on the temporal dynamics. In particular, the overshoots seen in the experimental results
presented in (1) can only be explained by the autocatalytic models, with or without feedback.
Depending on the synthetic biology application, such an overshoot may be important for the
circuit functionality and therefore autocatalysis should be included in the models.

Methods

Simulations were performed using MATLAB and Simulink. Plots were produced using
MATLAB.
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Table 1. Parameter values

Parameter | Value Description
(references)

k 17.61 hrt Translation rate of ribosomal and cellular genes. Set such that
R1o1=7000 nm at mp7=0

kip 300 hrt (2) Translation rate of synthetic gene (i.e. GFP)

5 1hrt(2) Dilution rate

MRT 550 nm (27) Total MRNA of ribosomes (10% of cellular mMRNA)

MpT 5-3000 nm Total MRNA of synthetic gene (demand)

mcr 5500 nm (28) Total non-ribosomal cellular mMRNA

Kb 1000 nm (1) Effective dissociation constant of ribosome and mRNA
complexes due to both unbinding and translation completion

Ki 1000-3000 nm Effective inhibition constant

Rror 7000 nm (26) Total Ribosome

Vimax 7000 nm/hr V. =R

\Y Varies (nm) Normalizing constant for ribosome production, varied to
match total ribosome in cell Rror=7000 at mpr=0.
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Figure Legends

Figure 1. Three models of ribosome production. A) Model with constant ribosome (R)
production. B) Autocatalytic model where ribosomes translate more ribosomes. C) Autocatalytic
model with negative feedback where free ribosomes also inhibit the production of more
ribosomes. Here, mpt is the mMRNA of the inducible synthetic gene, mgr is the ribosomal mRNA ,
and mcr is the pool of all other mRNAs in the cell.

Figure 2. The change in free and total ribosome concentration as the demand (met) is
increased for the three different models in Fig 1. A) The change in free ribosome level (R) as
the demand (me7) is increased. The autocatalytic system without feedback shows a steeper drop
in the free ribosome level and eventually goes through a bifurcation and the steady state becomes
R=0. B) The change in total ribosome level (Rror) as mer is increased. The total ribosome level
at mpr=0 for all models are set to Rror=7000 nm, mgr=550 nm, mcr=5500 nm, k=17.61 hr?,
Kp=1000 nm, 8=1 hr. For the constant production system Vmax=7000. For the autocatalytic with
feedback model, K;=3000 nm, V=5621.8 nm. Note that Q, >0 with these values.

Figure 3. The change in ribosome concentration as mper is increased for different values of
Kp in the autocatalytic system with no feedback Xa. At lower Kp (stronger RBS), the
bifurcation point occurs at lower demand mpt. The slope for all Kp values remains the same.

Figure 4. Bifurcation diagram for autocatalytic model when Kp1#£Kp2. Here, the synthetic
gene has stronger RBS (Kp1=2000 nm, Kp2= 1000 nm). Parameter values other than mpt are as
given in Fig 2. At low mpr, there are two stable steady states, one at R>0 and one at R<0 (which
is physiologically irrelevant), and an unstable steady state at R=0. As mpr is increased, this
system passes through a transcritical bifurcation in which the R=0 equilibrium point becomes
stable. At this point we have two equilibrium points at R>0, one of which is stable. As mpr is
further increased, there is a pitchfork bifurcation and the three steady states collapse into one
stable steady state at R=0.

Figure 5. The change in free ribosome level with increasing demand for various inhibition
constant (K;). Higher K| indicates weaker feedback and results in a less robust response:
ribosome level drops faster when K; is high. mgr=550 nm, mcr=5500 nm, k=17.61 hr, Kp=1000
nm, 6=1 hrl. For K;=1000 nm, V=3594.58 nm. For K;=2000 nm, V=4599.66. For K;=5000 nm,
V=7563.884 nm.

Figure 6. Temporal responses of the total ribosome level (Rror, left), free ribosome level (R,
middle), and expression of induced gene (P from Eq (2.5), right) when mpr is applied at
time=20 hours. A) Temporal responses of the system with constant ribosome production. B)
Temporal responses of the autocatalytic system without feedback. C) Temporal responses of the
autocatalytic system with negative feedback. As we increase the amount of demand applied, we
see an overshoot in the expression of the synthetic protein and the total ribosome level, but no
transient in the free ribosome levels. The overshoot in the feedback system occurs at a higher
demand than without feedback, where the response drops to a steady state of R=0 and P=0.
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Ki=3000 nm, Vimax=7000 nm, mrr=550 nm, mct=5500 nm, k=17.61 hr!, k=300 hr?, Kp=1000
nm, 6=1 hrl. For the system with feedback, V=5621.8 nm.
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