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A tragedy of the commons occurs when individuals take actions to maximize their payoffs even as
their combined payoff is less than the global maximum had the players coordinated. The originat-
ing example is that of over-grazing of common pasture lands. In game theoretic treatments of this
example there is rarely consideration of how individual behavior subsequently modifies the commons
and associated payoffs. Here, we generalize evolutionary game theory by proposing a class of replica-
tor dynamics with feedback-evolving games in which environment-dependent payoffs and strategies
coevolve. We apply our formulation to a system in which the payoffs favor unilateral defection and
cooperation, given replete and depleted environments respectively. Using this approach we identify
a new class of dynamics: an oscillatory tragedy of the commons in which the system cycles between
deplete and replete environmental states and cooperation and defection behavior states. Further,
we utilize fast-slow dynamical systems theory to provide an intuitive explanation for the observed
changes. In closing, we propose new directions for the study of control and influence in games in

which individual actions exert a substantive effect on the environmental state.

Game theory is based on the principle that individuals
make rational decisions regarding their choice of actions
given suitable incentives [1, 2]. In practice, the incentives
are represented as strategy-dependent payoffs. Evolu-
tionary game theory extends game theoretic principles to
model dynamic changes in the frequency of strategists [3].
Replicator dynamics is one commonly used framework for
such models. In replicator dynamics, the frequencies of
strategies change as a function of the social makeup of the
community [4-6]. For example in a snowdrift game (also
known as a hawk-dove game), individuals defect when
cooperators are common but cooperate when coopera-
tors are rare [2]. As a result, cooperation is predicted
to be maintained amongst a fraction of the communi-
ty [4, 6]. Whereas, in the prisoner’s dilemma individuals
are incentivized to defect irrespective of the fraction of
cooperators. This leads to domination by defectors [6, 7].

Here, we are interested in a different kind of evolu-
tionary game in which individual action modifies both
the social makeup and environmental context for sub-
sequent actions. Strategy-dependent feedback occurs
across scales from microbes to humans in public good
games and in commons’ dilemmas [8-11]. Amongst
microbes, feedback may arise due to fixation of inor-
ganic nutrients given depleted organic nutrient avail-
ability [12, 13], the production of extracellular nutrient-
scavenging enzymes like siderophores [14-16] or enzymes
like invertase that hydrolyze diffusible products [17], and
the release of extracellular antibiotic compounds [18].
The incentive for public good production changes as the
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production influences the environmental state. Such joint
influence occurs in human systems, e.g., when individu-
als decide to vaccinate or not [19-21]. Decisions not to
vaccinate have been linked most recently to outbreaks
of otherwise preventable childhood infectious diseases in
Northern California [22]. These outbreaks modify the
subsequent incentives for vaccination. Such coupled feed-
back also arises in public goods dilemmas involving water
or other resource use [23]. In a period of replete resources
there is less incentive for restraint [24]. Yet, over-use in
times of replete resource availability can lead to depletion
of the resource and changes in incentives.

In this manuscript we propose a unified approach to
analyze and understand feedback-evolving games (Fig-
ure 1). We term this approach “co-evolutionary game
theory”, denoting the coupled evolution of the strategies
and the environment. The key conceptual innovation is
to extend replicator dynamic within evolutionary game
theory [4] to include dynamical changes in the environ-
ment. In that sense, our approach is complementary to
recent efforts to consider the evolvability of payoffs in a
fixed environment [25]. Here, changes in the environment
modulate the payoffs. In so doing, we are able to address
problems in which individual behavior constitutes a non-
negligible component of the system. As a case study,
we revisit the originating tragedy of the commons exam-
ple [24] and ask: what happens if over-exploitation of
a resource changes incentives for future action? As we
show, when decisions affect the environment they can
subsequently alter incentives leading to new dynamical
phenomena and new challenges for control.


https://doi.org/10.1101/043299
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/043299; this version posted March 11, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Replicator Dynamics

Cooperator, x,

Aq1(n) [ Aqp(n)

Azq(n) | Axo(n)

—

Replicator Dynamics with Feedback-evolving Games

FIG. 1: Schematic of replicator dynamics in feedback-evolving
games. (Top) In replicator dynamics, the payoff matrix
A determines frequency-dependent changes in strategies, x;.
(Top and bottom) In replicator dynamics with feedback-
evolving games, the frequencies of strategies influences the
environment, which, in term modifies the payoffs, A(n). The
coupled system includes dynamics of both the payoff matrix
and the strategies.

