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ABSTRACT 

Today experimental groups routinely apply ChIP-seq technology to quantitatively characterize the genome-wide 

binding patterns of any molecule associated with the DNA. Here we present Crunch, a completely automated 

procedure for ChIP-seq data analysis, starting from raw read quality control, through read mapping, peak 

detection and annotation, and including comprehensive DNA sequence motif analysis. Among Crunch's novel 

features are a Bayesian mixture model that automatically fits a noise model and infers significantly enriched 

genomic regions in parallel, as well as a Gaussian mixture model for decomposing enriched regions into 

individual binding peaks. Moreover, Crunch uses a combination of de novo motif finding with binding site 

prediction for a large collection of known regulatory motifs to model the observed ChIP-seq signal in terms of 

novel and known regulatory motifs, extensively characterizing the contribution of each motif to explaining the 

ChIP-seq signal, and annotating which combinations of motifs occur in each binding peak. To make Crunch 

easily available to all researchers, including those without bioinformatics expertise, Crunch has been 

implemented as a web server (crunch.unibas.ch) that only requires users to upload their raw sequencing data, 

providing all results within an interactive graphical web interface. 

To demonstrate Crunch's power we apply it to a collection of 128 ChIP-seq data-sets from the ENCODE project, 

showing that Crunch's de novo motifs often outperform existing motifs in explaining the ChIP-seq signal, and 

that Crunch successfully identifies binding partners of the proteins that were immuno-precipitated.

INTRODUCTION 

The advent of next-generation sequencing 

technologies, and the associated dramatic reduction 

of cost for sequencing, have led to a spectacular rise 

in the use of a variety of methods, including RNA-

seq, ChIP-seq, DNaseq or CLIP-seq, that combine 

next-generation sequencing with other molecular 

biology techniques to quantitatively characterize 

internal states of cells on a genome-wide scale. As  

one of the most prominent technologies, ChIP-seq 

(1) combines chromatin immuno-precipitation with 

next-generation sequencing to quantify the genome-

wide binding patterns of any molecule that 

associates with the DNA.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 9, 2016. ; https://doi.org/10.1101/042903doi: bioRxiv preprint 

https://doi.org/10.1101/042903
http://creativecommons.org/licenses/by-nc-nd/4.0/


Large-scale efforts like ENCODE that systematically 

mapped DNA binding patterns of many TFs have led 

to important novel insights on their binding patterns 

on a genome-wide scale (2). In addition, more and 

more individual labs are using ChIP-seq to 

characterize the binding patterns of particular DNA 

binding proteins of interest in their specific system of 

interest and across particular conditions. 

The result of a ChIP-seq experiment is simply a 

large collection of short DNA sequence reads, 

typically millions or tens of millions. Extracting 

comprehensive meaningful biological information 

from such data-sets is quite complex and involves a 

significant number of separate steps including 

quality control, read mapping, fragment length 

estimation, peak identification, peak annotation, and 

various downstream analyses such as the 

identification of sequence motifs enriched within the 

peak sequences. Through the efforts of many 

bioinformatics groups, a substantial number of tools 

have been developed for each of these analysis 

steps, e.g. for mapping of reads (3), detecting 

binding peaks (4), and for the discovery of sequence 

motifs over-represented among a set of short 

sequence segments (5). In addition, a number of 

solutions have been presented that allow combining 

these individuals tools into a workflow, i.e. by 

allowing users to manually execute one tool after 

another or by constructing a pipe-line that runs the 

tools automatically. For example, there are 

commercial solutions such as Avadis NGS (6), 

Chipster (7), CLCbio Genomics Workbench (8), 

Genomatix Mining Station (9), Adtridbio GenoMiner 

(10) and Partek Genomics Suite (11) as well as free-

to-use solutions such as HOMER (12), cisGenome 

(13), seqMINER (14), ChIPseeqer (15), GeneProf 

(16) and Galaxy/Cistrome (17). 

Here we present Crunch, a new integrated ChIP-seq 

analysis procedure, which is novel in a number of 

respects. First of all, Crunch is completely 

automated and implemented in a web server 

(crunch.unibas.ch) such that researchers are only 

required to upload raw sequencing reads and 

identify the model organism from which the data 

derive, which may be human, mouse or drosophila. 

That is, there is no need for choosing among tools, 

for tuning or setting any parameters, or for managing 

the movement of output from one analysis step into 

inputs for subsequent analysis steps. In addition, 

besides flat files for download, all results of Crunch's 

analysis are available through an easily navigable 

graphical web interface. In this way, Crunch provides 

a simple, automated, and comprehensive analysis of 

ChIP-seq data which will be especially attractive to 

experimental researchers that produce such data 

but lack the required bioinformatics expertise, or lack 

the necessary computer hardware to run the 

analysis tools.  

An overview of the Crunch workflow, which is 

implemented using the Anduril workflow engine (21), 

is provided in Fig. 1. Besides providing complete 

automation of such procedures as quality control, 

adaptor removal, read mapping, and fragment size 

estimation, the methodology that Crunch employs 

includes several important novel features. Firstly, 

following our previous work on noise characteristics 

of next-generation sequencing data (18), we model 

fluctuations in read counts as a combination of 

multiplicative and Poisson sampling noise and 

developed a Bayesian procedure for, at the same 

time, estimating the parameters of this noise 

distribution and inferring the genomic regions with 

significantly enriched read counts. In addition, we 

employ automated Gaussian mixture modelling to 

decompose each genomic region with significant 

enrichment of ChIP-seq reads into individual binding 

peaks. Secondly and most importantly, Crunch 

combines de novo motif finding, using our previously 

developed PhyloGibbs algorithm (19), with 

comprehensive binding site prediction for a large 

library of known regulatory motifs, using our MotEvo 

algorithm (20), to model the observed ChIP-seq 

signal in terms of sites for novel and known 
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regulatory motifs. In particular, Crunch identifies a 

set of novel and known regulatory motifs that are 

complementary to each other and collectively best 

explain the observed ChIP-seq signal. Moreover, 

Crunch extensively characterizes the contribution of 

each motif using a number of different statistics. In 

this way, Crunch is able to infer not only the binding 

specificity of the transcription factor (TF) that was 

immuno-precipitated, but also identify other TFs that 

either directly bind or co-occur with the immuno-

precipitated TF.  

Figure 1: An overview of Crunch's ChIP-seq 

analysis workflow. The workflow consists roughly of 

three parts, i.e. pre-processing of the data, binding 

peak identification, and regulatory motif analysis.  

 

To demonstrate Crunch’s performance, we applied it 

to 128 ChIP-seq data sets for 95 different TFs from 

the ENCODE experiments and compared the 

performance of the de novo motifs identified by 

Crunch with known motifs from other resources. This 

analysis shows that, for the majority of data-sets, 

Crunch's motifs outperform known motifs.  

MATERIALS AND METHODS 

Quality Control and Adapter Removal 

Raw sequencing reads are typically provided in 

FASTQ format and Crunch directly takes such 

FASTQ files as input. These raw reads can have 

diverse quality due to uncertainty in base calling and 

errors in the sequencing itself, and they potentially 

contain artefacts such as sequenced parts of 

sequencing adapters. To avoid contaminating 

dowstream analyses with low quality or erroneous 

sequence, we perform an initial quality filtering, 

followed by adaptor removal, and a final round of 

quality filtering as follows. 

In the first round of quality filtering we discard reads 

that are either shorter than 25 nucleotides (nt), 

contain more than 2 ambiguous nucleotides (N’s), or 

have an average Phred base calling quality score 

below 20 (corresponding to an error rate of 1%). As 

sequencing quality tends to decrease from the 5' to 

the 3' end of the read, we select the longest 5' prefix 

of the read that has an average Phred score of at 

least 20. The chosen prefix is maintained if it has a 

minimum length of 25 nt and contains at most 2 

sequencing errors. 

In the adapter removal step, we focus exclusively on 

3’ adapters, i.e. adapters that get (partially) 

sequenced if the sequence of interest (i.e. the 

fragment) is shorter than the length of the 

sequenced read. Crunch first aims to determine, for 

any given data set, which 3' adapter was used. For 

this a list is used that by default contains adapters 

from (22) and that can be extended by the user if 
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desired. For each adapter in the list, prefixes of 

length 14, 16, 18 and 20 nt are mapped to 250'000 

randomly chosen reads from the data set, allowing 

for 2 mismatches. The adapter with the highest 

average number of matches is chosen as the 

putative adapter sequence. This adapter sequence 

is then trimmed stringently from the reads according 

to the procedure previously described in (23) and 

supplementary text S1. 

The second round of quality filtering includes the 

discarding of low complexity reads and – as 

necessitated by the truncation of some reads 

introduced through adapter removal – a 14 nt 

threshold on read length. For complexity filtering we 

calculate, for every read, the normalised di-

nucleotide entropy 𝐻 given by –      𝑓!   𝑙𝑜𝑔 𝑓!      /!

  𝑙𝑜𝑔(16) where i runs over all di-nucleotides and 𝑓! is 

the frequency of dinucleotide i. All reads with H < 0.5 

are discarded (23). 

Mapping 

After filtering, Crunch maps the remaining reads to 

the reference genome using bowtie version 1.1.1 

(24). Bowtie’s parameters are set such that for every 

read all mapping positions with the least number of 

mismatches get reported (-a --strata --best) allowing 

for at most three mismatches (-v 3) and skipping 

reads when the number of mapping positions 

exceeds 100 (-m 100). For further analysis we use 

mapped reads where each mapping position is 

weighted by the copy number of the read divided by 

the number of positions the read was reported to 

map to. We store these aligned reads in a BED-like 

format called BEDWEIGHT, which besides 

specifying the location of the mapping, also specifies 

the mapping's weight. To allow visualization of the 

raw data in a genome browser, we also produce 

WIG files of the aligned reads at a 100 nt resolution. 

