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Abstract 35	
  

What adaptive changes in brain structure and function underpin the evolution of increased 36	
  

cognitive performance in humans and our close relatives?  Identifying the genetic basis of 37	
  

brain evolution has become a major tool in answering this question. Numerous cases of 38	
  

positive selection, altered gene expression or gene duplication have been identified that may 39	
  

contribute to the evolution of the neocortex, which is widely assumed to play a predominant 40	
  

role in cognitive evolution.  However, the neocortex co-evolves with other, functionally inter-41	
  

dependent, regions of the brain, most notably the cerebellum. The cerebellum is linked to a 42	
  

range of cognitive tasks and expanded rapidly during hominoid evolution, independently of 43	
  

neocortex size. Here we demonstrate that, across primates, genes with known roles in 44	
  

cerebellum development are just as likely to be targeted by selection as genes linked to 45	
  

cortical development. In fact, cerebellum genes are more likely to have evolved adaptively 46	
  

during hominoid evolution, consistent with phenotypic data suggesting an accelerated rate of 47	
  

cerebellar expansion in apes. Finally, we present evidence that selection targeted genes with 48	
  

specific effects on either the neocortex or cerebellum, not both. This suggests cortico-49	
  

cerebellar co-evolution is maintained by selection acting on independent developmental 50	
  

programs. 51	
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Introduction 69	
  

The proximate basis of primate brain expansion and increased cognitive performance lies in 70	
  

changes in gene function and regulation. Identifying the genetic basis of phenotypic change 71	
  

can provide insights into how developmental mechanisms evolve, how they are constrained, 72	
  

and how changes at a cellular level contribute to broad scale anatomical evolution (1).  This 73	
  

potential for dissecting the biological basis of brain and behavioural evolution motivates 74	
  

many genomic comparisons across primates (2). These have identified numerous genes 75	
  

associated with brain development with high rates of evolution (3–9), divergent expression 76	
  

profiles (10–13) or duplicated sequence (14–17), either across primates or during recent 77	
  

human evolution. In several of these cases the genetic changes have been demonstrated to 78	
  

have functional effects on neuronal proliferation or maturation (7,8,15,18,19).  These results 79	
  

highlight potential cellular adaptations driving changes in brain size, and provide a powerful 80	
  

means of investigate human-specific adaptations. 81	
  

 The majority of these examples investigate genes linked to neocortical evolution, 82	
  

reflecting the widely held assumption that the neocortex has a predominant role in ‘higher’ 83	
  

cognition (20). However, the neocortex co-evolves with other brain components with which it 84	
  

is functionally connected, suggesting a complete understanding of primate brain expansion 85	
  

will not be found by focusing solely on neocortex development (21–23). Of particular 86	
  

importance is the relationship between the neocortex and cerebellum. Across primates 87	
  

cortico-cerebellar co-evolution pervades biological levels, occurring at a coarse volumetric 88	
  

scale, at the level of individual nuclei, and at the cellular level (21,22,24).  89	
  

In humans, the cerebellum is increasingly recognised to be important for both motor 90	
  

and ‘higher cognitive’ function, including the capacity to plan and execute complex 91	
  

behavioural sequences (20,23,25). Similarly, across primates, cerebellar expansion is linked 92	
  

to extractive foraging, independently of neocortex volume (23). The importance of the 93	
  

cerebellum in primate brain evolution is further bolstered by comparative analyses that 94	
  

demonstrate a rapid, non-allometric expansion of the cerebellum relative to neocortex size in 95	
  

hominoids that is indicative an adaptive change in the cortico-cerebellar functional 96	
  

relationship (26–29). Hominin evolution is also characterised by reciprocal expansion of the 97	
  

neocotex and cerebellum, with recent modern humans being distinguished from our early 98	
  

modern humans by an increase in cerebellum volume relative to the neocortex (30).  99	
  

