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Abstract 
 
Forward Wright-Fisher simulations are powerful in their ability to model complex demography 
and selection scenarios, but suffer from slow execution on the CPU, thus limiting their 
usefulness. The single-locus Wright-Fisher forward algorithm is, however, exceedingly 
parallelizable, with many steps which are so-called embarrassingly parallel, consisting of a vast 
number of individual computations that are all independent of each other and thus capable of 
being performed concurrently. The rise of modern Graphics Processing Units (GPUs) and 
programming languages designed to leverage the inherent parallel nature of these processors 
have allowed researchers to dramatically speed up many programs that have such high 
arithmetic intensity and intrinsic concurrency. The presented GPU Optimized Wright-Fisher 
simulation, or GO Fish for short, can be used to simulate arbitrary selection and demographic 
scenarios while running over 250-fold faster than its serial counterpart on the CPU. Even 
modest GPU hardware can achieve an impressive speedup of well over two orders of 
magnitude. With simulations so accelerated, one can not only do quick parametric bootstrapping 
of previously estimated parameters, but also use simulated results to calculate the likelihoods 
and summary statistics of demographic and selection models against real polymorphism data - 
all without restricting the demographic and selection scenarios that can be modeled or requiring 
approximations to the single-locus forward algorithm for efficiency. Further, as many of the 
parallel programming techniques used in this simulation can be applied to other computationally 
intensive algorithms important in population genetics, GO Fish serves as an exciting template 
for future research into accelerating computation in evolution. GO Fish is part of the Parallel 
PopGen Package available at: http://dl42.github.io/ParallelPopGen/ 
 
Introduction 
 
 The Graphics Processing Unit (GPU) is commonplace in today’s consumer and 
workstation computers and provides the main computational throughput of the modern 
supercomputer. A GPU differs from a computer’s Central Processor Unit (CPU) in a number of 
key respects, but the most important differentiating factor is the number and type of 
computational units. While a CPU for a typical consumer laptop or desktop will contain 
anywhere from 2-4 very fast, complex cores, GPU cores are in contrast relatively slow and 
simple. However, there are typically hundreds to thousands of these slow and simple cores in a 
single GPU. Thus CPUs are low latency processors that excel at the serial execution of 
complex, branching algorithms. Conversely, the GPU architecture is designed to provide high 
computational bandwidth, capable of executing many arithmetic operations in parallel.   
 The historical driver for the development of GPUs was increasingly realistic 
computer graphics for computer games. However, researchers quickly latched on to their 
usefulness as tools for scientific computation – particularly for problems that were simply too 
time consuming on the CPU due to sheer number of operations that had to be computed, but 
where many of those operations could in principle be computed simultaneously. Eventually 
programming languages were developed to exploit GPUs as massive parallel processors and, 
overtime, the GPU hardware has likewise evolved to be more capable for both graphics and 
computational applications.  
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  Population genetics analysis of single nucleotide polymorphisms (SNPs) is 
exceptionally amenable to acceleration on the GPU. Beyond the study of evolution itself, such 
analysis is a critical component of research in medical and conservation genetics, providing 
insight into the selective and mutational forces shaping the genome as well as the demographic 
history of a population. One of the most common analysis methods is the site frequency 
spectrum (SFS), a histogram where each bin is a count of how many mutations are at a given 
frequency in the population. 
 SFS analysis is based on the precepts of the Wright-Fisher process [1, 2], which 
describes the probabilistic trajectory of a mutation’s frequency in a population under a chosen 
evolutionary scenario. The defining characteristic of the Wright-Fisher process is forward time, 
non-overlapping, discrete generations with random genetic drift modeled as a binomial 
distribution dependent on the population size and the frequency of a mutation [1, 2]. On top of 
this foundation, can be added models for selection, migration between populations, mate choice 
& inbreeding, linkage between different loci, etc. For simple scenarios, an approximate 
analytical expression for the expected proportion of mutations at a given frequency in the 
population, the expected SFS, can be derived [1-5]. This expectation can then be compared to 
the observed SFS of real data, allowing for parameter fitting and model testing [5-7]. However, 
more complex scenarios do not have tractable analytical solutions, approximate or otherwise. 
One approach is to simulate the Wright-Fisher process forwards in time to build the expected 
frequency distribution or other population genetic summary statistics [8-11]. Because of the 
flexibility inherent in its construction, the Wright-Fisher forward simulation can be used to model 
any arbitrarily complex demographic and selection scenario [8-13]. Unfortunately, because of 
the computational cost, the use of such simulations to analyze polymorphism data is often 
prohibitively expensive in practice [12, 13]. The coalescent looking backwards in time and 
approximations to the forward single-locus Wright-Fisher algorithm using diffusion equations 
provide alternative, computationally efficient methods of modeling polymorphism data [14, 15]. 
However, these effectively limit the selection and demographic models that can be ascertained 
and approximate the Wright-Fisher forward process [12, 13, 15, 16]. Thus by speeding up 
forward simulations, we can use more complex and realistic demographic and selection models 
to analyze within-species polymorphism data. 
 Single-locus Wright-Fisher simulations based on the Poisson Random Field model 
[4] ignore linkage between sites and simulate large numbers of individual mutation frequency 
trajectories forwards in time to construct the expected SFS. Exploiting the naturally 
parallelizable nature of the single-locus Wright-Fisher algorithm, these forward simulations can 
be greatly accelerated on the GPU. Written in the programming language CUDA v6.5 [17], a 
C/C++ derivative for NVIDIA GPUs, the GPU Optimized Wright-Fisher simulation, GO Fish, 
allows for accurate, flexible simulations of SFS at speeds orders of magnitude faster than 
comparative serial programs on the CPU. GO Fish can be both run as a standalone executable 
and integrated into other programs as a library to accelerate single-locus Wright-Fisher 
simulations used by those tools. 
  