Fragment Size Estimation 

After shearing and pulling down the DNA, ChIP-seq 

protocols for sequencing library preparation 

generally include a step that selects fragments in a 

certain size range. Typically this selected fragment 

size is significantly longer than the length of the 

sequencing reads such that, for each double 

stranded DNA fragment, reads are produced from 

the 3' ends of either strand of the fragment. 

Consequently, the read distribution in the 

neighbourhood of a protein binding site typically 

shows two peaks on opposite strands of the DNA, 

approximately one fragment size apart (25). The 

typical fragment size can thus be estimated by 

analysis of the correlation between read counts on 

opposite strands as a function of their distance. 

Crunch estimates the fragment size by finding the 

distance d that maximizes the correlation function 

𝐶 𝑑 =    𝑟! 𝑖 𝑟!(𝑖 + 𝑑)
!  ∉  !

                              (1) 

where 𝑟! 𝑖 and 𝑟! 𝑖 + 𝑑  are indicator functions that 

equal one if at least one read starts on the plus 

strand at position i, and on the minus strand at 

position i+d, respectively, and the sum is over all 

genomic positions excluding regions annotated as 

repeats (which we denoted by R). Note that we use 

indicator functions rather than raw read counts to 

avoid the correlation function to be dominated by a 

few pairs of positions with aberrantly large read 

counts. 𝐶(𝑑) is computed for a range of d between 0 

and 600 nt. A typical resulting cross-correlation 

function is depicted in Fig. 2, left panel. 

As Fig. 2 illustrates, we often observe a local 

maximum in C(d) at a value of d that equals read 

length. Since this local maximum is clearly an 

artefact (we believe it derives from reads mapping to 

repeat regions), we determine the fragment size by 

finding the local maximum in C(d) while only 

considering values of d that are 80nt or more. 

Peak Calling 

Peaks are called in a two-step procedure. First, 

genomic regions that are enriched for reads from the 

chromatin immuno-precipitation are detected, and 
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second, individual binding events inside these 

enriched regions are identified. 

Identifying enriched regions 

For the first step we begin with counting mapped 

reads in genome-wide sliding windows both for the 

immuno-precipitated sample (which we call 

foreground) and a reference sample which typically 

consists of input DNA (which we call background). 

For each read, we estimate the central position of 

the corresponding fragment to be half a fragment 

size toward the 3' direction, i.e. forwards for reads 

on the plus strand and backwards for reads on the 

minus strand. We then slide a window of length 500 

nt along the genome, shifting the window in steps of 

250 nt, and count the number of mapped fragments 

whose estimated central position falls inside each 

window. The choice of window length 500 is a trade-

off between obtaining sufficient mapped reads to 

measure local fragment density with reasonable 

accuracy, and obtaining sufficient spatial resolution 

to ensure that windows cover only one or a few 

binding peaks. If desired users can change this 

default window length.  

To estimate the density of fragments from the 

background sample we count fragments using 

windows of length 2000 nt centred on the same 

position as the corresponding foreground windows. 

We decided to use windows of larger width for the 

background because the background signal typically 

varies more slowly along the genome, and because 

the background read density is typically lower than 

in binding peaks, larger regions are needed to 

suppress the Poisson sampling noise. 

We then normalise the counts by the total sample 

read count to get read densities. In case of 

replicates we simply sum the counts of the replicates 

together. 

The read densities in the background sample should 

ideally be approximately constant along the genome. 

However, as illustrated in Fig. 3A, we typically find 

that, while the large majority of windows has read 

counts within a narrow range, a very small fraction of 

windows shows abnormally high read counts. 

Although we have not extensively studied how these 

high read counts arise, we know that they tend to be 

repetitive regions that align poorly with the genomes 

of closely-related species (data not shown). We 

suspect that these repeat regions may have 

significantly expanded in the genome from which the 

sample derives compared to the reference 

assembly. These regions do not obey the statistics 

that are observed for the vast majority of the 

genome, and this leads to a high rate of false 

prediction of binding peaks in these regions. We 

thus developed a procedure to filter out these 

regions with unusually high background signal, and 

exclude them from further analysis. 

Reasoning that normal background signals should 

show roughly exponential tails, we fit the tail of the 

reverse cumulative distribution of the background 

read counts to an exponential distribution and 

determine the point at which the observed 

cumulative starts deviating more than 𝑒!.! vertically 

from the exponential tail (red line in Fig. 3A). All 

windows with counts above the determined point are 

excluded from further analysis, which typically 

corresponds to approximately 0.1% of all windows. 

To detect regions that have a significantly higher 

density of reads in the ChIP sample than in the 

background sample we fit a mixture model to the 

observed read counts across the genome. In 

particular, if m out of a total of M reads in the 

background sample fell in a given window, then we 

assume that the probability for n out N reads from 

the ChIP sample to fall in the same window is given 

by a two-component mixture:  

𝑃!"#(𝑛, ∣ 𝑁,𝑚,𝑀,𝜎, 𝜇, 𝜌) = 𝜌𝑃!"(  𝑛|𝑁,𝑚,𝑀,𝜎, 𝜇) +

  (1 − 𝜌)𝑃!"(  𝑛|𝑁,𝑚,𝑀)          (2), 

where 𝑃!"(  𝑛|𝑁,𝑚,𝑀,𝜎, 𝜇, 𝜌) is the probability of 

observing n out of N reads under a background 
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model which assumes that there is no enrichment in 

the ChIP sample, and 𝑃!"(  𝑛|𝑁,𝑚,𝑀) is the 

probability of observing n out of N reads under a 

`foreground' model that allows for an arbitrary 

enrichment in the ChIP-sample. The parameter ρ is 

the fraction of windows that are not enriched, while 

(µ,σ) are parameters of the background model that 

we will now explain. 

As we have shown previously (18), the fluctuations 

in next-generation sequencing read-densities across 

replicate experiments can be well approximated by a 

combination of multiplicative noise (which may 

results from uncontrolled variations both in the 

biological state of the cells and variations in the 

process of preparing a sequence library from the 

sample) and Poisson sampling noise (from the 

sequencing itself), which leads to an approximately 

log-normal distribution of read-counts. This yields 

the following background distribution: 

𝑃!" 𝑛 𝑁,𝑚,𝑀,𝜎, 𝜇

=
1

2𝜋   2𝜎! + 1
𝑛 +

1
𝑚

exp −
log 𝑛

𝑁 − log 𝑚
𝑀 − 𝜇

!

2 2𝜎! + 1
𝑛 +

1
𝑚

             3  

The term 2𝜎! is the variance of the multiplicative 

noise component and the term 1/𝑛   +   1/𝑚 

constitutes the contribution to the variance from the 

Poisson noise components of both the foreground 

and background samples (see (18) for details). As a 

significant fraction of the reads in the foreground 

sample derive from bound regions, the read density 

in regions without binding is systematically lower 

than in the background sample. The parameter 𝜇 

corresponds to the resulting overall shift in log-

density in the unbound regions. Note that this 

distribution differs from the negative binomial 

distribution, which is often used to model the 

statistics of next-generation sequencing read counts 

(26), and which is obtained when one assumes that 

biological replicate noise is approximately Gamma 

distributed as opposed to the log-normal distribution 

that our model assumes.   

Finally, for the foreground distribution we assume a 

simple uniform distribution for the difference in log 

read-density. That is, we have 𝑃!"(  𝑛|𝑁,𝑚,𝑀)   =   
!
!

,  

where 𝑊 is a constant that corresponds to the 

possible range of values for the difference in log 

read densities 𝑓 𝑛,𝑚 = log !
!
− log  (!

!
) which is 

set to max 𝑓 𝑛,𝑚 −min  (𝑓 𝑛,𝑚 ). We then fit the 

parameters 𝜇, 𝜎 and 𝜌 by maximising the log-

likelihood of the ChIP-seq data using expectation 

maximisation (for more detail consult the 

supplementary text S4). Finally, since the Gaussian 

approximation of equation (1) becomes inaccurate 

when the raw read counts are as low as zero or one, 

we only include window pairs where both the 

foreground and background window have a read 

count of 2 or more. In addition, we add a pseudo 

count of 0.5 to the read counts.   

For every window we then compute a z-score with: 

𝑧 =
log 𝑛

𝑁 − log 𝑚
𝑀 − 𝜇

2𝜎! + 1
𝑛 +

1
𝑚

                    (4) 

Note that, if there was no binding at any of the 

windows in the genome, the statistic z should follow 

a standard normal distribution. As illustrated in Fig. 

3B, for most data-sets we find that the z-scores of 

the large majority of windows indeed accurately 

follow a standard normal distribution, indicating that 

our statistical model successfully captures the noise 

distribution in the unenriched regions, which 

constitute the large majority of the genome. It also 

illustrates that a small fraction of windows shows 

substantially higher z-scores than expected under 

the background distribution. 

We set the minimum z-score to call a window 

significantly enriched by fixing the false discovery 

rate to 0.1 (Fig. 3C and supplementary text S5 for 

more detail). All windows above the chosen z-score 

threshold are then used for further analysis. Since 

we chose the sliding windows to overlap, we merge 
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overlapping windows that passed the threshold into 

larger enriched regions. 

Identifying individual binding peaks within 

enriched regions 

Our methodology for identifying enriched genomic 

regions returns that are typically 500-1000 base 

pairs in length, which is significantly longer than the 

length of individual protein binding sites on the DNA. 

In the second step of peak calling we search for 

individual binding events by inspecting the ChIP-

signal at a higher resolution. For this we compute for 

each position in each significantly enriched region 

the number of foreground fragments that overlap it. 

Here fragments are reads that were extended from 

their 5' end to fragment size in 3' direction. The 

result is a coverage profile for each significantly 

enriched region (Fig. 3D). 

To detect individual binding events we now fit the 

coverage profile of each enriched region as a 

mixture of Gaussian peaks plus a uniform 

background distribution. Approximating the data as if 

the coverage C(i) at each position i in the region 

were an independent observation, the likelihood of 

the mixture model takes on the following form: 

𝐿 𝐶 𝜇,𝜎, 𝜌,𝑊 =       𝜌!
1

2𝜋𝜎!!
exp −

𝑖 − 𝜇!
!