 The importance of coordinated cortico-cerebellum expansion suggests that we must 100	
  

look beyond neocortical evolution to obtain a full picture of the genetic architecture of 101	
  

primate brain evolution. The likely action of positive selection on genes involved in 102	
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cerebellum development is further suggested by the accelerated rate of evolution of AHI1, a 103	
  

gene associated with developmental disorders of the cerebellum, during human evolution 104	
  

(31). In addition, genetic approaches may be useful in addressing long-standing debates about 105	
  

the constraints governing co-evolving brain networks. For example, do the neocortex and 106	
  

cerebellum co-evolve through genetically independent developmental changes maintained by 107	
  

selection (sensu Barton and Harvey (21))? Or are they the result of pleiotropic genetic effects 108	
  

shared across anatomical boundaries (sensu Finlay and Darlington (32))? If the latter is true, 109	
  

do these pleiotropic effects reflect an evolutionary constraint, or have they evolved to 110	
  

maintain the functional relationship between components during brain expansion? These 111	
  

questions will be central to providing a full understanding of brain evolution, and also 112	
  

address questions of long standing interest in evolutionary biology on the trade-offs between 113	
  

adaptation and constraint in the genetic basis of composite traits. 114	
  

Here we ask three questions that provide an initial assessment of the role of genes 115	
  

controlling the development of the neocortex and cerebellum in anthropoid brain evolution. 116	
  

First, we ask whether genes with known roles in the development of the cerebral cortex, 117	
  

which is predominantly composed of the neocortex, are more likely to be targets of positive 118	
  

selection than those affecting cerebellum development. Second, whether patterns of 119	
  

molecular evolution mirror non-allometric changes in component size. Finally, whether these 120	
  

genes evolve in a manner suggesting a specific evolutionary association with either brain 121	
  

component to explore whether cortico-cerebellar co-evolution is maintained by selection 122	
  

acting on a common or independent set of genes. 123	
  

 124	
  

Methods 125	
  

Data collection 126	
  

We obtained a list of human genes with known roles in ‘cerebral cortex development’ or 127	
  

‘cerebellum development’ from two ontology databases; Amigo (33) (GO:0021987 and 128	
  

GO:0021549) and EBI’s QuickGO (34) (GO:0021987 and GO:0021549). These GO terms 129	
  

have the best-matched definitions among those relevant for each component. In anthropoids, 130	
  

the neocortex comprises the vast majority of the cerebral cortex (~90%; Stephan et al. 1981). 131	
  

This GO search resulted in 198 Amigo and 300 QuickGO genes associated with cerebral 132	
  

cortex development, and 144 Amigo and 222 QuickGO genes associated with cerebellum 133	
  

development, which are not mutually exclusive, that were then combined to form the starting 134	
  

gene set. This starting human gene set was then used to obtain 1:1 orthologs from 11 135	
  

anthropoid genomes (Figure 1A) using a reciprocal best hit BLASTn (36) approach between 136	
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each species and the human coding sequence with an e-value cut-off of 1e-10 and a minimum 137	
  

percentage identify of 30. 11-way 1:1 ortholog sets were aligned using codon aware PRANK 138	
  

v 140615 (37), converted to phylip format in preparation for PAML analyses (38) and filtered 139	
  

using a conservative alignment filtering program SWAMP v 1.0  (39) to remove regions of 140	
  

poorly aligned or error-rich sequences on a branch-specific basis.  SWAMP was run twice, 141	
  

first using a threshold of 5 and a window size of 15, and then a second run with a threshold of 142	
  

2 with a window size of 3, with a minimum sequence length of 300 bases and interscan 143	
  

masking for both runs. The final, strict and conservatively filtered 11-species dataset 144	
  

consisted of three non-overlapping groups: 53 genes with known roles cerebral cortex 145	
  

development, 47 genes with known roles in cerebellum development, and 10 genes with 146	
  

known roles in both (Table S1). 147	
  

 148	
  

Selection analyses 149	
  

Estimation of dN/dS ratios (ω), a common measure of the strength of selection acting on a 150	
  

protein coding gene, was carried out using a codon-based maximum likelihood method 151	
  