Algorithm 
 
 In a single-locus Wright-Fisher simulation, a population of individuals can be 
represented by the set of mutations segregating in that population – specifically by the 
frequencies of the mutant, derived alleles in the population. Under the Poisson Random Field 
model, these mutations are completely independent of each other and new mutational events 
only occur at non-segregating sites in the genome (i.e. no multiple hits) [4].  
 Figure 1 sketches the algorithm for a typical, serial Wright-Fisher simulation, starting 
with the initialization of an array of mutation frequencies. From one discrete generation time 
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step to the next, the change in any given mutation’s frequency is dependent on the strength of 
selection on that mutation, migration from other populations, the percent of inbreeding, and 
genetic drift. Unlike the others listed, inbreeding is not directly a force for allele frequency 
change, but rather it modifies the effectiveness of selection and drift. Frequencies of 0 (lost) and 
1 (fixed) are absorbing boundaries such that if a mutation becomes fixed or lost across all extant 
populations, it is removed from the next generation’s mutation array. New mutations arising 
stochastically throughout the genome are then added to the mutation array of the offspring 
generation, replacing those mutations lost and fixed by selection and drift. As the offspring 
become the parents of the next generation, the cycle repeats until the final generation of the 
simulation.     
 While the details of how a GPU organizes computational work are quite intricate 
[17], the vastly oversimplified version is that a serial set of operations is called a thread and the 
GPU can execute many such threads in parallel. With completely unlinked sites, every 
simulated mutation frequency trajectory is independent of every other mutation frequency 
trajectory in the simulation. Therefore, the single-locus Wright-Fisher algorithm is trivially 
parallelized by simply assigning a thread to each mutation in the mutation array: when 
simulating each discrete generation, both calculating the new frequency of alleles in the next 
generation and adding new mutations to next generation are embarrassingly parallel operations 
(Figure 2A). This is the parallel ideal because no communication across threads is required to 
make these calculations. A serial algorithm has to calculate the new frequency of each mutation 
one by one – and the problem is multiplied where there are multiple populations, as these new 
frequencies have to be calculated for each population. For example, in a simulation with 
100,000 mutations in a given generation and 3 populations, 300,000 sequential passes through 
the functions governing migration, selection, and drift are required. However, in the parallel 
version, this huge number of iterations can theoretically be compressed to a single step in which 
all the new frequencies for all mutations are computed simultaneously. Similarly, if there are 
5,000 new mutations in a generation, a serial algorithm has to add each of those 5,000 new 
mutations one at a time to the simulation. The parallel algorithm can, in theory, add them all at 
once. Of course, a GPU only has a finite number of computational resources to apply to a 
problem and thus this ideal of executing all processes in a single time step is never truly 
realizable for a problem of any substantial size. Even so, parallelizing migration, selection, drift, 
and mutation on the GPU results in dramatic speedups relative to performing those same 
operations serially on the CPU. This is the main source of GO Fish’s improvement over serial, 
CPU-based Wright-Fisher simulations.  
 One challenge to the parallelization of the Wright-Fisher algorithm is the treatment 
of mutations that become fixed or lost. When a mutation reaches a frequency of 0 (in all 
populations, if multiple) or 1 (in all populations, if multiple), that mutation is forever lost or fixed. 
Such mutations are no longer of interest to maintain in memory or process from one generation 
to the next. Without removing lost and fixed mutations from the simulation, the number of 
mutations being stored and processed would simply continue to grow as new mutations are 
added each generation. When processing mutations one at a time in the serial algorithm, 
removing mutations that become lost or fixed is as trivial as simply not adding them to the next 
generation and shortening the mutation array in the next generation by 1 each time. This 
becomes more difficult when processing mutations in parallel. As stated before: the different 
threads for different mutations do not communicate with each other when calculating the new 
mutation frequencies simultaneously. Therefore any given mutation/thread has no knowledge of 
how many other mutations have become lost or fixed that generation. This in turn means that 
when attempting to remove lost and fixed mutations while processing mutations in parallel, there 
is no way to determine the size of the next generation’s mutation array or where in the offspring 
array each mutation should be placed.  
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 One solution to the above problems is the algorithm compact [18], which can filter 
out lost and fixed mutations while still taking advantage of the parallel nature of GPUs (Figure 
2C). However, compaction is not embarrassingly parallel, as communication between the 
different threads for different mutations is required, and it involves a lot of moving elements 
around in GPU memory rather than intensive computation. Thus, it is a less efficient use of the 
GPU as compared to calculating allele frequencies. As such, a nuance in optimizing GO Fish is 
how frequently to remove lost and fixed mutations from the active simulation. Despite the fact 
that computation on such mutations is wasted, calculating new allele frequencies is so fast that 
not filtering out lost and fixed mutations every generation and temporarily leaving them in the 
simulation actually results in faster runtimes. Eventually of course, the sheer number of lost and 
fixed mutations overwhelms even the GPU’s computational bandwidth and they must be 
removed. How often to compact for optimal simulation speed can be ascertained heuristically 
and is dependent on the number of mutations each generation in the simulation and the 
attributes of the GPU the simulation is running on. Figure 3 illustrates the algorithm for GO Fish, 
which combines parallel implementations of migration, selection, drift, and mutation with a 
compacting step run every X generations and again before the end of the simulation. 
 
The Population Genetics Model of GO Fish 
 
 A more detailed description of the implementation of the Wright-Fisher algorithm 
underlying GO Fish, with derivations of the equations below, can be found in the Appendix. 
Table 1 provides a glossary of the variables used in the simulation.  
 The simulation can start with an empty initial mutation array, with the output of a 
previous simulation run, or with the frequencies of the initial mutation array in mutation-selection 
equilibrium. Starting a simulation as a blank canvas provides the most flexibility in the starting 
evolutionary scenario. However, to reach an equilibrium start point requires a “burn-in”, which 
may be quite a large number of generations [11]. To save time, if a starting scenario is shared 
across multiple simulations, then the post-burn-in mutation array can be simulated beforehand, 
stored, and input as the initial mutation array for the next set of simulations. Alternatively, the 
simulation can be initialized in a calculable, approximate mutation-selection equilibrium state, 
allowing the simulation of the evolutionary scenario of interest to begin essentially immediately. 
λµ(x) is the expected (mean) number of mutations at a given frequency, x, in the population at 
mutation-selection equilibrium and can be calculate via the following equation: 
 

€ 

µ = µ( j,0), s(x) = s( j,0,x), etc... 