2𝜎!
!

!

!!!

+ 1 − 𝜌!
!

1
𝑙
  

  ! !

                       5  

where 𝑖 runs over all positions from 1 to 𝑙 in the 

region, 𝐶(𝑖) is the coverage at position 𝑖, i.e. the 

number of fragments that are overlapping position 𝑖, 

𝑗  runs over all Gaussian peaks in the model, 𝜇! and 

𝜎! are the central position and width of the Gaussian 

𝑗, 𝜌! is the fraction of all observations that belong to 

Gaussian 𝑗, and the last term corresponds to the 

uniform background distribution that accounts for the 

coverage not associated with the Gaussian peaks. 

Importantly, for individual binding sites on the 

genome, the width of the resulting coverage peak is 

a relatively well-defined function of the fragment 

length and we use this to constrain the widths 𝜎! of 

the Gaussian peaks to fall within a range that is 

consistent with these peaks corresponding to single 

binding sites on the genome (see supplementary 

text S5 for more details). We also use our 

knowledge of the typical width of individual binding 

peaks to set the numbers of Gaussians in the 

mixture model. In particular, the number of Gaussian 

components is determined by dividing the length of 

the region by four times the fragment size, and 

taking the floor of this value. In case this number is 

smaller than 2, we use 2 Gaussians in the mixture 

model. We again fit the parameters of the model by 

maximizing the likelihood of the coverage profile 

using the method of expectation maximisation 

(supplementary text S6). 

After fitting the parameters of the mixture model we 

often end up with highly overlapping Gaussians. We 

merge overlapping Gaussians if the difference 

between their means is less than the sum of their 

widths (standard-deviations), which roughly 

corresponds to the condition that there is no local 

minimum in the coverage profile between the two 

peaks. The ρ-weighted averages of the means and 

standard-deviations of the overlapping Gaussians 

are then used to define a single merged Gaussian. 

Finally, for each Gaussian component, the binding 

peak is defined as the region from µμ − 𝜎 until µμ + 𝜎, 

as illustrated in Fig. 3D. 

Note that, because the number of Gaussians used in 

the mixture is chosen to be an upper bound on the 

number of real binding peaks, some of the 

component peaks may not exhibit a significant 

enrichment over background. We thus calculate a z-

score for each individual peak and only retain those 

peaks with a z-score above the threshold computed 

in the preceding section. The z-score is computed 

according to equation (4) using newly computed 

counts 𝑛 which result from summing the contribution 
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of the Gaussian peak in equation, together with the 

uniform background.  The number of renormalized 

number of reads associated with peak j, in a region 

of length 500, is given by 

𝑛! =
𝐶(𝑖)!

!!!

𝑓
𝜌! +

500
𝑙

1 − 𝜌!
!

  ,                              (6) 

where f is the fragment size. Note that the first factor 

corresponds to the total number of reads assigned 

to the region. The two term within the parentheses 

give the total fraction of these reads that are 

assigned to peak j. The first term, 𝜌!, corresponds to 

the fraction directly assigned to the peak by the 

mixture model, and the second term corresponds to 

the total number of background reads in a region of 

length 500.  

Association of binding peaks with genes and 

promoters 

To annotate which genes may be regulated by the 

regulatory elements within the peak, we use our 

curated collection of promoters from SwissRegulon 

(18), (27), and record the three closest promoters 

up- and downstream from the peak, as well as the 

genes associated with these promoters. In addition, 

for each peak we provide a link to the SwissRegulon 

genome browser, displaying the peak within its 

genomic context, including annotations of known 

transcripts, transcription start clusters, known 

promoters, and predicted transcription factor binding 

sites within these promoters. 

Regulatory Motif Analysis 

One of Crunch's main strengths is that it performs an 

extensive regulatory motif analysis, with the aim of 

optimally explaining the observed ChIP-seq signal in 

terms of the occurrences of regulatory sites for both 

novel and known regulatory motifs. To 

comprehensively characterize the regulatory sites 

occurring within each binding peak, we use a 

combination of de novo motif finding and binding site 

prediction for a large collection of known regulatory 

motifs. Using these predictions we then find a 

complementary set of regulatory motifs that 

optimally explains the observed ChIP-seq data using 

a novel approach that computes alikelihood of a 

given motif set under an idealized model of the 

chromatin immuno-precipitation process.  A greedy 

optimization algorithm is used to find the set of 

complementary motifs that maximizes this likelihood. 

In addition, we compute a number of different 

statistics to characterize the distribution of binding 

sites within peaks for all motifs within the 

complementary set. 

To perform the motif analysis we collect the top 1000 

individual binding peaks with the highest z-scores 

and randomly divide them into a training set 

𝑃!"#$%$%&  of 500 peaks that we will use to find and 

optimize motifs, and a test set 𝑃!"#!  of 500 peaks 

that we will use to assess the performance of 

possible motif combinations. If there were less than 

1000 significant peaks, the algorithm will use all 

peaks and return a warning in its output.  

De Novo Motif Finding  

To identify novel motifs Crunch uses PhyloGibbs 

(19), which implements a Bayesian model for 

assigning posterior probabilities to configurations of 

putative sites for a number of unknown regulatory 

motifs (with both the total number of sites and 

maximum number of different motifs defined by the 

user), and samples configurations in proportion to 

their likelihood using Markov Chain Monte Carlo. 

PhyloGibbs was specifically constructed to 

incorporate information from conservation patterns 

across orthologous genomic regions given their 

phylogenetic relationships. For each binding peak in 

the training and test sets we extract orthologous 

sequences from other mammalian genomes (hg19, 

mm9, rheMac2, canFam2, bosTau6, equCab2, 

monDom5) in case of data from human or mouse, or 

from droSim1, droYak2, droEre2, droAna3, dp4, 

droWil1, droVir3, droMoj3 and droGri2 in case of 

data from Drosophila, using UCSC's pairwise 

alignments and multiply align them using T-Coffee 
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(28) as described in (20). To enable the detection of 

several, potentially non-redundant, motifs we run 

PhyloGibbs six times with different settings: Either 

using phylogenetic information and multiple 

alignments or using only the sequence from the 

reference species, and searching for motifs of 

lengths of either 10, 15, or 20 nucleotides. In each 

case we are searching for two motifs simultaneously 

(-z 2) defining that both together are expected to 

have 350 binding sites within the 500 peaks of the 

training set. Further, we use a first order background 

model (–N 1). This procedure yields 12 predicted 

motifs, represented by position specific weight 

matrices (WMs). 

To further optimise these WMs we use the MotEvo 

algorithm (20) in WM refinement mode. MotEvo 

uses an expectation maximization procedure to 

optimize a set of WMs so as to maximize the 

likelihood of the input sequences as a mixture of 

WM sites and background. Applying this procedure 

separately to each WM using the sequences from 

the training set yields 12 refined motifs. 

Since PhyloGibbs searches for motifs of a 

predefined width, one often observes a core motif 

flanked by uninformative columns, i.e. columns with 

nucleotide frequencies matching the background 

frequencies. We trim all 24 motifs from both ends 

until a column with information content of at least 

0.25 bits appears. Thus, at the end of these 

procedures, we have at most 24 candidate de novo 

motifs that we will subject to further analysis. 

Reference Library of Known and de novo 

Candidate Motifs  

We have collected a large library of known 

mammalian regulatory motifs from the literature. This 

library consists of the motif libraries from JASPAR 

(29), HOCOMOCO (30), HOMER (12), UNIPROBE 

(31), ENCODE (32), HTSELEX (33), and 

SwissRegulon (27), containing a total of 2325 motifs. 

For each data-set, we fuse the library of known 

motifs with the de novo motifs to form a complete set 

of candidate motifs that we denote 𝑊!"# . 

Test Set of Pooled Binding Peaks and 
Background Sequences 

We now aim to find a set of non-redundant 

regulatory motifs 𝑤  that jointly best distinguish the 

observed binding peaks from a large set of DNA 

sequences with similar nucleotide composition. To 

this end we take the sequences from 𝑃!"#!  and 

augment them with a set of 5000 background 

sequences 𝑃!",!"#!  that we obtain by repeatedly 

shuffling the nucleotides in the sequences from 

𝑃!"#! . Note that this ensures that the background 

sequences have the same distribution of nucleotide 

compositions and sequence lengths as the peaks in 

the test set. We denote the joint set of binding peak 

sequences and background sequences as the 

pooled test set 𝑃!""#,!"#! . Note that we have ten 

times as many background sequences as binding 

peak sequences.  

Enrichment for a Set of Motifs 

To assign a performance measure to a set of motifs 

𝑤 , we calculate the probability of observing the set 

of ChIP-seq peaks 𝑃!"!"  under an idealized 

representation of the immuno-precipitation. We 

image that our set of 500 peaks resulted from 

immuno-precipitating 500 sequences from our pool, 

and we assume that the probability 𝑃!" 𝑝 {𝑤}  for a 

particular sequence p to be immuno-precipitated is 

proportional to 

𝑃!" 𝑝 {𝑤} ∝ 𝑛!, ! + 𝛽𝑙!                                        (7) 

where 𝑛!, !  is the total number of binding sites for 

motifs of the set 𝑤  within p, 𝑙! is the peak’s length 

and β corresponds to the amount of non-specific 

binding per nucleotide. We added a non-specific 

binding term mainly because we observed that this 

strongly improves the likelihood of our model (data 

not shown).  That such non-specific binding occurs 

is well supported by the known electrostatic 
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attraction between DNA and DNA binding proteins. 

As the probability of immune-precipitating any 

particular peak from our pool must equal one, we 

obtain the normalized probabilities: 

𝑃!" 𝑝 {𝑤} =
𝑛!, ! + 𝛽𝑙!

𝑛!!, ! + 𝛽𝑙!!!!∈ !!""#,!"#!