(PAML v.4) (38). Nested models were compared using the likelihood ratio test statistic 152	
  

(−2[loglikelihood1 – loglikelihood2]) to critical values of the χ2 distribution and degrees of 153	
  

freedom as the difference in the number of parameters estimated in each model. We 154	
  

compared the frequency of positive selection acting on genes associated with cerebral cortex 155	
  

and cerebellum development in two ways. First, we used the site model tests of positive 156	
  

selection (‘Model 8/8a’) to identify genes evolving under positive selection across 157	
  

anthropoids. The site models allow ω to vary across sites, but not across branches. Second, 158	
  

we used the branch-site models (‘new model A’) to identify genes under increased positive 159	
  

selection in hominoids (Figure 1A). The branch-site models allow ω to vary across both sites 160	
  

and branch categories defined a priori. We repeated this test for accelerated rates of evolution 161	
  

in hominoids using a branch model test, where ω is fixed across sites but varies between 162	
  

branch categories. For each analysis, the percentage of each category of gene that 163	
  

experienced selection were compared using a Z-test and more conservative Fisher’s Exact 164	
  

Test. 165	
  

 166	
  

Gene-phenotype co-evolution 167	
  

We sought to test the link between the molecular evolution of our gene-set and the evolution 168	
  

of neocortex and cerebellum size using a phylogenetic, comparative approach (40). Branch 169	
  

models in PAML were used to calculate the root-to-tip dN/dS for each species. These were 170	
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then regressed against the phenotypic trait of interest using a Phylogenetic Generalised Least 171	
  

Squares (PGLS) regression implemented in BayesTraits (41), that corrects for the non-172	
  

independence of inter-specific data. Each gene was regressed against neocortex volume and 173	
  

cerebellum volume as predictor variables simultaneously. This permits the identification of 174	
  

genes with either a specific co-evolutionary association with either neocortex or cerebellum 175	
  

size, or genes that co-vary with both traits independently. We also repeated the analyses 176	
  

including rest-of-brain volume as an additional predictor variable, which lead to similar 177	
  

results. In all cases root-to-tip dN/dS and brain component volumes were log10-transformed. 178	
  

 179	
  

Results 180	
  

What proportion of genes with known roles in cerebral cortex or cerebellum development are 181	
  

targeted by positive selection? 182	
  

Across anthropoids, the average rate of evolution of genes with known roles in the 183	
  

development of the cerebellum does not differ from those that function in the development of 184	
  

the cerebral cortex, which is predominantly comprised of neocortex (Mann-Whitney U(98) = 185	
  

1167.5, Z = 0.539, p = 0.590) (Table S2). Genes linked to the development of both brain 186	
  

components do not differ from those specifically linked to cerebral cortex (U(61) = 296.5, Z = 187	
  

0.592, p = 0.554) or cerebellum development (U(55) = 241.5, Z = 0.136, p = 0.892). Site-188	
  

model tests for positive selection acting at a subset of codons also identify a similar 189	
  

proportion of genes associated with cerebral cortex or cerebellum development with evidence 190	
  

of positive selection across anthropoids. 3/47 cerebellum genes (6.4%) are significant at a 191	
  

nominal α of 0.05, compared to 5/53 cerebral cortex genes (9.4%). These proportions are not 192	
  

significantly different (Fisher’s Exact Test, p = 0.716, Z-test: z = 0.5613. p = 0.575) (Table, 193	
  