€ 

1) λµ (x) =
2µL

x(1− x)e−Nes(x )x 2h+(1−2h )x( )(1−F )+2F{ }

e−Nes(y )y 2h+(1−2h )y( )(1−F )+2F{ }dy
x

1
∫
e−Nes(y )y 2h+(1−2h )y( )(1−F )+2F{ }dy
0

1
∫  

 
 The derivation for eq. 1 can be found in the Appendix (eq. 1-6 in the Appendix). The 
numerical integration required to calculate λµ(x) has been parallelized and accelerated on the 
GPU. To start the simulation, the actual number of mutations at each frequency is determined 
by draws from the Inverse Poisson distribution with mean and variance λµ(x). This numerical 
initialization routine can handle most of the equilibrium evolutionary scenarios the main 
simulation is capable of itself – a major exception being those cases with migration between 
multiple populations. Given the number of cases covered by the above integration technique, 
this is likely to be the primary method to start a GO Fish simulation in a state of mutation-
selection equilibrium.

  After initialization begins the cycle of adding new mutations to the population and 
calculating new frequencies for currently segregating mutations. The number of new mutations 
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introduced in each population j, for each generation t is Poisson distributed with mean NeµL in 
accordance with the assumptions of the Poisson Random Field Model. These new mutations 
start at frequency 1/Ne in the simulation. Meanwhile, the SNP frequencies of the extant 
mutations in the current generation t, and population j are modified by the forces of migration 
(I.), selection (II.), and drift (III.) to produce the new frequencies of those mutations in generation 
t+1.  

€ 

xt, j
I.⎯ → ⎯ xmig

II.⎯ → ⎯ xmig, sel
III.⎯ → ⎯ xmig, sel, drift = xt+1, j   

 
 I. GO Fish uses a conservative model of migration [19] where the new allele 
frequency, xmig, in population j is the average of the allele frequency in all the populations 
weighted by the migration rate from each population, to population j. II. Selection further 
modifies the expected frequency of the mutations in population j according to eq. 2 below: 
 

€ 

s(x) = s( j, t,x), h = h( j, t), etc... 
 

€ 

2) xmig, sel =
xmig

2 s(xmig ) + xmig (1− xmig )s(xmig )(F + h − hF) + xmig
xmig

2 s(xmig ) + xmig (1− xmig )s(xmig )(F + 2h − 2hF) +1
 

 
 The derivation for eq. 2 can be found in the Appendix (eq. 8-13 in the Appendix). 
The variable xmig,sel represents the expected frequency of an allele in generation t+1. III. Drift, 
which is modeled as a binomial random deviation with mean Nexmig,sel and variance Nexmig,sel(1-
xmig,sel), then acts on top of the deterministic forces of migration and selection to produce the 
ultimate frequency of the allele in the next generation, t+1, in population j, xt+1,j. Then the cycle 
repeats.  
 