=
𝑛!, ! + 𝛽𝑙!
𝑁{!} + 𝛽𝐿

                                (8) 

Where 𝑁{!} is the total number of binding sites of 

𝑤  within 𝑃!""#,!"#!  and L is the total length of all 

sequences in 𝑃!""#,!"#! . We can now define the log-

likelihood to observe precisely the set of binding 

peaks 𝑃!"#!  when sampling with the probabilities 

(8), which is given by 

𝐿!" 𝑃!"#! {𝑤} = log
𝑛!, ! + 𝛽𝑙!
𝑁{!} + 𝛽𝐿!∈ !!"#!

            (9) 

Although the relative values of the log-likelihood (9) 

can be used to optimize the motif set 𝑤 , its 

absolute value depends on the specifics of our 

setup, i.e. the total number of sequences, and the 

1:10 ratio of true peak sequences to background 

sequences. We apply two transformations to the log-

likelihood (9) in order to obtain a score with a more 

general and intuitive interpretation. First, we subtract 

the log-likelihood of sampling the peak sequences 

from the pool entirely by chance. We then get the 

log-likelihood ratio: 

𝐿𝑅!" 𝑃!"#! {𝑤}

= log
𝑛!, ! + 𝛽𝑙!
𝑁{!} + 𝛽𝐿!∈ !!"#!

+ log 𝐹 + 𝐵                     (10) 

Where F is the number of foreground peak 

sequences, i.e. 𝐹 = 𝑃!"#!  and B is the number of 

background sequences, i.e. 𝐵 = 𝑃!",!"#! . With 

𝑛!",{!}  and 𝑛!",{!}  denoting the average numbers 

of sites of {w} in the foreground and background, 

respectively, and 𝑙  the average length of the 

sequences in 𝑃!""#,!"#!  we can rewrite this as: 

𝐿𝑅!" 𝑃!"#! {𝑤}

= log
𝑛!, ! + 𝛽𝑙!

𝐹
𝐹 + 𝐵 𝑛!",{!} +

𝐵
𝐹 + 𝐵 𝑛!",{!} + 𝛽 𝑙!∈ !!"#!

  (11) 

Defining 𝜌 = 𝐹/(𝐹 + 𝐵) as the fraction of true ChIP-

seq peaks in the pool, this can also be written as 

𝐿𝑅!" 𝑃!"#! {𝑤}

= log
𝑛!, ! + 𝛽𝑙!

𝜌 𝑛!",{!} + (1 − 𝜌) 𝑛!",{!} + 𝛽 𝑙
!∈ !!"#!

= log
𝑛!, ! + 𝛽𝑙!

𝜌 𝑛!", ! − 𝑛!", ! + 𝑛!",{!} + 𝛽 𝑙
!∈ !!"#!

  (12) 

While, for computational efficiency, we created 10 

times as many background sequences as true 

peaks, in reality the observed binding peak 

sequences form a very small fraction of the entire 

genome that the ChIP-seq experiment is 

samplingfrom. A more realistic score is thus obtained 

when taking the limit of the fraction of true peaks in 

the pool going to zero: 

lim
!→!

𝐿𝑅!" 𝑃!"#! {𝑤}

= log
𝑛!, ! + 𝛽𝑙!
𝑛!",{!} + 𝛽 𝑙

!∈ !!"#!

      (13) 

This expression gives the log-likelihood ratio of 

immuno-precipitating the true peak sequences 

𝑃!"#!  from a very large pool of sequences of equal 

composition and length, between a model in which 

sequences are sampled proportional to the number 

of sites they contain for motifs from {w}, and a model 

in which sequences are sampled randomly. Finally, 

we normalize by dividing by the number of peak 

sequences in 𝑃!"#!   and exponentiating: 

𝐸{!}

= exp
1
𝐹

log
𝑛!, ! + 𝛽𝑙!
𝑛!",{!} + 𝛽 𝑙

!∈ !!"#!

                                            (14) 

The resulting `enrichment' 𝐸{!} has a simple 

interpretation: it measures how much more likely it is 

(on average) to immuno-precipitate a true binding 

peak as opposed to a background sequence. 
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Obviously, this quantity will depend on how we 

predict binding sites for {w} as well as on the choice 

of the parameter β. In the next section we discuss 

both thoroughly. Finally, we note that we denote the 

enrichment of a single motif 𝑤 by 𝐸!.  

Binding site prediction and accounting for non-

specific binding  

To calculate the number of binding sites 𝑛!, !  in 

each peak (or background) sequence p we use the 

MotEvo algorithm (20). MotEvo is a Bayesian 

algorithm that models the input sequences as a 

mixture of non-overlapping sites for the motifs from 

𝑤  and nucleotides deriving from a background 

model (34) and calculates posterior probabilities of 

binding sites to occur for each of the motifs in 𝑤  at 

each of the positions in the sequences. MotEvo's 

TFBS predictions depend on a set of prior 

probabilities 𝜋 , with 𝜋! denoting the prior 

probability that a randomly chosen position on the 

input sequences corresponds to the start of a 

binding site for motif 𝑤 ∈ 𝑤 . For any input data-set 

MotEvo can be run so as to optimize the parameters 

𝜋 , i.e. maximizing the likelihood on the input data. 

To optimize the parameters 𝜋  in a way that is 

independent of the test data 𝑃𝑝𝑜𝑜𝑙,𝑡𝑒𝑠𝑡  we create an 

equivalent pool of sequences consisting of the set of 

training peaks and a set of background sequences 

𝑃𝑝𝑜𝑜𝑙,𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 = 𝑃𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 ∪    𝑃𝑏𝑔,𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 , where 

𝑃𝑏𝑔,𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔  is produced analogously to 𝑃𝑏𝑔,𝑡𝑒𝑠𝑡 . 

Once we have determined the optimal prior 

probabilities 𝜋 ∗ for 𝑤  on the set 𝑃𝑝𝑜𝑜𝑙,𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔  we 

additionally optimize the non-specific binding 

parameter β by maximizing equation (14) for this 

training set. We then fix the optimal priors 𝜋 ∗ and 

optimal β* and use MotEvo with these parameters 

on the test pool 𝑃!""#,!"#!  to calculate the site 

counts 𝑛!, !  by summing all predicted binding site 

posteriors within peak 𝑝. 

It is worthwhile to note that the algorithm that 

MotEvo employs is equivalent to a thermodynamic 

biophysical model in which the priors 𝜋  correspond 

to the concentrations of the TFs associated with the 

motifs in 𝑤  and the posterior probabilities of the 

sites correspond to the fraction of time the sequence 

is bound by the TF. In this interpretation the 

maximization of the priors 𝜋  corresponds to 

maximizing the total binding free energy of the input 

sequences.  

Another important thing to note is that, as MotEvo 

only considers non-overlapping configurations of 

binding sites, redundant motifs compete for binding 

and consequently will not increase free energy of 

binding when added to 𝑤 . More precisely, the sum 

of the optimized priors of two redundant motifs will 

be approximately equal to the optimized prior of one 

of the two redundant motifs by itself. In this way, 

addition of redundant motifs to the set 𝑤  will 

generally leave the binding site counts 𝑛!, !  

unchanged. 

Finding an Optimal Complementary Set of Motifs 

Now that we are able to compute the enrichment 

𝐸 !  given an arbitrary set of motifs, we can start 

trying to find the optimal subset 𝑊 ⊆ 𝑊!"#  that 

maximises 𝐸 ! . As an extensive search for all 

subsets of all sizes of 𝑊!"#  is computationally 

infeasible, we use a greedy algorithm that 

maximizes 𝐸 !  by adding one motif to the final 

subset at a time. 

We start by calculating the enrichment 𝐸! for each 

motif in our library and sort all motifs by this score. 

To speed up the selection procedure, we reduce 

𝑊!"#  further by removing motifs that are highly 

similar to a motif that is higher in this sorted list. To 

this end we use the inner product of two matrices as 

a simple similarity measure.  Further details on this 

procedure are provided in supplementary text S7.  
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Using the reduced set of motifs 𝑊!!"#$!"  we 

construct our final set of motifs 𝑊  with the 

following algorithm:  

We initialize 𝑊  with the motif 𝑤!"# which had 

the maximal enrichment 𝐸!  of all motifs in the 

library. We then iterate: 

1. For every motif 𝑤! left in 𝑊!"#$%"#  compute 

E !∪  !! . 

2. Denote the motif 𝑤! with maximal E !∪  !!  by 

𝑤!"#.  

3. If E !∪!!"#  increases E !  by more than 5%, 

add 𝑤!"# to 𝑊  and go to step 1. 

Otherwise, terminate the algorithm.  

The cut-off of at least a 5 percent increase for each 

added motif was chosen so as to allow even motifs 

that add relatively little to be incorporated, while at 

the same time avoiding adding redundant motifs. 

Assessing Motif Quality 

Besides the enrichment score 𝐸!   we use a number 

of additional statistics to characterize the way in 

which each motif from the set 𝑊  associates with 

the binding peaks. For example, for each motif we 

report what fraction of the binding peaks contains at 

least one site for the motif. In addition, although the 

enrichment score 𝐸!  rigorously quantifies the ability 

of the motif to explain the observed peaks, we also 

provide a more standard precision-recall curve that 

shows how well binding peaks can be distinguished 

from background sequences based on the number 

of predicted sites. That is, by varying a cut-off on the 

total number of binding sites T we calculate what 

fraction of binding peaks have a number of sites 

larger than T (sensitivity) and what fraction of all 

sequences with more than T sites are true binding 

peaks (precision). The precision-recall curve shows 

the precision as a function of the sensitivity and the 

overall quality of the classification is quantified by 

the area under the curve, which is 1.0 for a perfect 

classifier and 0.1 for a random classification 

(because the true binding peaks are 10 times rarer 

than background sequences).  