Methods and Results

The context — evolutionary game theory as modeled
via replicator dynamics

Here we introduce evolutionary game theory in the
context of the prisoner’s dilemma as a means to moti-
vate our co-evolutionary game theory formalism. Con-
sider a two player game each of which can take one of two
strategies C' and D, denoting cooperation and defection
respectively. A standard instance of the payoff matrix is
the prisoner’s dilemma (PD) in which the payoffs can be
written as:

A:[g‘f]. (1)

In this game, the player C receives a payoff of 3 and 0
when playing against player C' and D, respectively. Sim-
ilarly, the player D receives a payoff of 5 and 1 when
playing against player C' and D, respectively. In this
game, the D strategy is the Nash equilibrium.

In evolutionary game theory, such payoffs can be cou-
pled to the changes in population or strategy frequencies,
x1 and xa, e.g., where x; and zo denote the frequency
of cooperators and defectors such that z; + o = 1. The
coupling is expressed via replicator dynamics. The stan-
dard replicator dynamics for two-players games can be

2

written as
J)'l =7 (X, A)l‘l — <’I“> (X, A)xl, (2)
o = ro(x, A)xy — (r)(x, A)xa. (3)

where r1, 7o and (r) denote the fitness of player 1, the
fitness of player 2, and the average fitness respectively, all
of which depend on the frequency of players and the game
theoretic payoffs. We interpret the payoffs in Eq. (1)
as contributions to an effective per-capita growth rate,
weighted by the relative proportion of interactions. In
this convention then

r1 = 3x1 + 0xy = 3z, (4)
re = bx1 + 22 = by + T2, (5)

and the average fitness is:
(ry = rizy + roxy = 322 + (51 + 2)2o. (6)

Note that this system remains on the simplex 1 +x2 =1
(that is &1 + @2 = 0). Hence, we can focus on a single
variable and rewrite the dynamics of x = x; after some
algebraic simplification as:

t=—-z(1-12)(1+2x). (7)

The replicator dynamics for the PD in Eq. (7) has 3 equi-
libria, but only two in the domain [0,1], i.e., * = 0 and
z* = 1. The stability can be identified from the sign of
the cubic, i.e., z* = 0 is stable and «* = 1 is unstable.
Therefore, any initial condition not on a fixed point will
converge to z* = 0. The convergence of the system to
z* = 0 means that the relative proportion of cooperators
is 0 and, correspondingly, that the relative proportion of
defectors is 1. This corresponds to domination by defec-
tors. In the PD game, a population with a minority of D
players will, over time, change to one with a minority of
C players, and the elimination of C' players altogether.

In general, replicator dynamics for games in which two
populations select amongst two strategies with a fixed
payoff matrix can be written as:

&= (1 —z)(ri(z) — ra(z)) (8)

where the convention is again that * = x; and that
1 + x2 = 1. This formulation implies that the frequen-
cy of strategy 1 in the population will increase if the
frequency-dependent payoff of strategy 1 exceeds that of
strategy 2, and vice-versa. We can leverage this simple
representation to consider the replicator dynamics given
an alternative game:

51
a=]31) ®
Here vy = 42 + 1 and ro = 3x such that

z=z(1—xz)(1+x). (10)
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Again, the stability can be identified from the sign of
the cubic, i.e., z* = 1 is stable and z* = 0 is unstable.
The payoffs have changed such that cooperation is now a
Nash equilibrium and a population with a minority of C'
players will, over time, change to one with a majority of
C players, and eventually the elimination of D players.

A model of replicator dynamics with
feedback-evolving games

We consider a modified version of the standard repli-
cator dynamics in which:

et = x(1 —z) [r1(z, A(n)) — ra(z, A(n))],
n=n(l—n)f(z),

where f(x) denotes the feedback of strategists with the
environment and the term n(1 — n) in Eq.(11) ensures
that the environmental state is confined to the domain
[0,1]. The value of € is a property of the agents and
denotes the relative speed by which individual actions
modify the environmental state. What distinguishes the
model is that the payoff matrix A(n) is environment-
dependent and that strategy and environmental dynam-
ics are coupled (see Figure 1). The state of the envi-
ronment is characterized by the scalar value, n. The
environmental state changes as a result of the actions of
strategists, such that the sign of f(z) denotes whether n
will increase or decrease, corresponding to environmental
degradation or enhancement when f < 0 or f > 0 respec-
tively. Finally, the rate of environmental dynamics is set,
in part, by the dimensionless quantity €, such that when
0 < € < 1 then environmental change is relatively slow
when compared to the change in the frequency of strate-
gists.