Results and Discussion  
 
 To test the speed improvements from parallelizing the Wright-Fisher algorithm, GO 
Fish was compared to a serial Wright-Fisher simulation written in C++. Each program was run 
on two computers: an iMac and a self-built Linux-box with equivalent Intel Haswell CPUs, but 
very different NVIDIA GPUs. Constrained by the thermal and space requirements of laptops and 
all-in-one machines, the iMac’s NVIDIA 780M GPU (1536 cores@823 MHz) is slower and older 
than the NVIDIA 980 (2048 cores@1380MHz) in the Linux-box. For a given number of 
simulated populations and number of generations, a key driver of execution time is the number 
of mutations in the simulation. Thus many different evolutionary scenarios will have similar 
runtimes if they result in similar numbers of mutations being simulated each generation. As 
such, to benchmark the acceleration provided by parallelization and GPUs, the programs were 
run using a basic evolutionary scenario while varying the number of expected mutations in the 
simulation. The utilized scenario is a simple, neutral simulation, starting in mutation-selection 
equilibrium, of a single, haploid population with a constant population size of 200,000 individuals 
over 1,000 generations and a mutation rate of 1x10-9 mutations per generation per individual per 
site. With these other parameters held constant, varying the number of sites in the simulation 
adjusts the number of expected mutations for each of the benchmark simulations.  
 As shown in Figure 4: accelerating the Wright-Fisher simulation on a GPU results in 
massive performance gains on both an older, mobile GPU like the NVIDIA 780M and a newer, 
desktop-class NVIDIA 980 GPU. For example, when simulating the frequency trajectories of 
~500,000 mutations over 1,000 generations, GO Fish takes ~0.2s to run on a 780M as 
compared to ~18s for its serial counterpart running on the Intel i5/i7 CPU (@3.9 Ghz), a 
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speedup of 88-fold. On a full, modern desktop GPU like the 980, GO Fish runs this scenario 
~176x faster than the strictly serial simulation and only takes about 0.1s to run. As the number 
of mutations in the simulation grows, more work is tasked to the GPU and the relative speedup 
of GPU to CPU increases logarithmically. Eventually though, the sheer number of simulated 
SNPs saturates even the computational throughput of the GPUs, producing linear increases in 
runtime for increasing SNP counts, like for serial code. Thus, eventually, there is a flattening of 
the fold performance gains. This plateau occurs earlier for 780M than for the more powerful 980 
with its more and faster cores. Executed serially on the CPU, a huge simulation of ~4x107 SNPs 
takes roughly 24min to run versus only ~13s/5.7s for GO Fish on the 780M/980, an acceleration 
of more than 109/250-fold. While not benchmarked here, the parallel Wright-Fisher algorithm is 
also trivial to partition over multi-GPU setups in order to further accelerate simulations.  
 Tools employing the single-locus Wright-Fisher framework are widely used in 
population genetics analyses to estimate selection coefficients and infer demography (see [11, 
20-24] for examples). Often these tools employ either a numerically solved diffusion 
approximation, or even the simple analytical function, to generate the expected SFS of a given 
evolutionary scenario, which can then be used to calculate the likelihood producing an observed 
SFS (ref). The model parameters of the evolutionary scenario are then fit to the data by 
maximizing the composite likelihood (ref). With GO Fish, forward simulation can generate the 
expected spectra. To validate these expected spectra, the results of GO Fish simulations were 
compared against δaδi [15] for a complex evolutionary scenario involving a single population 
splitting into two, exponential growth, selection, and migration. (Figure 5) The spectra generated 
by each program are identical. Interestingly, the two programs also had essentially identical run-
times for this scenario and hardware. (Figure 5) In general, the relative compute time will vary 
depending on the simulation size for GO Fish, the grid size & time-step for δaδi [15], and the 
simulation scenario & hardware for both.  
 For maximum-likelihood and Bayesian statistics as for parametric bootstraps and 
confidence intervals, hundreds, thousands, even tens of thousands of distinct parameter values 
may need to be simulated to yield the needed statistics for a given model. Multiplying this by the 
need to often consider multiple evolutionary models as well as nonparametric bootstrapping of 
the data, a single serial simulation run on a CPU taking only 18s, as in the simple simulation of 
~500,000 SNPs presented in Figure 4, can add up to hours, even days of compute time. 
Moreover, and in contrast to the approximating analytical or numerical solutions typically 
employed, simulating the expected SFS introduces random noise around the “true” SFS of the 
scenario being modeled. Figure S1 demonstrates how increasing the number of simulated 
SNPs increases the precision of the simulation – and therefore of the ensuing likelihood 
calculations. Simulating tens of millions of SNPs, wherein a single run on the CPU can take 
nearly half-an-hour, can be imperative to obtain a high-precision SFS needed for certain 
situations. Thus, the speed boost from parallelization on the GPU in calculating the underlying, 
expected SFS greatly enhances the practical utility of simulation for many current data analysis 
approaches. The speed and validation results demonstrate that, now with GO Fish, one can not 
only track allele trajectories in record time, but also generate SFS by using forward simulations 
in roughly the same time-frame as by solving diffusion equations. Just as importantly, GO Fish 
achieves the increase in performance without sacrificing flexibility in the evolutionary scenarios 
it is capable of simulating.  
 GO Fish can simulate mutations across multiple populations for comparative 
population genomics, with no limits to the number of populations allowed. Population size, 
migration rates, inbreeding, dominance, and mutation rate are all user-specifiable functions 
capable of varying over time and between different populations. Selection is likewise a user-
specifiable function parameterized not only by generation and population, but also by allele 
frequency, allowing for the modeling of frequency-dependent selection as well as time-
dependent and population-specific selection. By tuning the inbreeding and dominance 
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parameters, GO Fish can simulate the full range of single-locus dynamics for both haploids and 
diploids with everything from outbred to inbred populations and overdominant to underdominant 
alleles. GPU-accelerated Wright-Fisher simulations thus provide extensive flexibility to model 
unique and complex demographic and selection scenarios beyond what many current site 
frequency spectrum analysis methods can employ.  
 Paired with a coalescent simulator, GO Fish can also accelerate the forward 
simulation component in forwards-backwards approaches (see [16, 25]). In addition, GO Fish is 
able to track the age of mutations in the simulation providing an estimate of the distribution of 
the allele ages, or even the age by frequency distribution, for mutations in an observed SFS. 
Further, the age of mutations is one element of a unique identifier for each mutation in the 
simulation, which allows the frequency trajectory of individual mutations to be tracked through 
time. This ability to sample ancestral states and then track the mutations throughout the 
simulation can be used to contrast the population frequencies of polymorphisms from ancient 
DNA with those present in modern populations for powerful population genetics analyses [26]. 
By accelerating the single-locus forward simulation on the GPU, GO Fish broadens the 
capabilities of SFS-analysis approaches in population genetic studies.  
 Across the field of population genetics and evolution, there exist a wide range of 
computationally intensive problems that could benefit from parallelization. The algorithms 
presented and discussed in Figure 2 represent a subset of the essential parallel algorithms, 
which more complex algorithms modify or build upon. Application of these parallel algorithms 
are already wide-ranging in bioinformatics: motif finding [27], global and local DNA and protein 
alignment [28-31], short read alignment and SNP calling [32, 33], haplotyping and the 
imputation of genotypes [34], analysis for genome-wide association studies [35, 36], and 
mapping phenotype to genotype and epistastic interactions across the genome [37, 38]. In 
molecular evolution, the basic algorithms underlying the building of phylogenetic trees and 
analyzing sequence divergence between species have likewise been GPU-accelerated [39, 40]. 
Further, there are parallel methods for general statistical and computational methods, like 
Markov Chain Monte Carlo and Bayesian analysis, useful in computational evolution and 
population genetics [41, 42].  
 Future work on the single-locus Wright-Fisher algorithm will include extending the 
parallel structure of GO Fish to allow for multiple alleles as well as multiple mutational events at 
a site, relaxing one of the key assumptions of the Poisson Random Field [4]. At present, neither 
running simulations with long divergence times between populations nor any scenario where the 
number of extant mutations in the simulation rises to too high a proportion of the total number of 
sites is theoretically consistent with the Poisson Random Field model underpinning the current 
version of GO Fish. Beyond GO Fish, solving Wright-Fisher diffusion equations in programs like 
δaδi [15] can likewise be sped up through parallelization on the GPU [43-46].  
 Unfortunately, while the effects of linkage and linked selection across the genome 
can be mitigated in analyses using a single-locus framework [15, 24, 47], these effects cannot 
be examined and measured whilst assuming independence amongst sites. Expanding from the 
study of independent loci to modeling the evolution of haplotypes and chromosomes, 
simulations with the coalescent framework or forward Wright-Fisher algorithm with linkage can 
also be accelerated on GPUs. The coalescent approach has already been shown to benefit 
from parallelization over multiple CPU cores (see [48]). While Montemuiño et al. achieved their 
speed boost by running multiple independent simulations concurrently, they noted that 
parallelizing the coalescent algorithm itself may also accelerate individual simulations over 
GPUs [48]. Likewise, multiple independent runs of the full forward simulation with linkage can be 
run concurrently over multiple cores and the individual runs might themselves be accelerated by 
parallelization of the forward algorithm. The forward simulation with linkage has many 
embarrassingly parallel steps, as well as those that can be refactored into one of the core 
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parallel algorithms. The closely related genetic algorithm, used to solve difficult optimization 
problems, has already been parallelized and, under many conditions, greatly accelerated on 
GPUs [49-51]. However, not all algorithms will benefit from parallelization and execution on 
GPUs – the real world performance of any parallelized algorithm will depend on the details of 
the implementation [50, 51]. While the extent of the performance increase will vary from 
application to application, each of these represent key algorithms whose potential acceleration 
could provide huge benefits for the field [12, 13]. 
 These potential benefits extend to lowering the cost barrier for students and researchers 
to run intensive computational analyses in population genetics. The GO Fish results 
demonstrate how powerful even an older, mobile GPU can be at executing parallel workloads, 
which means that GO Fish can be run on everything from GPUs in high-end compute clusters to 
a GPU in a personal laptop and still achieve a great speedup over traditional serial programs. A 
batch of single-locus Wright-Fisher simulations that might have taken a hundred CPU-hours or 
more to complete on a cluster can be done, with GO Fish, in an hour on a laptop. Moreover, 
graphics cards and massively parallel processors in general are evolving quickly. While this 
paper has focused on NVIDIA GPUs and CUDA, the capability to take advantage of the 
massive parallelization inherent in the Wright-Fisher algorithm is the key to accelerating the 
simulation and in the High Performance Computing market there are several avenues to 
achieve the performance gains presented here. For instance, OpenCL is another popular low-
level language for parallel programming and can be used to program NVIDIA, AMD, Altera, 
Xilinx, and Intel solutions for massively parallel computation, which include GPUs, CPUs, and 
even Field Programmable Gate Arrays (FPGAs) [52-54]. The parallel algorithm of GO Fish can 
be applied to all of these tools. Whichever platform(s) or language(s) researchers choose to 
utilize, the future of computation in population genetics is massively parallel and exceedingly 
fast. 
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Figure 1 
 