If sites for a motif correspond directly to the binding 

sites for the TF that was immuno-precipitated, then 

one would expect the strength of the ChIP signal of 

a peak to correlate with the number of predicted 

binding sites in the peak. As another statistic, we 

calculate the Pearson correlation between the 

number of binding sites per peak and the z-value of 

the peak. To visualize the correlation between the 

ChIP-signal and the number of predicted sites, we 

bin all peaks by their z-value and show, for each bin, 

a box-plot showing the distribution of binding site 

numbers for peaks within the bin.  

Finally, if binding sites for the motif were directly 

responsible for the immuno-precipitation of the 

fragments, then we would expect the positions of the 

binding sites within the peak region to co-localize 

with the peak of the ChIP signal. To quantify this co-

localization we calculate a positional enrichment  

𝐸𝐴𝐵𝑆! =
! ! !! !!

! !! !!
                     (17) 

Here i runs over all predicted binding sites of 𝑤 with 

posterior probability 𝑝! 𝑖 ≥ 0.2,  𝑐(𝑖) is the read 

coverage at the centre of site 𝑖 and 𝑐 is the mean 

read coverage of the enriched regions from the first 

step of peak calling. To visualize this enrichment 

across binding peaks, we also show the distributions 

of average read coverage at predicted sites and the 

distribution of average read coverage across the 

entire peak region.  

Correlations in Motif Occurrence  

The set of non-redundant motifs 𝑊  jointly explain 

the binding peaks but we have so far not analysed 

which of these motifs tend to co-occur in the same 

peaks, and which motifs tend to occur in different 

peaks. As last step of the characterisation of TF 

binding we assess relative motif occurrence, i.e. all 

pairwise correlations in occurrence of the motifs in 

our selected set 𝑊 . That is, for each pair of motifs 
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we calculate the Pearson correlation between the 

site counts across all peak regions. To visualize 

these correlations we create a heat map of between-

motif correlation over peaks.  

Consistency of Motif Sets 

To compute the consistency C of two sets of motifs 

S1 and S2, we use the following measure: 

𝐶 𝑆1, 𝑆2 =   
𝛿(𝑆1! − 𝑆2!)

1
2!"# !,! !!!!

1
2!!!! + 1

2!!!!

                      (18) 

Here, i and j run from 1 to the number of motifs in S1 

and S2, respectively. The measure runs from 0 (no 

matching members) to 1 (two identical sets) and is 

an extension of the Dice set similarity measure to 

ordered sets (35). 

In the above two motifs are only considered to 

match when they are the exact same motif. 

However, in our library there are many redundant 

motifs for the same TF that are highly similar and 

when we compare two sets of motifs, we want to 

consider such highly similar motifs as matches. We 

thus loosen the consistency measure as follows:  

𝐶 𝑆1, 𝑆2

=   
𝜃(0.2 − 𝑑(𝑆1! , 𝑆2!))

1
2!"# !,! !!!!

1
2!!!! + 1

2!!!!

,                      (19) 

where Θ(x) is the Heaviside step-function which is 0 

if its argument is negative and 1 otherwise, and 

𝑑(𝑆1! , 𝑆2!) is the distance between motif i in S1 and 

motif j in S2 as described in supplementary text S7. 

If the distance between two motifs is lower than 0.2, 

the motifs are considered to match. 

RESULTS 

For testing the performance of Crunch we analysed 

a large set of ChIP-seq experiments performed by 

the ENCODE consortium (2). We chose to run all 

experiments performed on cell line GM12878 and to 

additionally run all experiments of the Michael 

Snyder laboratory at the Stanford University 

performed on the HeLaS3 cell line. In total we 

analysed 128 experiments in which 93 different 

factors were immuno-precipitated. Full reports for all 

ENCODE ChIP-seq data-sets are available at: 

crunch.unibas.ch/ENCODE_REPORTS. 

Firstly, to illustrate the results that Crunch provides 

after submitting a data-set, we give an overview of 

Crunch's analysis report for one of the samples of 

the ENCODE ChIP-seq experiments. Secondly, to 

assess Crunch's performance we compare the 

quality of Crunch’s de novo motifs to a large library 

of motifs that we collected from other resources.  

Submitting data to Crunch 

One of the main strengths of Crunch is its simplicity 

of use. A user only needs to upload ChIP-seq data, 

in FASTQ, FASTA or BED format, and select the 

corresponding organism (human, mouse or 

Drosophila). Although a single immuno-precipitation 

dataset, i.e. a `foreground', suffices, it is strongly 

advisable to upload `background' samples, i.e. input 

DNA, as well . Optionally, more advanced users can 

choose to edit a number of options such as the 

window sizes that are used to identify enriched 

regions, and the cut-off on false discovery rate, 

although these are set to defaults that we believe 

should work for most datasets. Users can specify an 

e-mail address to get a notification when the 

analysis has finished. 

Analysis and report overview 

In a typical ChIP-seq experiment the protein that is 

immuno-precipitated is a DNA binding protein and 

the main aims of the experiment are to identify the 

genomic loci where the protein is binding either 

directly or indirectly, and the genes that are 

potentially regulated by these binding events. For 

DNA binding proteins that bind DNA in a sequence-

specific manner, additional aims are to characterize 

the sequence specificity of the protein, and also to 

identify other DNA binding proteins that are co-
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localizing with the immuno-precipitated factor, 

possibly through direct interactions. Besides these 

major biological aims, researchers of course also 

want to assess the quality of their experimental 

results. Crunch provides answers to all of these 

questions and makes its analysis results accessible 

through an interactive graphical web interface.  

To illustrate the results that Crunch provides, we 

chose an experiment from the ENCODE collection, 

conducted by the Michael Snyder laboratory at 

Stanford University, where the BRCA1 protein was 

pulled down from GM12878 cells. Two replicate 

foreground (immuno-precipitation) samples as well 

as two replicate background (input DNA) samples 

were produced. The raw foreground replicates were 

downloaded from (36), (37) and the raw background 

replicates from (38), (39). The complete Crunch 

report for this data is available at (40). 

BRCA1 is a tumour suppressor that, since it was first 

uncovered in 1990 (41), has been subject to 

extensive studies. Mutated BRCA1, together with 

BRCA2, is reported to be responsible for 

approximately two thirds of all familial breast cancer 

cases, whereas about 10% of all breast cancer 

cases are familial (42). In addition, mutations within 

these genes increase risk for ovarian, pancreas, 

uterus, cervix and prostate cancers (43). BRCA1 is 

involved in several different cellular pathways 

including DNA damage repair, cell cycle check 

points, centrosome duplication, transcriptional 

regulation as well as the immune response (42), 

(43). Although BRCA1 is a DNA-binding factor with a 

preference for binding at sites of damaged DNA, it 

does not bind DNA specifically in that it has a clear 

binding sequence motif (43), (44). However, it 

interacts with a number of different proteins including 

sequence-specific DNA binding factors and RNA 

polymerase II. For example, in the context of DNA 

damage repair, BRCA1 builds a large complex 

called BASC (45). 

The analysis performed by Crunch is structured into 

three steps, as schematized in Fig. 1, and the 

analysis report is structured accordingly.  In the first 

section a separate report is provided for each 

submitted data sample, containing a quick overview 

of the quality of the sample, some statistics about 

how its reads mapped to the reference genome, as 

well as the estimation of the sample’s fragment size. 

The second section concerns the peak calling and 

presents different information about the called 

peaks. The third section discusses the results of the 

motif analysis as well as the characteristics of the 

selected motifs. In a fourth and last section, files 

containing the analysis results are made available 

for download. 

Quality Control, Mapping, Fragment Size 

Estimation (Preprocessing) 

 

 

Figure 2: Summary of the quality control, mapping and 

fragment size estimation steps performed on the immuno-

precipitation dataset (36). 

Crunch produces a simple summary of the pre-

processing steps of the raw ChIP-seq data that 

allows the user to assess the quality of the data. The 

bulleted list shows the initial number of reads, the 

number of reads remaining after the first and second 

rounds of quality control, as well as the final number 

of reads that ended up successfully mapped to the 

reference genome. Loss of a large number of reads 
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at any of these steps may indicate low data quality. A 

more extensive report with more detailed statistics 

regarding the mappings and quality control is 

provided as a PDF for download (see supplementary 

text S2). 

For fragment size estimation we use a cross 

correlation approach (see Fig. 2 left panel). In most 

cases the correlation function shows a clear peak 

indicating that Crunch could unambiguously infer the 

fragment size. However, if no definite peak is visible 

or the estimated fragment size does not clearly 

match a peak in the profile, this indicates that 

Crunch had difficulty inferring the fragment size from 

the data.  

Peak Calling and Annotation 

Peaks are called in a two-step procedure. First, 

genomic regions that are enriched for reads from the 

chromatin immuno-precipitation are detected, and 

second, individual binding events inside these 

enriched regions are identified. Finally, all called 

peaks are annotated with the closest neighbouring 

genes. 

The main challenge in detecting enriched regions is 

to account properly for the noise in the data. We 

developed a novel noise model that models the read 

coverage fluctuations as a convolution of log-normal 

and Poisson sampling noise. We use a Bayesian 

mixture model to separate the genome into enriched 

and un-enriched regions, while fitting the parameters 

of the noise in parallel. According to our noise 

model, properly rescaled enrichment z-values 

should follow a standard normal distribution, and 

enriched regions should be evident as a tail of 

regions with aberrantly high z-values. As shown in 

Fig. 3B, we find that this pattern is indeed observed 

for this example dataset, confirming that our noise 

model correctly captures the fluctuations in read 

coverage across most of the genome. A bad fit of the 

z-value distribution to the standard normal would 

indicate to the user to be cautious with the 

interpretation of the significance levels that are 

reported by Crunch, and a missing right tail is an 

indication for a failed ChIP-seq experiment. i.e. no 

significantly enriched regions are detected. We set a 

z-value cut-off that corresponds to a default false 

discovery rate of 10% (Fig. 3C) and select regions 

with z-values over this cut-off as enriched.  

For identifying individual binding peaks within the 

enriched regions, Crunch uses a Gaussian mixture 

model that decomposes each enriched region into 

individual binding peaks plus a uniform background 

(see Finding Binding Peaks within Enriched 

Regions, and Fig. 3D).  