We evaluate this class of feedback-evolving games via
the use of the following environment-dependent payoff
matrix:

(11)

A@):(p@[ié]m{?ﬂ (12)
or, alternatively
(13)

5—2n 1—n
An) = [3+2n n ]

This payoff matrix interpolates between the two scenarios
described in Section , such that cooperation or defection
are favored in the limits of n — 0 or n — 1, respectively.
In addition, we assume that the environmental state is
modified by actions of the population:

fl@)=0x—(1—x) (14)

in which 6 > 0 is the ratio of the enhancement rates to
degradation rates of cooperators and defectors, respec-
tively. The model of replicator dynamics with feedback-

3
evolving games can be written as:
ex = x(1 —z) [r1(z,n) — ro(z,n)], (15)
n=n(l—n)[-14+(1+0)z],
where
ri(z,n) = 1+4z —n(z+1), (16)
ro(x,n) = 3z +n(x+1). (17)
Finally, the complete model can be written as:
et =xz(1 —z)(1+2)(1 - 2n), (18)

n=n(l—-n)[-1+ (1+06)z].

There are five fixed points of this system. Of these,
four represent “boundary” fixed points, that is (i) (z* =
0,n* = 0) - defectors in a degraded environment; (ii)
(z* = 0,n* = 1) - defectors in a replete environment;
(iii) (z* = 1,n* = 0) - cooperators in a degraded envi-
ronment; and (iv) (z* = 1,n* = 1) - cooperators in a
replete environment. There is also an interior fixed point,
(z* = @g.n" = 1), representing a mixed population
of cooperators and defectors in an intermediate environ-
ment. The local stability of each point will be helpful
in understanding the dynamics of the full system. The
eigenvalues of the Jacobian of the system evaluated at
each of the boundary are Apoundary = £1. Hence, each
of the four “boundary” points are unstable with respect
to perturbations to the interior. For the interior fixed
point, the Jacobian is:

J{ 0 —2x*(1—x*)(1+x*)]

6/4 0 (19)

where 0 < 2* = 1/(1+46) < 1 for the interior fixed point
Therefore, the eigenvalues for the interior fixed point are:

w. The interior point is

neutrally stable such that small deviations from it will
oscillate.

The orientation of cycles in the phase plane defined
by (x,n) should be counter-clockwise. The intuition is
as follows. Consider initial conditions in the interior but
near to (x = 0,n = 0). In that case, then cooperator is
favored as a Nash equilibrium, and the system will rapid-
ly move to one near (z = 1,n = 0) due to the relatively
fast change in population frequencies compared to envi-
ronmental state. Then, given an environment dominated
by cooperators, the environmental state will be enhanced
and the system will be drive closer to (x = 1,n = 1).
In an environmentally enhanced state, then defection is
favored as a Nash equilibrium, and the system will rapid-
ly move to one near (x = 0,n = 1). Finally, in an envi-
ronment dominated by defectors, the environmental state
will be degraded and the system will be driven closer to
(z = 0,n = 0). The system should display periodic orbits
for the entire domain. There are a family of such orbits,
each neutrally stable due to the separability of the sys-
tem dynamics. In this initial example the oscillations are
not true limit cycles, i.e., the dynamics depend on the
initial condition.

)\interior = &1
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FIG. 2: Persistent oscillations of strategies and the environment. (Left) Time series of the fraction of cooperators = (blue)
and the environmental state n (green), correspond to dynamics arising from Eq. (15) with e = 0.1, § = 0.2. (Right) Phase
plane dynamics of x — n system. The arrows denote the direction of dynamics with time. The distinct curves correspond
to initial conditions (0.9,0.01), (0.8,0.15), (0.7,0.3), (0.5,0.4), (0.4,0.45). The asterisk denotes the predicted neutrally-stable

equilibrium point at (1/3,1/2).