 
 
 
Figure 1. Serial Wright-Fisher algorithm. Mutations are the “unit” of simulation for the single-
locus Wright-Fisher algorithm. Thus a generation of organisms is represented by an array of 
mutations and their frequency in the (each) population (if there are multiple in the simulation). 
There are several options for how to initialize the mutation array to start a simulation: a blank 
mutation array, the output of a previous simulation run, or mutation-selection equilibrium (for 
details, see Appendix: Simulation Initialization). Simulating each discrete generation consists 
first of calculating the new allele frequency of each mutation, one at a time, where those 
mutations that become lost or fixed are discarded. Next, new mutations are added to the array, 
again, one at a time. The resulting offspring array of mutation frequencies becomes the parent 
array of the next generation and the cycle is repeated until the end of the simulation when the 
final mutation array is output. 
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Figure 2. Common Parallel Algorithms. Above are illustrative examples of three classes of 
common parallel algorithms implemented using simple operations and an eight-element, integer 
array. A) Embarrassingly parallel algorithms are those that can be computed independently 
and thus simultaneously on the GPU. The given example, adding 1 to every element of an 
array, can be done concurrently to all array elements. In GO Fish, calculating new mutation 
frequencies and adding new mutations to population are both embarrassingly parallel 
operations. B) Reduce is a fundamental parallel algorithm in which all the elements of an array 
are reduced to a single value using a binary operator, such as in the above summation over the 
example array [55]. This algorithm takes advantage of the fact that in each time step half of the 
sums can be done independently while synchronized communication is necessary to combine 
the results of previous time steps. In total, log2(8) = 3 time steps are required to reduce the 
example array. C) Compact is a multi-step algorithm that allows one to filter arrays on the GPU 
[18]. In an embarrassingly parallel step, the algorithm presented above first creates a new 
Boolean array of those elements that passed the filter predicate (e.g. x > 1). Then a scan is 
performed on the Boolean array. Scan is similar in concept to reduce, wherein for each time 
step half of the binary operations are independent, but it is a more complex parallel algorithm 
that creates a running sum over the array rather than condensing the array to a single value 
(see [56]). This running sum determines the new index of each element in the original array 
being filtered and the size of the new array. Those elements that passed the filter are then 
scattered to their new indices of the now smaller, filtered array. Compact is used in GO Fish to 
filter out fixed and lost mutations. 
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Figure 3. GO Fish algorithm. Both altering the allele frequencies of mutations from parent to 
child generation and adding new mutations to the child generation are embarrassingly parallel 
operations (see Figure 2A) that are greatly accelerated on the GPU. Further, as independent 
operations, adding new mutations and altering allele frequencies can be done concurrently on 
the GPU. In comparison to serial Wright-Fisher simulations (Figure 1), GO Fish includes an 
extra compact step (see Figure 2C) to remove fixed and lost mutations every X generations. 
Until compaction, the size of the mutation array grows by the number of new mutations added 
each generation. Before the simulation ends, the program compacts the mutation array one final 
time.
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Figure 4. Performance gains on GPU relative to CPU. The above figure plots the relative 
performance of GO Fish, written in CUDA, to a basic, serial Wright-Fisher simulation written in 
C++. The two programs were run both on a 2013 iMac with an NVIDIA GeForce GTX 780M 
mobile GPU, 1536@823 MHz cores, (black line) and an Intel Core i7 4771 CPU@3.9 GHz and 
a self-built Linux-box with a factory-overclocked NVIDIA GeForce GTX 980 GPU, 
2048@1380MHz cores, and an Intel Core i5 4690K CPU@3.9GHz (red line). Full compiler 
optimizations (-O3 –fast-math) were applied to both serial and parallel programs. Each dot 
represents a simulation run plotted by the number of SNPs in its final generation. The serial 
program was run on the ~10,000, ~100,000, and ~1x106 SNPs scenarios. As the speed of the 
CPU-based program is linear on the number of simulated SNPs, the resulting runtimes of 0.4, 
3.9, and 38.7 seconds were then linearly rescaled to estimate runtimes for serial simulations 
with differing numbers of final SNPs. The two Intel processors have identical speeds on single-
threaded, serial tasks, which also allows for direct comparison between the two GPU results. 
Consumer GPUs like the 780M and 980 need to warm up from idle and load the CUDA context. 
So to obtain accurate runtimes on the GPU, GO Fish timings were done after 10 runs had 
finished and then the average of another 10 runs was taken for each data point. The GO Fish 
compacting rate was hand-optimized for each number of simulated SNPs, for each processor 
(Supplemental File 1).  
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Figure 5. Validation of GO Fish simulation results against δaδ i. A complex demographic 
scenario was chosen as a test case to compare the GO Fish simulation against an already 
established SFS method, δaδi [15]. The demographic model is from the YRI-CEU (AF-EU) δaδi 
example. Using δaδi [15] parameterization to describe the model, the ancestral population, in 
mutation-selection equilibrium, undergoes an immediate expansion from Nref to 2Nref individuals. 
After time T1 (= 0.005) the population splits into two with a constant, equivalent migration, mEU-AF 
(= 1) between the now split populations. The second (EU) population undergoes a severe 
bottleneck of 0.05Nref when splitting from the first (AF) population, followed by exponential 
growth over time T2 (= 0.045) to size 5Nref. The SFS (black dashed line) above is of weakly 
deleterious, co-dominant mutations (2Nrefs = -2, h =0.5) where 1001 samples were taken of the 
EU population. The spectrum was then normalized by the number of segregating sites. The 
corresponding GO Fish parameters for the evolutionary scenario, given a mutation rate of 1x10-9 
per site, 2x109 sites, and an initial population size, Nref, of 10,000, are: T1 = 0.005*2Nref = 100 
generations, T2 = 900 generations, mEU-AF = 1/(2Nref) = 0.00005, 2Nrefs = -4, h =0.5, and F = 0. 
As in δaδi, the population size/time can be scaled together and the simulation will generate the 
same normalized spectra [15]. Using the aforementioned parameters, a GO Fish simulation 
ends with ~3x106 mutations of which ~560,000 are sampled in the SFS. The red line reporting 
GO Fish results is the average of 50 such simulations – the dispersion of those 50 simulations is 
reported in Figure S1. Each simulation run on the NVIDIA GeForce GTX 980 GPU took roughly 
the same time to generate the SFS as δaδi did (grid size = (110,120,130), time-step = 10-3) on 
the Intel Core i7 4771 CPU – just less than 0.7s.
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Table 1  
 