Each Gaussian of the fitted mixture model results in 

a candidate peak. We re-compute z-values for these 

individual binding peaks, and by applying the same 

z-value threshold as in the first peak calling step, we 

end up with our final set of called peaks. We 

annotate the peaks with the nearest genes up- and 

downstream and link them to the SwissRegulon 

genome browser with further annotations (see 

section Annotating Peaks to Promoters and Genes, 

and Fig. 3E). Within each peak we additionally 

predict binding sites for every motif of the final 

complementary set of motifs (see below). 
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Figure 3: A) Reverse cumulative distribution of the summed read counts from the background samples (38) and (39) in 

genome-wide sliding windows of 2000 nt. Regions with aberrantly high coverage in the background sample are removed 

from further analysis. B) Distribution of the z-scores from all genome-wide sliding widows (in black) and a reference standard 

normal distribution (in red). C) Reverse cumulative distribution of the same z-scores (in black) as well as the z-score 

threshold used in both steps of peak calling (in red), which is 4.25 for this example, and corresponds to an FDR of 10%. 

Note that the  vertical axes in both B and C are in log-scale. D) High resolution ChIP-seq coverage profile of an individual 

enriched region (red), together with the fitted mixture model (black). The two dashed lines in light grey show the  individual 

Gaussians used in the mixture model of this particular coverage profile. The lightly coloured bars highlight the two individual 

binding peaks for which the relative start and end coordinates (first two numbers) as well as the amplitudes (last number) are 

listed in the legend. E) Table with the top 10 called peaks of the BRCA1 experiment. Each peak is annotated with its 

coordinates on the genome, its z-value, its nearest genes and the offsets to its nearest transcription start sites, both toward 

higher and lower genomic coordinates. Through the “Select motif” button the user can add columns containing predicted 

binding sites for each of the selected motifs (see next section). 
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Figure 4: A) Increase of the enrichment score as motifs are added to the complementary set of motifs, showing the 

contribution of each of the selected motifs to explaining the Chip-seq peaks. B)-D) Performance statistics of the top motif 

`denovo_WM_9', i.e. a motif that was identified de novo in this case. B) Precision and recall curve. The area under the 
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precision-recall curve (AUC) is 0.625. For an optimal classifier AUC equals to 1. The curve indicates that occurrence of 

denovo_WM_9 accurately identifies roughly 30-40% of the true binding peaks, but does accurately identify the remaining 

60%. Given that the  BRCA1 is not itself binding to the denovo_WM_9 motif, but a different associated protein instead, this 

might not be too surprising as BRCA1 is likely to have different binding partners at different peaks. C) Correlation between 

the ChIP-signal (peak z-values) and the number of predicted binding sites for denovo_WM_9 sites within every peak. The 

(binned) correlation is quantified by the Pearson correlation coefficient (0.6966). The curve shows that low z-value peaks 

tend to have no predicted binding sites, whereas peaks with z-values of 8 and higher nearly always have a predicted binding 

site. Peaks with very high z-values even tend to have multiple binding sites. D) Illustration of how the coverage of ChIP-

signal at predicted denovo_WM_9 sites compares to the overall coverage at all significantly enriched regions. The green 

curve is the histogram of the coverages i.e. the number of overlapping fragments, at the centers of all predicted 

denovo_WM_9 sites. The blue curve is a histogram of the coverage at every position of all significantly enriched regions. 

The coverage at the predicted denovo_WM_9 sites relative to the overall coverage is quantified as Enrichment at Binding 

Sites which here is 9.1018. E) Summary statistics for all motifs in the selected set of complementary motifs, sorted in the 

order that motifs were added to the set. The columns show motif name, sequence logo, the enrichment of the set up to and 

including this motif, the motif's enrichment in isolation, its precision-recall, its correlation with peak z-value, enrichment of 

ChIP-seq coverage at its sites, and the fraction of peaks in which the motif occurs. F) The top three motifs in the library of 

known motifs with most similarity to denovo_WM_9. G) Heatmap of pairwise correlations between the occurrence of binding 

sites for all selected motifs across all binding peaks.   

A Complementary Set of Motifs jointly explaining 

the observed peak sequences 

A novel feature of Crunch is that it performs an 

extensive regulatory motif analysis. To 

comprehensively characterize the regulatory sites 

occurring within each binding peak, we use a 

combination of de novo motif finding and binding site 

prediction for a large collection of known regulatory 

motifs. Using these predictions we then find a 

complementary set of regulatory motifs that 

optimally explains the observed ChIP-seq data using 

a novel Bayesian approach that computes an 

enrichment which models the process of immuno-

precipitation itself.  

If the protein that was immuno-precipitated is a 

sequence-specific DNA-binding protein, then we 

might expect that he motif describing the binding 

specificity of this protein should suffice to explain the 

observed binding peaks. Indeed, we find that for 

some factors one motif is enough to explain all the 

data (CTCF, for example). However, for the majority 

of datasets we find that a set of complementary 

motifs can explain the data better. These additional 

motifs can be hypothesized to describe co-factors of 

the TF that was immuno-precipitated.  

To characterize the contribution of the 

complementary motifs, we compute three 

performance measures, in addition to the 

enrichment measure (see Material and Methods). 

First, the precision and recall analysis measures 

how well a motif can classify sequences as binding 

peaks based on the number of occurring sites (Fig. 

4B). The correlation analysis between predicted 

(motif occurrence) and observed (ChIP-seq z-score) 

signal measures to what extent a motif can predict 

the strength of the binding peak (Fig. 4C). Finally, we 

measure the extent to which the occurrence of the 

binding sites within the peak regions corresponds to 

the areas of highest ChIP-seq signal (Fig. 4D).  

Fig. 4E summarizes all information collected about 

the complementary motif set, including motif name, 

sequence logo, enrichment score of the whole set 

and each motif separately, precision-recall score, 

prediction-observation correlation, enrichment at 

binding sites, as well as the fraction of all binding 

peaks that have predicted sites for the motif. 
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To help annotate motifs, every motif is compared to 

all known motifs in our library. In Fig. 4F we see the 

3 motifs from our library that are most similar to the 

top motif of our complementary motif set, i.e. the top 

motif in Fig. 4E. These annotations can be viewed 

on the motif page that is linked through the motif 

name in Fig. 4E. This motif page contains all 

information collected on the motif, including plots of 

the motif statistics (Fig. 4B-D), the weight matrix file 

as well as a PDF containing additional statistics. 

Although he statistics in Fig. 4E suggest that the 

denovo_WM_9 motif best represents the binding 

preferences of BRCA1, it is known that BRCA1 does 

not bind DNA sequence-specifically and, therefore, 

denovo_WM_9 is thus most probably not the motif 

describing the binding of BRCA1 itself. Previous 

attempts to identify the protein that is binding to sites 

for this motif were unsuccessful, but it was found 

that a protein complex is binding the motif (46). 

Furthermore, this motif was found to occur primarily 

in TATA-less promoters and to be involved in the 

regulation of the expression of about 5% of all 

human genes, in particular genes involved in protein 

synthesis and cell cycle regulation, especially in the 

G1- to S-phase transition (47). Interestingly, 

BRCA1’s action in cell cycle regulation has also 

been reported to be involved in the same transition 

(48).  

Crunch finds that the closest known motif is 

HOMER.ZBTB33.GM12878-ZBTB33-ChIP-Seq from 

the Homer library (Fig. 4F). ZBTB33 is the gene 

encoding the KAISO protein which is a sequence-

specific TF that has been associated with breast 

cancer and also especially with BRCA1-related 

breast cancer (49). We thus hypothesize that KAISO 

is an interaction partner of BRCA1 and that the 

denovo_WM_9 motif describes the binding 

specificity of the KAISO TF. The same hypothesis 

was also put forward in (32). 

Besides denovo_WM_9, Crunch finds five additional 

motifs that substantially increase the enrichment 

score and have binding sites within the binding 

peaks (Fig. 4A and 4E). The most significant of 

these motifs is a motif associated with the TF 

CREB3, HTSELEX.CREB3.bZIP.full.dimeric.wm1 

(33). Crunch further annotates this motif with ATF 

and JUN family proteins. BRCA1 is well known to 

directly bind to CREB-binding protein (CBP) (50) as 

well as to directly bind to ATF1 (43) and JUN 

proteins (51). We thus hypothesize that a complex of 

BRCA1-CBP-CREB, a complex of BRCA1-ATF1 or a 

complex of BRCA1-JUN is binding to a subset of our 

BRCA1 binding peaks.  

For the next two motifs, SPI1/PU1 and RFX3, we 

could not find any support in the literature. Although 

both together bind only 18 of our peaks, it might still 

be interesting to further investigate these two motifs 

in relation to BRCA1. GFY-staf was found in 

chromatin regions bound by H3K4me3 which are 

specifically open in breast cancer cells (52). And 

finally, we find the STAT1 motif, a TF reported to 

directly bind BRCA1 (43). 

To give further insight into the binding of the inferred 

complementary motifs, we report the pairwise 

correlation between site predictions of all motifs 

across the binding peaks (Fig. 4G). As we were 

selecting a non-redundant set of motifs we do not 

expect any highly positive correlations, which is true 

for our example case. Nevertheless, these 

correlations can reveal interesting features of 

relative TF binding, e.g. whether motifs co-occur or 

whether they bind exclusively. 
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Downloads 

In	
  the	
  last	
  section	
  of	
  the	
  analysis	
  report	
  several	
  files	
  

with	
   analysis	
   results	
   are	
   provided	
   for	
   download.	
  

These	
   include,	
   for	
   each	
   submitted	
   data	
   sample,	
   a	
  

BEDWEIGHT	
   and	
   a	
   WIG	
   file	
   containing	
   mapped	
  

reads that can be used for visualization 

and further processing. In addition, a file 

with all binding peaks and all annotation 

information provided by Crunch for each 

peak is also provided for download. In 

particular, this file contains for each peak, 

its genomic coordinates, its z-value, the 

three nearest flanking promoters on both 

sides, the genes associated with these 

promoters, as well as predicted binding 

sites for all selected motifs within the 

peak. 