Identifying an Oscillating Tragedy of the Commons

The prior section extends replicator dynamics to
include feedback-evolving games retaining symmetries in
the payoffs at the extremal values of the environmental
state. However, there are likely to be payoff differences
between cooperation given a depleted state and defection
given a replete state. We address this by breaking the
symmetry of the prior game such that the total magni-
tude and distribution of payoffs are different in the n = 0
and n = 1 states, i.e., A(n) = (1 — n)Ag + nA; where
Ap and A; represent fixed payoff matrices in the envi-
ronmental deplete and replete states. As an example,
consider the case that Ay has a single Nash equilibrium
corresponding to domination by cooperators and that A,
has a single Nash equilibrium corresponding to domina-
tion by defectors:

A(n):u_n)[?’j 0175}4—71[3;] (20)

From a technical perspective, the dynamics of the system
can be predicted by solving for the conditions of stability
near the interior equilibrium, when it exists. Algebraic
conditions for (in)stability do not always yield intuitive
conditions. Hence, as a first step we leverage the fact
that when 0 < € < 1 the dynamics correspond to that of
fast-slow systems where x is the “fast” variable and n is
the “slow” variable [26]. Later we will show that insights
gained in the limit case hold irrespective of the relative
rate change of environment and strategies.

Consider a rescaling of time such that 7 = t/e, such

that we rewrite Eq. (15) as:

— (1 —x)[ri(z,n) —ra(x,n)],

n' =en(l1—n)[-1+4+ (1+0)z], (21)
where the ' denotes a derivative with respect to 7. For
0 < € < 1, this rescaling identifies n as the slow variable.
Let Sy denote the critical manifold of the system [26], i.e.,
the set of values of (x,n) for which 2’ = 0. So long as
the system is not close to this critical manifold, then the
dynamics of z are much faster than that of n, i.e., by a
factor of order 1/e. The critical manifolds of this system
in the bounded domain 0 <z <1 and 0 <n <1 are: (i)
x = 0; (ii) 2 = 1; and (iii) the set of points (z.,n.) that
satisfy r1(ze,ne) = ro(ze,ne). The last of these critical
manifolds can be interpreted as the interior nullcline of
x. We assume that n parameterizes the dynamics of x
far from the critical manifold.

Given the payoff matrix in Eq. (20), the one-
dimensional fast-subsystem can can be written as:

2 = z(1 —2)(1.252 4+ 0.25 — n(3.25z + 1.25)).  (22)

In this case, the interior critical manifold satisfies n =
153?;15. For n > 1/3, there are two fixed points, x = 0
and x = 1, which are stable and unstable respectively.
For n < 1/5, there are are also two fixed points, x = 0
and x = 1, which are unstable and stable respectively.
This system undergoes two saddle-node bifurcations at
the values n = 1/5 and n = 1/3. For values of the
slow variable 1/5 < n < 1/3, the system has three fixed
points, such that x = 0 and x = 1 are stable and x. is
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unstable where
hn —1

“5-13n (23)

zc(n)

System dynamics can be understood in terms of a series
of fast and slow changes. Consider initializing the system
at values (zg, ng) with ng < 1/5, i.e., in the region where
there are only two fixed points of the fast-dynamics. The
system will behave akin to a one-dimensional system and
increase rapidly in x, parameterized by the value n = ny.
As the system approaches the attracting critical mani-
fold, z = 1, then the system dynamics will be governed by
the slow variable dynamics, n’. Cooperators will enhance
the environmental state, given that n’ > 0 for z — 1.
The system will then slowly approach the fixed point
(1,1). This fixed point is unstable in the fast direction,
such that the system will rapidly approach the attracting
critical manifold of x = 0, i.e., the point (0,1). Again,
the system will then slowly change in environmental state
towards the point (0,0), given that n’ < 0 for x — 0.
Now that n < 1/5, the system will be dominated by
the fast subsystem dynamics, rapidly increasing « - com-
pleting the cycle. The resulting dynamics will appear as
relaxation oscillations with slow changes in environment
alternating with rapid changes in the fraction of cooper-
ators. The dynamics overlaid with the critical manifolds
for this system are shown in Figure 3a.

The key to the emergence of relaxation oscillations is
that the interior critical manifold is a repeller. This is
not universally the case. A counter-example is the state-
dependent payoff matrix:

A(n)zu_n)[Sf 0%4%[‘7‘;] (24)

Rather than oscillating, the overall dynamics converge to
a stable state — such that there is a mixed population of
cooperator and defectors at the point (z*,n*). Figure 3
illustrates such a case, again using the fast-slow systems
framework. The key difference is that the critical interior
manifold is an attractor. Hence dynamics on the fast sub-
system is attracted to a point in the slow variable closer
to that of n*. The overall dynamics is again characterized
by a mix of fast and slow changes, however they spiral
in to the interior fixed point rather than away from it.
The dynamics overlaid with the critical manifolds for this
system are shown in Figure 3b. Of note, the feedback-
evolving game analyzed here is closest in intent to a prior
analysis of coupled strategy and environmental change
in the context of durable public goods games [27]. That
model assumed that fitness differences between producers
and non-producers had no frequency-dependence and the
environmental dynamics had at most a single fixed point.
Unlike the present case, the model in [27] did not exhibit
persistent oscillations.