Glossary of simulation terms 
 
Variable Definition 
µ(j,t) mutation rate per site per chromosome for population j at time t 
s(j,t,x) selection coefficient for a mutation at frequency x in population j at time t 
h(j,t) dominance of allele for population j at time t 
F(j,t) inbreeding coefficient in population j at time t 
N(j,t) number of individuals in population j at time t 
Ne(j,t) effective number of chromosomes in population j at time t 
m(k,j,t) migration: proportion of chromosomes from population k in population j at time t 
L number of sites in simulation 
s = 0 (neutral), 0>s>-1 (purifying selection), 0<s (positive selection); h = 1 (dominant), h = 0 
(recessive), h>1/<0 (over/under-dominant), 0<h<1 (co-dominant);  F = 1 (haploid), F = 0 
(diploid), 0<F<1 (inbred diploid); Ne = 2*N/(1+F)  



Appendix – Parallel Wright-Fisher Simulation Details 
 
Simulation Initialization 
 
Simulations can be initialized in one of three ways: 1) a blank canvas, 2) from the results of a 
previous simulation, and 3) mutation-selection equilibrium. Starting a simulation as a blank 
canvas provides the most flexibility in what evolutionary state the simulation begins and thus 
any evolutionary scenario can be simulated from the beginning. However, as the simulation 
starts with no mutations present, a “burn-in” time is necessary to reach the point where the 
simulation of the scenario of interest can begin. The number of “burn-in” generations may be 
quite long, particularly to reach any kind of equilibrium state where selection, mutation, 
migration, and drift are all in balance and the number of mutations being fixed and lost is equal 
to the number of new mutations in the population(s). To save time, if a starting scenario is 
shared across multiple simulations, then the post-burn-in mutation array can be simulated 
beforehand, stored, and input as the initial mutation array for the next set of simulations. 
 
Another way to jump start the simulation is by assuming all extant populations are in mutation-
selection balance at the beginning of the simulation. Under general mutation-selection 
equilibrium (MSE), the proportion of mutations at every frequency in the population can be 
calculated via numerical integration over a continuous frequency diffusion approximation (see 
[3]). While this constrains the starting evolutionary state to mutation-selection equilibrium, this 
allows one to then start simulating the selection and demographic scenario of interest 
immediately. Due to current limitations of the MSE model in GO Fish, the mutation-selection 
equilibrium scenario does not, as of yet, include migration from other populations or random 
fluctuations in selection intensity – nor can the code calculate the number of generations ago a 
mutation at frequency x is expected to have arisen at. Instead all mutations in the initial mutation 
array said to have arisen at time t = 0. The model is detailed below:  
 
Using the glossary from Table 1, for any given population j at time t = 0: 
 

€ 

µ = µ( j,0), s(x) = s( j,0,x), etc... 
 
From Kimura p. 220-222 [3]: 

€ 

1) λµ (x) =
2µL

NeV(x)G(x)
G(y)dy

x

1
∫
G(y)dy
0

1
∫

 

€ 

2)G(x) =
−

2M(x )
V(x )

dx
⌠ 
⌡ 
⎮ e  

€ 

3) V(x) = x(1− x) Ne

where  Ne = 2N (1+ F)
 

 
λµ(x) is the expected (mean) number of mutations at a given frequency, x, in the population at 
mutation-selection equilibrium. V(x) and M(x) are the contribution of drift of selection 
respectively to the rate of change of a mutation’s frequency at frequency y in the population. 
Since this is an allele-based simulation, I use the equilibrium value of the effective number of 
chromosomes, Ne, to account for inbreeding amongst N individuals. 
 

€ 

4a)M(x) =Mdip (x)(1− F) +Mhap (x)F  



€ 

4b)Mhap (x) = s(x)x(1− x) 

€ 

4c)Mdip (x) = s(x) h + (1− 2h)x{ }x(1− x)  
 
The total rate of frequency change is the average of the rate of change of the effective haploid 
proportion of the population and the effective diploid proportion of the population weighted by F. 
  