Figure 5: Genome-wide fluctuations in ChIP-

seq signal fit Crunch's noise model. The top 

panel shows a cumulative distribution of the 

error of our noise model fits, which is defined 

as the root of the mean squared deviation of 

the z-value distribution, from the expected 

normal distribution, in the range of z-values 

between -5 and 3. For four experiments (red 

dots A, B, C and D) we show the actual z-

value distributions (black) and the expected 

standard normals (red) in the panels below. 

Crunch’s noise model accurately 

reflects noise levels 

Assessing the quality of ChIP-seq 

analysis tools is a non-obvious task. First, 

one could ask to what extent the 

identified binding peaks are `correct'. In the absence of any independent ground truth, this question boils down 

to an assessment of the correctness of the statistical model used to detect significant enrichment of the ChIP-

seq signal relative the background. In the BRCA1 example above, we saw that the distribution of z-values 

inferred by our noise model accurately tracked the expected standard normal distribution, supporting that our 

noise model correctly captures the statistics of ChIP-seq coverage fluctuations across the genome. We find that 

this is the rule. That is, when going through Crunch's reports of all 128 analysed ENCODE experiments, we find 

that, with the exception of a few datasets, the distribution of z-values matches the standard normal predicted by 

our noise model (Fig. 5). This match between the assumed noise model and the observed fluctuations across 
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the majority of the genome supports the statistical significance assigned to the enriched regions. As far as we 

are aware, Crunch is the only tool for which the noise model is explicitly supported by the data.  

Crunch’s de novo motifs often outperform 

literature motifs  

A second deliverable of ChIP-seq analysis is the 

analysis of sequence motifs occurring within the 

peaks. As discussed in the Regulatory Motif Analysis 

section, Crunch determines a complementary set of 

motifs that is enriched in the ChIP-seq peaks. If the 

immuno-precipitated protein binds the DNA in a 

sequence specific manner, this set of motifs likely 

contains the motif that describes the sequence 

binding specificity of the immuno-precipitated 

protein, as well as some motifs for factors that 

interact with this protein. As we usually do not know 

the set of motifs that is interacting with the immuno-

precipitated protein, it is difficult to assess Crunch's 

performance based on the entire set of motifs. 

For quite a number of TFs, there are several motifs 

from different resources that are supposed to 

describe the sequence-specificity of the TF. Since 

we are including motifs from these resources in the 

motif selection procedure, they are in direct 

competition for explaining the ChIP-seq binding data 

with Crunch’s de novo motifs. We can thus assess 

Crunch’s ability to generate high quality de novo 

motifs for a TF from its ChIP-seq data, by comparing 

the performance of these de novo motifs with those 

of known motifs from existing resources.  

Figure 6: The left panel shows a bar plot of the log-transformed ratios between the enrichment score of the top 

de novo motif and the enrichment score of the top literature motif, for all 121 experiments. A positive log-ratio 

means that Crunch’s de novo motif outperformed all library motifs. The panels on the right show the logarithm of 

the ratio of the enrichment score of the best de novo motif and the enrichment score of the best library motif, as 

a function of the enrichment score of the best library motif. The bottom panel shows a zoom in of the boxed 

region on the left in the top panel. 

 To this end we compared, for each of our set of 

ENCODE experiments, the enrichment score for the 

top de novo motif with the enrichment score of the 

top motif from our set of libraries. From the initial 
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128 ENCODE experiments we threw out 7 

experiments where less than 200 peaks were called. 

From the remaining 121 experiments we found that 

for 69 experiments Crunch’s de novo motifs 

performed better, while for 52 experiments a motif 

from our library performed better (Fig. 6). Crunch not 

only provides a superior motif for the majority of the 

experiments, it also often provides a motif that 

performs substantially better than any existing motif. 

That is, because the enrichment score is calculated 

per sequence, and there are 500 sequences in our 

test set, a log-ratio of 0.2 in enrichment score 

corresponds to a likelihood ratio of e100. For 35 de 

novo motifs the log-ratio of the enrichment score is 

larger than 0.2. 

In principle, as long as we can identify a motif that is 

capable of explaining our ChIP-seq data well, we do 

not care whether it is coming from a library or from 

Crunch. In cases where there is no known motif that 

explains the data well, though, we would like Crunch 

to find a de novo motif that is capable of doing that. 

We thus looked at the performance of Crunch’s de 

novo motif relative to the best library motif as a 

function of the performance of the library motif itself 

(Fig. 6, right panel). The bottom right panel of Fig. 6 

shows the 57 cases for which the best library motif 

has a enrichment score of 3 or lower. In 39 of these 

cases, Crunch finds a better motif, and in 24 of 

these cases there is a substantial improvement of 

0.2 or more. 

We observe two types of DNA binding factors: solitary binders and co-binders 

 

Figure 7: Left panel: Histogram of the additional information for all 121 complementary motif sets from the ENCODE data. 

The  vertical axis shows the number of TFs in a certain additional information bin. For the TFs with names in black, there is 

only a single data, while for TFs with colored font there are multiple datasets. In case there is a number in front of the TF 

name it indicates the number of experiments for that factor within the same bin. Right panel: Additional information computed 

from separate experiments of 24 TFs. The horizontal axis lists the 24 factors for which we have multiple experiments. The 

vertical axis shows the additional information from each separate experiment. TFs are sorted by their mean additional 

information. 

For TFs that specifically bind the DNA, one might 

expect that the binding peaks could be explained by 

a single motif. Indeed, for about one quarter of all 

ENCODE datasets, the complementary motif set 

contains only a single motif. It is conceivable that, for 

the remaining cases,  the additional motifs also 
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contribute only marginally to explaining the binding 

peaks. To investigate this we calculated, for each 

dataset with multiple motifs in the complementary 

set, the difference in log enrichment of the entire set, 

and the log enrichment of the top motif. The 

resulting quantity can be interpreted as the amount 

of information the complementary motif set contains 

about the ChIP-seq data, excluding the top motif. 

We call this quantity additional information. 

When looking at the histogram of the additional 

information of all ENCODE experiments we observe 

a wide spread, from experiments having no 

additional information to experiments where the 

additional information goes as high as 1.5, meaning 

the additional motifs increase the likelihood of 

explaining an individual peak by almost 4.5 times 

(Fig. 7). Furthermore, we observe that for a given 

TF, the additional information measures from 

different experiments tend to group, i.e. names of 

the same colour in the left panel of Fig. 7 tend to co-

localize. This suggest that, for many TFs, there is 

substantial information in the additional motifs and 

that, moreover,the extent to which a TF acts in 

cooperation with other factors seems to be 

conserved across experiments and cell lines (Fig. 7, 

right panel). 

The main exception to this observation is JUND, 

where, across three different experiments, we 

observed no additional information, moderate 

additional information, and high additional 

information. Notably, the experiment showing no 

additional information was performed on HeLa S3 

cells, whereas the other two were performed on the 

GM12878 cell line. 

Inferred complementary motif sets are consistent over replicate experiments 

 

Figure 8: Left panel: The complementary motif sets for two different experiments with Elk1, one performed in HeLaS3 and 

the other in GM12878 cell line. Both sets contain another unpaired motif at position six which is not shown here. Similar 

motifs are connected by lines, and the distance between motifs is indicated. For this example we find a consistency of 0.7 in 

the motif sets (see Materials and Methods). The right panel shows the consistencies of all 16 co-binding TFs, i.e. TFs with 

an average additional information of 0.2 or greater. The colouring of the dots indicate the cell line in which the experiment 

was performend. 

Next, we investigated to what extent the 

complementary motif set is consistent across 

different experiments with the same TF. For this we 

considered all TFs with an average additional 

information of 0.2 and greater. We call these TFs co-

binding TFs, as opposed to TFs that bind 
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predominantly by themselves. We deviced a 

consistency score for a pair of motif sets that 

quantifies to what extent highly similar motifs occur 

in the ame order in both sets (Fig. 8 and Materials 

and Methods). Strinkingly, the majority of the 16 

tested TFs shows a substantial consistency between 

the inferred motif sets from two separate 

experiments. This suggests that the complementary 

motif set is a inherent characteristic of the TF that is 

immuno-precipitated that is independent of the exact 

data set used. Moreover, it suggests that Crunch 

can successfully identify such co-binding motif sets 

for  a TF. 

Weight matrices are realistic models of 

transcription factor binding 

Finally, for solitary binders one motif is enough to 

explain the ChIP-seq data. Put differently, the 

explanatory power of additional motifs is very low. If 

the single motif for a solitary binder captures an 

intrinsic property of the TF, then one would expect 

the same or highly similar motifs to be inferred 

across different experiments for the same TF. To 

investigate this, we checked whether the motifs from 

ourlibrary rank consistently across pairs of 

experiments for the same TF. Briefly, we took from 

every experiment the five library motifs (excluding 

Crunch’s de novo motifs) with highest enrichment 

score and computed the consistency between these 

two sets of five motifs (Fig. 9 and Materials and 

Methods). We find that, of the eight TFs tested, only 

the experiments on USF2 disagreed on the order of 

ranking of motifs. All others showed very high to 

perfect consistency, even preserving the relative 

order of highly similar motifs. This suggests that 

motifs may be accurately capturing the binding 

specificity of a TF that is independent of the details 

of the experiment. This is especially attractive 

because it suggests that we can unambiguously 

determine which motif best describes the sequence 

specificity of a solitary binding TF. 