We can generalize these findings with the help of two
definitions. Let n.(0) and n.(1) denote the intersection
of the interior critical manifold with the boundary crit-
ical manifold of the fast-system at z = 0 and = = 1,

5

respectively. For example, in the left panel of Figure 3,
n.(0) = 1/5 and n.(1) = 1/3. We propose the fol-
lowing conjecture: the system will converge to a sta-
ble limit cycle via relaxation oscillations if and only if
n:(0) < nc(1). In the event that n.(0) > n.(1) then
the system will converge to a fixed point via relaxation
oscillations. The system will exhibit neutrally stable
orbits exhibiting relaxation oscillations in the marginal
case of n.(0) = n.(1). The critical value n.(0) corre-
sponds to the value of the environmental state for which
ri(x =0,n) = rqo(x = 0,n).

Generalized conditions for an oscillating tragedy of
the commons

Here we formally evaluate the conjecture of a general
set of conditions for which feedback-evolving games will
exhibit an oscillating tragedy of the commons. To do so,
consider the environment-dependent payoff matrix

b1 b

+n
bs by

A(n)=(1-n) l‘“ a2

as aq

] ; (25)

where 0 < n < 1. We assume that when n = 0 then
the payoff matrix has a unique Nash equilibrium corre-
sponding to cooperative dominance. For this to be the
case, then a; > ag and as > ay. We further assume that
a1 > a4. Similarly, we assume that when n = 1 then the
payoff matrix has a unique Nash equilibrium correspond-
ing to defector dominance. For this to be the case, then
b1 < b3 and by < by. Dominance by defectors is termed
a tragedy of the commons if b; > by.

In Appendix A we derive the conditions for relaxation
oscillations around an unstable fixed point:

by — by
bs — by

a2 — Qa4

(26)

al—a3'

This derivation utilizes local stability analysis to eval-
uate the condition in which the internal equilibrium is
present and is unstable. We also confirm that the boxed
condition coincides to that in the conjecture, that is if
and only if n.(0) < n.(1) then there are persistent relax-
ation oscillations in the system that converge to a limit
cycle. When this condition is satisfied we say that the
system exhibits an Oscillating Tragedy of the Commons.
We term the lhs of this equation the “defector advantage
asymmetry” and the rhs of this equation the “cooperator
advantage asymmetry”. All of these differences are pos-
itive given the conditions of the payoff matrices in the
limits of n = 0 and n = 1. Here the qualitative out-
comes depend on both the sign and magnitude of differ-
ences between payoffs, unlike in evolutionary game theo-
ry modeled via replicator dynamics in which qualitative
outcomes depend only on the sign differences. We also
find that the qualitative outcomes do not depend on the
speed of the feedback (see Figure 4). This e-invariance of
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FIG. 3: Fast-slow dynamics of feedback-evolving games, where x and n are the fast and slow variables respectively - including
critical manifolds and realized dynamics. In both panels, the black lines denote the critical manifolds with solid denoting
attractors and dashed denoting repellers. The blue lines and double arrows denote expected fast dynamics in the limit e — 0.
The red circles denote the bifurcation points of the fast subsystem parameterized by n. The single arrows denote expected slow
dynamics. The gray curve denotes the realized orbit. In both cases, e = 0.1 and # = 2. (Top) Relaxation oscillations converging
to a limit cycle arising due to a saddle-node bifurcation in the fast-subsystem parameterized by n in which the critical manifold
is a repeller. The payoff matrix A(n) is that defined in Eq. (20). (Bottom) Relaxation oscillations converging to a fixed point
arising due to a saddle-node bifurcation in the fast-subsystem parameterized by n in which the critical manifold is an attractor.

The payoff matrix A(n) is that defined in Eq. (24).

qualitative outcomes is not universally the case for fast-
slow systems [26].

Discussion

We proposed a co-evolutionary game theory that incor-
porates the feedback between game and environment
and between environment and game. In so doing,
we extended replicator dynamics to include feedback-

evolving games. This extension is facilitated by assuming
the environmental state can be represented as a linear
combination of two different payoff matrices. Motivated
by the study of the tragedy of the commons in evolu-
tionary biology [28] we demonstrated how new kinds of
dynamics can arise when cooperators dominate in deplete
environments and when defectors dominate in replete
environments. In essence, cooperators improve the envi-
ronment, leading to a change in incentives that shift the
game theoretic strategy towards defection. Repeated
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defections degrade the environment which re-incentives
the emergence of cooperators. In this way there is the
potential for a sustained cycle in strategy and environ-
mental state, i.e., an oscillating tragedy of the commons.
Whether or not the cycle dies out or is persistent depends
on the magnitude of payoffs. This result is in contrast to
the results of evolutionary game theory in which the rela-
tive sign of payoffs determines qualitative system behav-
ior.