1; Figure 1B; Table S3). The same conclusion is reached after correcting for multiple testing 194	
  

using the false discovery rate (FDR) (42), after which the site-model test is significant for two 195	
  

genes linked to cerebellum development (RPGRIP1L, PCNT) and one gene linked to cerebral 196	
  

cortex development (TACC2). None of the 10 genes with annotated function in the 197	
  

development of both brain components show evidence of positive selection. These results 198	
  

suggest genes affecting cerebellum development are just as likely to be targeted by positive 199	
  

selection as those affecting cerebral cortex development. 200	
  

 201	
  

Do rates of molecular evolution reflect rates of brain component expansion? 202	
  

A significantly greater proportion of cerebellum genes (14/47, 29.8%) than cerebral cortex 203	
  

genes (6/53, 11.3%) experienced an accelerated rate of evolution in hominoids, taking a 204	
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nominal α of 0.05 (Fisher’s Exact Test, p = 0.026, Z-test: z = 2.304, p = 0.021) (Table 1; 205	
  

Figure 1C; Table S4). This result is also reflected in the branch-site test where the proportion 206	
  

of cerebellum genes (6/47, 12.8%) with evidence of episodic positive selection in hominoids 207	
  

again exceeds the proportion of cerebral cortex genes (2/53, 3.8%). In this case the trend does 208	
  

not reach significance (Fisher’s Exact Test, p = 0.143, Z-test: z = 1.654, p = 0.099) (Table 209	
  

S5). However, one assumption of the branch-site test is the absence of positive selection in 210	
  

the background (non-hominoid) branches (43). After excluding genes with evidence of 211	
  

positive selection across anthropoids under the site-model test (Table S3), the trend observed 212	
  

in the branch-site test becomes significant at p < 0.05 (Fisher’s Exact Test, p = 0.049, Z-test: 213	
  

z = 2.136, p = 0.032) (Table 1; Figure 1D). These contrasting proportions suggest the strength 214	
  

of positive selection acting on genes controlling cerebellum development increased during 215	
  

hominoid evolution, a clade in which the rate of cerebellar expansion significantly 216	
  

accelerated (29), without a corresponding acceleration in cerebral cortex expansion (21,44). 217	
  

 218	
  

Is selection associated with interspecific variation in the size of specific brain components? 219	
  

We identify 11/47 cerebellum genes (23.4%) that co-evolve with cerebellum volume, after 220	
  

controlling for neocortex volume, of which 4 are significant at p <0.001 and 2 (RPGRIP1L, 221	
  

ATRN) remain significant after FDR-correction (Table 1; Figure 2; Table S6). We re-222	
  

nalaysed the top four genes associated with cerebellum volume, separating dN and dS whilst 223	
  

controlling variation in neocortex volume, to test if the association is driven by variation in 224	
  

dN. For 3/4 genes we find a significant partial regression with dN (ATRN t5 = 3.789, p = 225	
  

0.006; EZH2 t5 = 3.990, p = 0.005; KNDC1 t5 = 3.586, p = 0.008), the remaining locus 226	
  

showed a non-significant trend (RGRIP1L t5 = 1.582, p = 0.087).  Only one cerebellum gene 227	
  

(2.1%) shows an association with neocortex volume, which is a significantly lower 228	
  

proportion (Fisher’s Exact Test, p = 0.004, Z-test: z = 3.091, p = 0.002). 1/53 cerebral cortex 229	
  

genes (DICER1) shows evidence of co-evolution with neocortex volume (1.9%), whilst 6 230	
  

(11.3%) show evidence of an association with cerebellum size (Table S6). This is not a 231	
  

significant difference in proportion (Fisher’s Exact Test, p = 0.113, Z-test: z = 1.955, p = 232	
  

0.050), only one of these associations is significant at p < 0.001 and none survive FDR-233	
  

correction. One of the ten genes annotated as functioning in both neocortex and cerebellum 234	
  

development (GART) shows an association with cerebellum, but not neocortex, volume 235	
  

(Table S6). Similar results were obtained when rest-of-brain was included in the regression 236	
  

model. No gene shows an association with variation in both neocortex and cerebellum 237	
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volume, regardless of the gene category or regression model. These results suggest selection 238	
  

acts on genes associated with phenotypic variation specific to each brain component. 239	
  