 

 

Figure 9: Left panel: The top five library motifs for two Max experiments, one performed in HeLaS3 and the other in 

GM12878 cell line. Identical motifs are connected. For this example we find a consistency of 0.84 (see Materials and 

Methods). Right panel: Consistencies between the top five library motifs for all TFs with an average additional information 

below 0.2. 
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DISCUSSION 

Crunch is a new integrated ChIP-seq analysis 

procedure, introducing various novel features. First, 

running Crunch is extremely easy. As Crunch is  

implemented as a web server (at crunch.unibas.ch) 

users are only required to upload their data files and 

to specify the model organism from which their data 

derive. In contrast to most existing ChIP-seq 

analysis software, there is no understanding 

required about the function of the single analysis 

steps. or how they need to be connected to one 

another. Furthermore, no bioinformatics expertise is 

assumed. allowing also biological researchers an 

eay avenue for analyzing their own ChIP-seq data. 

Finally, no high performance computational 

hardware is needed for the processing of these large 

ChIP-seq data-sets.  

Second, Crunch presents its analysis results in an 

easy-to-interpret manner with the help of an 

interactive graphical web interface. Thanks to its slim 

design, the user quickly gains an overview of the 

main analysis results including a quality assessment 

of the data, the predicted binding peaks, the peaks’ 

annotations to nearest genes and transcription start 

sites, and the complementary motifs enriched within 

these peaks. The extensive statistics and quality 

reports that Crunch provides allow users to obtain 

comprehensive insight into the quality and 

trustworthiness of the results. For studying the 

results in more depth, Crunch also provides links to 

the SwissRegulon genome browser with annotations 

for the called peaks, including predicted transcription 

factor binding sites, transcripts, transcription start 

clusters and promoters (27). Next, Crunch provides 

for every enriched motif a separate web page with a 

comprehensive discussion of the motif’s binding 

characteristics with respect to the submitted ChIP-

seq data as well as an identification of proteins that 

are putatively binding the motif. For further user-

specific analysis, flat files are provided with all data 

inferred and collected by Crunch. Besides Crunch's 

ease of use, user-friendly, and comprehensive 

reports, Crunch also incorporates several novel 

ChIP-seq analysis procedures. In particular, Crunch 

introduces a novel peak calling procedure as well as 

a novel procedure for determining complementary 

sets of enriched motifs, i.e. motifs that jointly 

represent the binding specificity of the immuno-

precipitated protein, and that provide evidence for 

possible interaction partners of the immuno-

precipitated protein. The peak calling method 

employs a novel noise model for finding ChIP-seq 

signal enriched genomic regions that is based on 

our previous work on the noise characteristics of 

next-generation sequencing data (18). It models the 

fluctuations in read counts as a combination of 

multiplicative and Poisson sampling noise and its 

parameters are fitted to the data by a Bayesian 

procedure. In addition, we decompose the ChIP-

signal within the significantly enriched genomic 

regions into individual binding peaks using Gaussian 

mixture modelling.  In contrast to other peak finders, 

our data provide direct evidence in support of the 

noise model that Crunch employs.  

Another major novel feature of Crunch is its 

comprehensive regulatory motif analysis. Using our 

previously developed PhyloGibbs (19) and MotEvo 

(20) algorithms, we perform de novo motif finding 

followed by binding site predictions for these de 

novo motifs plus motifs from a large library 

consisting of motifs from JASPAR (29), 

HOCOMOCO (30), HOMER (12), UNIPROBE (31), 

ENCODE (32), HTSELEX (33) and SwissRegulon 

(27). Subsequently, Crunch determines the set of 

motifs whose predicted sites model the ChIP-seq 

signal best. Crunch also assesses the performance 

and binding characteristics of each motif of this 

selected set by computing a number of different 

statistics. We showed that, for the majority of 

datasets, Crunch’s de novo motifs are superior in 

explaining the ChIP-seq data as compared to the 

motifs from the other seven libraries. We also 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 9, 2016. ; https://doi.org/10.1101/042903doi: bioRxiv preprint 

https://doi.org/10.1101/042903
http://creativecommons.org/licenses/by-nc-nd/4.0/


demonstrated that the inferred set of motifs is 

consistent across datasets for the same TF. Finally, 

for solitary binding TFs we find that the top motif is 

highly reproducible across different datasets, 

suggesting that an optimal motif representing the 

binding specificity of the TF can be unambiguously 

determined. 
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SUPPLEMENTARY MATERIALS 

S1: 3' adaptor trimming 

Since already a short adapter subsequence at the 3’ 

end of a read can corrupt subsequent mapping to a 

reference genome we stringently trim adapters from 

reads using the following three steps: First, reads 

are scanned for full length adapter sequence 

matches allowing for 2 mismatches. All matched 

reads then get truncated starting at the beginning of 

the adapter sequence read match. Second, adapter 

sequence prefixes get matched to read suffixes 

allowing for 1 mismatch for matches longer than 6 nt 

and 2 mismatches for matches longer than 9 nt. All 

matched read suffixes are then removed. 

S2: Read mapping statistics 

Crunch provides 3 figures with information about the 

read mappings.  

 

Figure S1: Distribution of mapping errors as a function of 

considered read length. As an example, when considering 

reads up to read position 20, 85-90 % of the reads had no 

mapping errors (green bar), about 5% had one error 

(yellow bar), and less than 1% had two or three errors 

(light and deep blue bars). About 4% were mapped to 

more than 100 locations (light red bar) and about 2% were 

not mapped at all (deep red bar). 

 

Figure S2: Percentage of all reads that have a mapping 

(or sequencing) error as a function of read position.  

 

Figure S3: Cumulative bar plot showing the number of 

reads with a certain number of mapping locations (hits). 

S3: Binding peak widths 

Theoretically, if all fragments were exactly the same 

length, if the breaking of the DNA during library 

preparation were completely random, and if the 

probability to immuno-precipitate a fragment were 

independent of where in the fragment the protein 

was bound, then each single binding site would 

result in an isosceles triangular coverage distribution 

with a base of two times fragment size around the 

actual binding site. However, fragment sizes will 

fluctuate, the propensity for the DNA to break will 

vary along the genome, and the probability to 
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immuno-precipitate a fragment may depend on the 

relative position at which the protein is bound. This 

results in approximately Gaussian shaped 

distributions of read coverage (Figure 5).  

As discussed above, all individual binding peaks in 

the coverage profiles should have the similar width 

as it only depends on the fragment size used in the 

experiment. By constraining the widths of the fitted 

Gaussians we can therefore help the mixture model 

to detect true binding peaks. For this we examined 

the widths, i.e. the 𝜎’s, of the Gaussian shaped 

distributions in all significantly enriched regions from 

the first step of peak calling from all our 123 

ENCODE ChIP-seq data sets (see Results section) 

where fragment sizes range from 82 to 198 

nucleotides. We observed that peak widths on 

average indeed scale linearly with fragment size 

(Fig. S4).  

 

Figure S4: The boxplots in blue and red show the 

distribution of peak widths from our 123 ENCODE ChIP-

seq experiments stratified by the experiment’s estimated 

fragment size. The green line shows a linear fit to the data 

that was determined by linear regression. The bold black 

lines indicate the boundaries used to constrain peak 

widths during mixture modelling.   

By performing simple least squares linear regression 

on these data we determined that the average peak 

width scales as 0.416 * fragment size + 17.1 with a 

residual variance of 0.887 and a standard deviation 

of the residuals of 19. Using this we conservatively 

constrain peak widths by adding and subtracting 

1.5*19 for upper and lower constraints, respectively. 

This way we capture more than 90% of the peak 

widths from the 123 experiments. Moreover, note 

that the scaling is according to our theoretical 

expectations. Assuming that the hypothesized 

isosceles triangular distribution and the observed 

Gaussian distribution share the same width at half 

height, we expect the 𝜎 of a Gaussian to scale as 

2 2log  (2)
!!

* fragment size, i.e. 0.425 * fragment 

size, which is very close to the 0.416 * fragment size 

that we fit above. We hypothesize that the nonzero 

vertical offset might result from the fact that the 

binding of proteins to the binding site may suppress 

DNA breakage at these points, thereby slightly 

increasing the fragment size around binding sites 

relative to the average fragment size genome-wide. 

S4: Motif similarity measure 

The similarity 𝑆(𝑤!,𝑤!) between motifs 𝑤!and 𝑤! is 

the inner product at their optimal alignment, where 

the optimal alignment is defined by a shift 𝑠 that 

maximizes the inner product 𝐼 𝑠,𝑤!,𝑤!  and by the 

orientation of 𝑤!, i.e. also considering the reverse 

complement of 𝑤!  𝑤!,!". 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 9, 2016. ; https://doi.org/10.1101/042903doi: bioRxiv preprint 

https://doi.org/10.1101/042903
http://creativecommons.org/licenses/by-nc-nd/4.0/


𝐼 𝑠,𝑤!,𝑤! = 𝑤! 𝑖 𝑤! 𝑖 − 𝑠
!

  

𝐼 𝑠,𝑤!,𝑤!,!" = 𝑤! 𝑖 𝑤!,!" 𝑖 − 𝑠
!

  

𝑆 𝑤!,𝑤!

= max max
!
𝐼 𝑠,𝑤!,𝑤! ,max

!
𝐼 𝑠,𝑤!,𝑤!,!"   

Here i runs over all overlapping motif columns. We 

further normalize 𝑆(𝑤!,𝑤!) to a number between 0 

and 1 and subtract it from 1 to get a dissimilarity 

measure 

𝐷(𝑤!,𝑤!) = 1 −
2𝑆(𝑤!,𝑤!)

𝑆 𝑤!,𝑤! + 𝑆(𝑤!,𝑤!)
  

To reduce 𝑊!"#  we proceed as follows: We move 

the highest quality motif 𝑤!"# of 𝑊!"# , i.e. 𝑤!"# =

𝑚𝑎𝑥   𝐸!  ∀  𝑤 ∈ 𝑊!"# , to a new set 𝑊!"#$%"#  and 

remove all motifs 𝑤 from 𝑊!"#  with 𝐷 𝑤!"!,𝑤 <

0.2. The distance threshold of 0.2 is chosen such 

that only very close motifs get removed. This 

procedure is then repeated until no motif is left in 

𝑊!"# . 
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