€ 

5) G(x) =
−

2M(x )
V(x )

⌠ 
⌡ 
⎮ dxe =

−
2Mdip (x )(1−F )+2Mhap (x )F

V(x )
⌠ 

⌡ 
⎮ dxe =

−Nes(x )x 2h+(1−2h )x( )(1−F )+2F{ }e  
 
Substituting eq. 3 and 5 into eq. 1 yields: 

€ 

6) λµ (x) =
2µL

x(1− x)e−Nes(x )x 2h+(1−2h )x( )(1−F )+2F{ }

e−Nes(y )y 2h+(1−2h )y( )(1−F )+2F{ }dy
x

1
∫
e−Nes(y )y 2h+(1−2h )y( )(1−F )+2F{ }dy
0

1
∫

 

 
More familiar versions of eq. 6 can be derived by assuming neutrality or by assuming no 
frequency-dependent selection and either codominance or haploid/completely inbred 
individuals. 
 

€ 

if s(x) = 0 ∀x ∈ 0,1( ) (neutral) → λµ (x) = 2µL x

if s(x) = s ∀x ∈ 0,1( ) and (h = 0.5 or F =1) → λµ (x) =
2µL
x(1− x)

1− e−2Nes(1−x )

1− e−2Nes

where if h = 0.5 (codominant) → Ne = 2N (1+ F)  
where if F =1 (haploid) → Ne = N

 

 
I approximate the integrals in eq. 6 using trapezoidal numerical integration and use the scan 
parallel algorithm implemented in CUB 1.6.4 [57] to accelerate the integration on the GPU*. λµ(x) 
is the expected (mean) number of mutations. To determine the actual number of mutations at a 
given frequency, x, I generate random numbers from the Inverse Poisson distribution with mean 
λµ(x) using the following procedure: 
 

I. Random number generator Philox [58] generates a uniform random number between 0 
and 1. 

II. If λµ(x) ≤ 6, then that uniform variable is fed into the exact Inverse Poisson CDF.  
III. If λµ(x) > 6, then a Normal approximation to the Poisson is used. 

 
Adding all the new mutations at every frequency to the starting mutation array is an 
embarrassingly parallel problem. Thus, combined with the parallel numerical integration for the 
definite integral components of eq. 6, initializing the simulation at mutation-selection equilibrium 
is overall greatly accelerated on the GPU relative to serial algorithms on the CPU.  
 
*An Aside About Numerical Precision, GPUs, and Numerical Integration: For a bit of 
background, CPUs employ a Floating-point Processor Unit with 80-bits of precision for serial 
floating-point computation, which then quickly translates the result into double-precision (64-bit) 
for the CPU registers. Thus, CPU programs, including the serial Wright-Fisher simulation, are 
often written with double-precision performance in mind. In contrast, most consumer GPU 
applications are geared towards single-precision (32-bit) computation (e.g. graphics) and many 
consumer GPUs have relatively poor double-precision performance. More expensive, 



professional-grade workstation GPUs often have far better double-precision performance than 
their consumer counterparts. As the Wright-Fisher simulation does not actually require 64-bits of 
precision for its calculations, GO Fish has been written with 32-bits of precision computation in 
mind. This is even true of the MSE Integration step where the naturally pair-wise summation of 
parallel scanning mitigates the round-off error when performing large numbers of consecutive 
sums in 32-bit [59]. That said, the mutation frequencies stored in the simulation have only 
single-precision floating-point accuracy. Experiments using CPU serial Wright-Fisher 
simulations showed consistent results between storing mutation frequencies with 32-bits vs. 64-
bits of precision. 
 
Steps to Calculate New Allele Frequencies 
 
Migration, selection, and drift determine the frequency of an allele in the next generation, xt+1, 
based on its current frequency, xt. Migration and selection are deterministic forces whereas drift 
introduces binomial random chance. While these three steps can, in principle, be done in any 
order, their order in the simulation is as follows: 
 

I. Migration  
II. Selection (with Inbreeding) 

III. Drift (with Inbreeding) 
 

€ 

xt, j
I.⎯ → ⎯ xmig

II.⎯ → ⎯ xmig, sel
III.⎯ → ⎯ xmig, sel, drift = xt+1, j  

 
I. Migration 
 
Using the glossary from Table 1, in population j at time t: 
 

€ 

m(k) = m(k, j, t),
xt,k ≡  freq. of allele in pop. k at time t,
xmig = xmig, j ≡  freq. of allele in pop. j after migration,

 

 

€ 

7) xmig = m(k)xt,k
k
∑

where m( j) =1− m(k)
k≠ j
∑

 

GO Fish uses a conservative model of migration [19]. The new allele frequency in population j is 
the average of the allele frequency in all the populations weighted by the migration rate from 
each population, to population j. And the migration rate is specified by the proportion of 
chromosomes from population k in population j. 
 
II. Selection (with Inbreeding) 
 
In population j at time t: 
 



€ 

xmig = xmig, j ≡ freq. of allele after migration, ymig =1− xmig ,
xmig, sel = xmig, sel, j ≡ freq. of allele after migration and selection,
PAA ,PAa ,Paa ≡ frequency of genotype AA,  Aa,  and aa,
s(x) = s( j, t,x), h = h( j,t),    
w = w j ≡  average pop. j fitness, n = n j ≡  average pop. j fitness of allele A

 

 
selection model  

PAA PAa Paa 
1+s(x) 1+hs(x) 1 

 

€ 

8) n = PAA 1+ s(xmig )( ) + PAa 1+ h s(xmig )( ) 2
9) w = PAA 1+ s(xmig )( ) + PAa 1+ h s(xmig )( ) + Paa
10) xmig, sel = n w

 

 
Like with M(x) in eq. 4, w and n are a weighted average of the effective haploid (inbred) and 
diploid (outbred) portions of the chromosome population. Diploid genotype frequencies assume 
random mating and Hardy-Weinberg equilibrium [60, 61]. 
 