 240	
  

Discussion 241	
  

Primate brain expansion reflects increases in the volume and neuron number of co-evolving 242	
  

structures (21). This pattern of distributed adaptation must be reflected in the molecular 243	
  

evolution of genes controlling brain development. Our results provide two contributions to 244	
  

understanding the genetic basis of brain evolution. First, we provide evidence that genes 245	
  

associated with cerebral cortex development are no more likely to have evolved adaptively 246	
  

across anthropoids than cerebellum genes. Indeed, significantly more cerebellum genes 247	
  

experienced an increased rate of evolution in hominoids, consistent with the non-allometric 248	
  

expansion of the cerebellum, but not the neocortex, in apes (29). Second, we provide 249	
  

evidence that the selection regimes shaping these genes are linked to the evolution of specific 250	
  

brain components.  251	
  

Our results raise the possibility that a significant proportion of the genetic changes 252	
  

that underpin adaptive evolution of primate brain size, structure and cognition will affect 253	
  

aspects of non-cortical development. This conclusion is consistent with evidence of adaptive 254	
  

expansion in cerebellum volume during hominoid evolution (29), and is further supported by 255	
  

a phylogenetic analysis of lineage-specific shifts in gene expression across mammals that 256	
  

found an over-abundance of hominoid-specific expression shifts in genes expressed in the 257	
  

cerebellum (10). These results suggest future comparative studies of primate gene expression 258	
  

should not be limited to samples derived from cortical tissue, and functional tests of 259	
  

candidate genes targeted by positive selection should consider the phenotypic relevance of 260	
  

changes in gene function in non-cortical structures.  261	
  

Of course, our results are wholly dependent on the quality of gene ontology 262	
  

annotation. Our incomplete knowledge of gene function means that it is inevitable that the 263	
  

genes included in this study reflect a minority of those that influence cerebral cortex and 264	
  

cerebellum development. However, gene ontology datasets are routinely used in post-hoc 265	
  

tests for functional enrichment where the same caveats apply, here we have simply used the 266	
  

available data to facilitate tests of specific hypotheses. We know of no reason why either 267	
  

gene set may be biased in a way that would produce contrasting patterns of results, but cannot 268	
  

formally rule out this possibility. Finally, in this study we adopted a conservative approach, 269	
  

analysing only genes with strict 11-way 1:1 orthologues in published anthropoid genomes 270	
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 10, 2016. ; https://doi.org/10.1101/043174doi: bioRxiv preprint 

https://doi.org/10.1101/043174
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
   9	
  

and removing short and/or poorly aligned sequence. This further reduces the gene set, but 271	
  

produces more reliable estimates of selection regimes (39). 272	
  

Our analyses highlight several genes with patterns of molecular evolution that link 273	
  

them to inter-specific differences in cerebellum volume. These include two genes, RGRIP1L 274	
  

and ATRN,	
  with a particularly strong signal of co-evolution between the strength of selection 275	
  

acting on their coding sequence and cerebellum volume, independently of variation in 276	
  

neocortex or rest-of-brain volume, in our gene-phenotype association tests (Figure 2). 277	
  

RGRIP1L is one of a small number of loci linked to Joubert Syndrome, a rare genetic 278	
  

disorder associated with severe hypoplasia of the mid-hindbrain and cerebellum (45,46).  The 279	
  

cellular role of RGRIP1L appears to be in the correct function of the cilia and basal bodies 280	
  

(47,48) which are necessary for expansion of the cerebellar neural progenitor pool (49).  281	
  

Disruption of ATRN, an E3 ubiquitin ligase, in Mus causes vacuolization and degeneration of 282	
  

the cerebellum (50,51). Another ubiquitin ligase, UBE3A, has been implicated in brain and 283	
  

cognitive development (52) and interacts with ASPM, a key regulator of brain size (53). A 284	
  

third gene, EZH2, also shows evidence of a phenotypic association with cerebellum volume 285	
  

but is narrowly non-significant after FDR correction. EZH2, functions to regulate neuronal 286	
  

migration of precerebellar neurons during the development of the cortico-cerebellar 287	
  

connectivity (54). 288	
  

We also find multiple genes with significantly accelerated rates of evolution in 289	
  

hominoids, coincident with an accelerated rate of cerebellar expansion (29). Several of these 290	
  

genes also show an association with cerebellum volume in our gene-phenotype association 291	
  

tests at a nominal α threshold of 0.05. These include AGTPBP1, disruption of which causes 292	
  

cerebellar Purkinje cell degeneration (55), PCNT, which causes primordial dwarfism with 293	
  

microcephaly (56), TH, a gene linked to two disorders which affect motor control, Segawa 294	
  

Syndrome and Parkinson’s (57,58), and MYO16 and GART which have putatively been 295	
  

linked to Autistic Spectrum Disorders and Down Syndrome respectively (59,60). 296	
  

Finally, we identify patterns of molecular evolution that may implicate a separate 297	
  

group of genes in the evolution of neocortex size. Only one locus shows a phenotypic 298	
  

association with neocortex volume; DICER1, which regulates neurogenesis in the developing 299	
  

cerebral cortex in a time dependent manner (61,62). Notably, the two genes with the strongest 300	
  

evidence for episodic positive selection in hominoids belong to the same gene family. TACC1 301	
  

and TACC2 are both associated with regulation of nuclear migration and are required for 302	
  

normal patterns of self-renewal in neural progenitors. TACCs interact with a centrosomal 303	
  

protein, CEP120, to regulate nuclear migration and the self-renewal of cortical neural 304	
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progenitor cells by controlling microtubule growth (63). A similar function is thought to 305	
  

mediate the influence of microcephaly genes on brain development (18,64). 306	
  

Beyond functional affects of individual genes, our approach has the potential to tackle 307	
  

fundamental questions about how composite or modular tissues, such as the brain, evolve. 308	
  

For example, two models of brain evolution dominate debates surrounding the adaptive 309	
  

significance of variation in brain structure. One model proposes a conserved developmental 310	
  

program drives a ‘concerted’ pattern of brain evolution, with selection shaping the overall 311	
  

size of the system but not individual components(32,65). An alternative model instead argues 312	
  

that different brain regions evolve independently of overall brain size to meet species-specific 313	
  

behavioural needs, resulting in a ‘mosaic’ pattern of brain evolution, but may co-evolve due 314	
  

to functional interdependence (21,66). These two models implicitly make contrasting 315	
  

predictions about the genetic architecture of brain structure. The concerted model predicts 316	
  

variation in the size of different brain regions will be determined by genetic correlations 317	
  

between those structures, i.e. variation at a common set of genes. The mosaic model instead 318	
  

predicts that the development of different brain regions must be at least partially distinct in 319	
  

order to facilitate independent evolution. 320	
  

In recent years these predictions have been tested using quantitative genetics within a 321	
  

range of vertebrates, either using wild pedigrees (67–69), inbred strains (70) or divergent 322	
  

populations/domestic breeds (71,72). In support of the mosaic brain hypothesis, these have 323	
  

found little evidence for widespread genetic co-variation between major brain components. 324	
  

Similarly, large genome-wide association studies within humans that have identified 325	
  

independent genetic bases associated with brain regions (73,74). Quantitative genetics 326	
  

assesses the phenotypic associations of standing genetic variation within populations and 327	
  

their relevance to macroevolution depends on the relative frequency at which selection acts 328	
  

on de novo mutations that may cause different patterns of genetic correlation. Our results 329	
  

therefore complement these intra-specific studies, providing the first inter-specific test 330	
  

designed to identify genes associated with neocortex and/or cerebellum evolution. These two 331	
  

structures show a consistent pattern of co-evolution across primates (21,22,24), reflecting 332	
  

their functional inter-dependence (23,25). Our analyses did not identify any gene that co-333	
  

varies with both structures, but does identify multiple genes with a specific association with 334	
  

either the cerebellum or neocortex. This suggests the coevolution of these structures is 335	
  

unlikely to be solely due to genetic integration or pleiotropy. If more broadly true, this 336	
  

conclusion bolsters the interpretation of cortico-cerebellar coevolution as indicating adaptive 337	
  

co-evolution, maintained by selection acting on distinct developmental pathways.  338	
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Comparative functional analysis of the genes highlighted by our analyses will be 339	
  

necessary to confirm and extend these conclusions. These will also be needed to address key 340	
  

questions beyond functional effects. For example, when disrupted, several of the genes 341	
  

highlighted by our analyses affect the development of multiple organs. For example, both 342	
  