€ 

11a) w = wdip (1− F) + whapF

11b) wdip = xmig
2 1+ s(xmig )( ) + 2xmig ymig 1+ h s(xmig )( ) + ymig

2

11c) whap = xmig 1+ s(xmig )( ) + ymig
11d) w = xmig

2 s(xmig ) + xmig (1− xmig )s(xmig )(F + 2h − 2hF) +1

 

 
Following the same logic as above: 
 

€ 

12a) n = ndip (1− F) + nhapF

12b) n = xmig
2 s(xmig ) + xmig (1− xmig )s(xmig )(F + h − hF) + xmig

 

 
Substituting eq. 11d and 12b into eq. 10 yields: 
 

€ 

13) xmig, sel =
xmig
2 s(xmig ) + xmig (1− xmig )s(xmig )(F + h − hF) + xmig
xmig
2 s(xmig ) + xmig (1− xmig )s(xmig )(F + 2h − 2hF) +1

 

 
Again, like for eq. 6, more familiar forms of eq. 13 may be derived under certain assumptions 
such as neutrality, haploid/inbred individuals, and completely outbred diploids. 
 



€ 

if s(xmig ) = 0∀x ∈ 0,1( ) (neutral) → xmig, sel = xmig

if F =1 (haploid) → xmig, sel =
xmig s(xmig ) + xmig
xmig s(xmig ) +1

if F = 0 (diploid) → xmig, sel =
xmig

2 s(xmig )(1− h) + xmig (h s(xmig ) +1)
xmig

2 s(xmig )(1− 2h) + 2xmigh s(xmig ) +1

 

 
III. Drift (with Inbreeding) 
 
For population j in generation t: 
 

€ 

xt, j
I.⎯ → ⎯ xmig

II.⎯ → ⎯ xmig, sel
III.⎯ → ⎯ xmig, sel, drift = xt+1, j  

 
The variable xmig,sel represents the expected frequency of the allele in generation t+1. Drift is the 
random deviation of the actual frequency of the allele from this expectation. To determine the 
actual frequency of the allele in the next generation, xt+1,j, I generate random numbers from the 
Inverse Binomial distribution with mean Nexmig,sel and variance Nexmig,sel(1-xmig,sel) using the 
following procedure: 
 

I. Random number generator Philox [58] generates a uniform random number between 0 
and 1. 

II. If Nexmig,sel ≤ 6, then that uniform variable is fed into the exact Inverse Poisson CDF as an 
approximation to the Binomial.  

III. If Nexmig,sel > 6, then a Normal approximation to the Binomial is used. 
 
As Ne = 2N/(1+F), inbreeding affects drift as well as selection.  
 
Adding New Mutations 
 
Using the glossary from Table 1, for population j in generation t: 
 

€ 

µ = µ( j, t), Ne = 2N( j,t) (1+ F) 
 

€ 

14) λµ = NeµL
starting frequency, x =1 Ne

 

 
The Poisson Random Field shares an important assumption with Watterson’s infinite sites 
model in that regardless of how many sites are currently polymorphic, mutations will never strike 
a currently polymorphic site and the number of monomorphic sites that a mutation can occur at 
is always the total number of sites, L [4, 62]. Eq. 14 defines the expected number of mutations 
in population j for generation t+1. The actual number of new mutations is drawn from the 
Inverse Poisson distribution using the same procedure detailed in Simulation Initialization. New 
mutations can be added to generation t+1 in parallel and simultaneously with the new frequency 
calculations. Each new mutation is given a 4-part unique ID consisting of the thread and 



compute device that birthed it (if more than one graphics card is used) as well as the generation 
and population in which it first arose.  
 
Compact 
 
The general compact algorithm is outlined in Figure 2C). GO Fish’s version uses a more 
advanced variant to speed up compaction and lower its memory requirement as discussed in 
[18] and adapted from [63].  
 



Figure S1 
 

 
 
Figure S1. Dispersion of simulation runs over the SFS. Figure 5 shows the average SFS of 
50 GO Fish simulation runs with ~3x106 SNPs for a complex, multi-population evolutionary 
scenario – i.e. the mean estimated probability of seeing a SNP at each frequency in the sample 
of 1001 EU genomes given the evolutionary history. Dispersion of the results of these simulation 
runs for each allele count is measured by the relative standard deviation (σ/µ) and is displayed 
on the red line. The black line is the same evolutionary & sampling scenario but with a smaller 
simulation size, only ~300,000 SNPs. As the mean probability of seeing a SNP at a frequency in 
the sample becomes more rare, the variance in the estimate of that probability across simulation 
runs increases. For example: at a derived allele count (DAC) of 1, the dispersion is 
~0.001/0.003 (red/black), whereas at a DAC of 1000, the dispersion is ~0.058/0.175 (red/black). 
The factor of 10 separating the two simulation sizes engenders a roughly 3-fold difference in the 
dispersion (σ being the square root of the variance). Thus the expected precision with which an 
individual simulation run of 3x107 SNPs can ascertain the probability of seeing a SNP at a DAC 
of 1000 would be just under 2% for this evolutionary & sampling scenario. How much noise in 
the results of a simulation is acceptable for a particular application will determine the necessary 
simulation size.  

0"

0.05"

0.1"

0.15"

0.2"

0.25"

0.3"

0" 100" 200" 300" 400" 500" 600" 700" 800" 900" 1000"

R
elative S

tandard D
eviation 

Derived Allele Count 

3.14e+05 SNPs 
3.14e+06 SNPs 

GO Fish simulation size: 

0.00001$

0.0001$

0.001$

0.01$

0.1$

1$

0$ 100$ 200$ 300$ 400$ 500$ 600$ 700$ 800$ 900$ 1000$

S
N

P
 D

ensity (log scale) 

Allele Count 

GO Fish 

δaδi 

Nref$ 2Nref$

0.05N
ref$

5Nref$

mEU4AF$

T1$ T2$

EU$

AF$

1000 samples  

0"

0.05"

0.1"

0.15"

0.2"

0.25"

0.3"

0" 100" 200" 300" 400" 500" 600" 700" 800" 900" 1000"

R
elative S

tandard D
eviation 

Allele Count 

3.14e+05 SNPs 
3.14e+06 SNPs 

GO Fish simulation size: 