AGTPBP1 and PAFAH1B have known roles in spermatogenesis (75,76), whilst disruption of 343	
  

PCNT can affect global somatic growth (56). If these genes do have a specific evolutionary 344	
  

role in cerebellar development, how are these pleiotropic effects avoided? Similar questions 345	
  

have been raised over previous candidate genes (3,18), further emphasising the importance of 346	
  

coupling comparative and functional data.   347	
  

In summary, we have presented an analyses aimed at providing an initial assessment 348	
  

of the strength of selection targeting genes with development roles in distinct brain regions. 349	
  

Although our understanding of gene ontology is incomplete, we illustrate how this 350	
  

information can be used to test hypotheses in a phylogenetic comparative setting, in addition 351	
  

to post-hoc enrichment analyses. We highlight that there is currently no evidence that 352	
  

selection is limited or biased towards genes affecting cerebral cortex development, and 353	
  

encourage evolutionary geneticists to adopt a cohesive view of brain evolution that 354	
  

encompasses the recognised importance or non-allometric expansion of non-cortical regions, 355	
  

and to tackle the central question of co-evolution and relative genetic independence of brain 356	
  

components. Finally, we further illustrate the potential of hypothesis driven comparative 357	
  

genetics in dissecting the genetic basis of phenotypic evolution. The ever-increasing numbers 358	
  

of sequenced genomes will permit increasingly powerful analyses of the targets of selection 359	
  

and their phenotypic relevance. 360	
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Figure legends: 585	
  

 586	
  

Figure 1 A) Phylogeny of the 11 anthropoids included in the study: hominoid lineages are 587	
  

shown in orange. B-D) Pie-charts showing the proportion of genes significant (darker colour) 588	
  

under each test for cerebral cortex (red) and cerebellum genes (green). The p-value from a 589	
  

Fisher’s Exact test comparing the groups is shown below. 590	
  

 591	
  

Figure 2 Phenotypic associations for two genes A) RGRIP1L and B) ATRN. The log10-592	
  

transformed root-to-tip (rtt-) dN/dS is plotted against residual cerebellum volume, calculated 593	
  

from a PGLS regression of cerebellum against neocortex volume. The black line shows the 594	
  

result of a phylogenetically-controlled regression between rtt-dN/dS and residual cerebellum 595	
  

volume. This figure is for illustrative purposes, in the main analyses the two brain 596	
  

components were included as variables in a multiple regression. 597	
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Tables 614	
  

 615	
  

Table 1: summary of results of dN/dS analyses and tests of positive selection 616	
  

  

Significant results 
(proportion) Difference in proportion 

Test Inference Cerebral cortex 
(n = 47) 

Cerebellum  
(n = 53) Z-test Fisher's Exact Test 

Site model test Pervasive positive selection  5 (9.4%) 3 (6.4%) z = 0.561, p = 0.575  p = 0.716 

  	
   	
   	
   	
  Branch model test Accelerated evolution in apes 6 (11.3%) 14 (29.8%) z = 2.304, p = 0.021 p = 0.026 

  	
   	
     
Branch-site model test (all) Episodic positive selection in apes 2 (3.8%) 6 (12.8%) z = 1.654, p = 0.099 p = 0.143 
Branch-site model test (restricted1) Episodic positive selection in apes 0 (0.0%) 4 (10.0%) z = 2.136, p = 0.049 p = 0.032 

 617	
  

 618	
  
1 excludes genes with significant site-model results 619	
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