Our proposed replicator model with feedback-evolving
games considers the consequences of repetition in which
the repeated actions of the game influences the environ-
ment in which the game is played. Thus, the model
is complementary to long-standing interest in a differ-
ent kind of repeated games, most famously the iterated
prisoner’s dilemma [7, 29-32]. In such iterated games,
winning cooperative strategies emerge that are otherwise
losing strategies in singly-played versions of the game.
Here, individuals do not play against another repeatedly
or, posed alternatively, do not “recall” playing against
another repeatedly. Instead, a feedback-evolving game
changes with time as a direct result of the accumulated
actions of the populations. The motivating example of a
feedback-evolving game has two fixed payoff matrices at
its extremes one of which has a tragedy of the commons
structure given a replete environmental state. Nonethe-
less, investigation of other linear combinations of fixed
payoff matrices are warranted. For example, if defec-
tion and cooperation are favored in depleted and replete
environments, respectively, then the current model can
exhibit alternative stable states in the dual environment-
strategy space — rather than oscillations or convergence
to a fixed point.

Thus far, we have assumed that the environment can
recover from a nearly deplete state. The rate of renew-

J
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al was assumed to be proportional to the cooperator
fraction. In that semse, our work also points to new
opportunities for control - whether for renewable or finite
resources. Is it more effective to influence the strate-
gists, the state, and/or the feedback between strategists
and state? Analysis of feedback-evolving games could
also have implications for theories of human population
growth [33], ecological niche construction [34], and the
evolution of strategies in public good games [25]. The
extension of the current model to microbial and human
social systems may deepen understanding of the short-
and long-term consequences of individual actions in a
changing and changeable environment [35]. We are hope-
ful that recognition and analysis of the feedback between
game and environment can help to more effectively man-
age and restore endangered commons.
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Appendix A: Stability analysis of replicator
dynamics with feedback-evolving games

Derivation of the instability of the interior nullcline

The interior equilibrium (z*,n*) has an associated Jacobian:

J =

z(1— x)%

en(l —n)(1+0)

x(l—x)g—fl

! (A1)

(z*,n*)

Here 0g/0n < 0 for all cases of concern here because the replicator dynamics favor decreases in cooperation as an
increasing function of the environmental state n. As such, the determinant is always positive. The stability of the
fixed point depends on the sign of the trace of J. Because 0 < x* < 1, then the sign of the trace is equivalent to the
sign of dg/0x. This result can also be anticipated by a fast-slow systems analysis in which the stability of any point
on the nullcline depends strictly on dg/dz. Another consequence is that the trace does not depend on e. Therefore,
the qualitative dynamics will be the same for all values of €, i.e., irrespective of the relative speed of the fast and
slow variables (see Figure 4). Such an e-invariance of qualitative phenomena is not universally the case in fast-slow
dynamics.
Formally, 0g/0x can be written as:

dg  Ori  0Or
% ~ 9z 0n (A2)

A(n)[1,1] = A(n)[2,1] — A(n)[1,2] + A(n)[2, 2]

given the condition at equilibrium r; = ro. We must solve for n* as a function of the payoff coefficients. As such,
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FIG. 4: Invariance of system dynamics given change in the relative speed of strategy and environmental dynamics. The
parameter e is varied from 0.1 to 10 given cases where dynamics are expected to lead to stable limit cycles (left) and to a fixed
point (right). Other parameters are the same as in Figure 3. Although the transient dynamics differ, the qualitative dynamics
remain invariant with respect to changes in e.

when r; = ry given z = z* = 1/(1 4 0), the following condition must be satisfied:

A(n)[1,1]z" + A(n)[1,2](1 —2¥) = A(n)[2,1)z* + A(n)[2,2](1 — =¥) (A4)
An)[1,1] — A(n)[2,1] + A(n)[2,2] — A(n)[1,2] = (1+0)(A(n)[2,2] — A(n)[1,2]) (A5)
Recall that
A(n)[L,1] = (1 —n)ay + nby, (A6)
A(n)[1,2] = (1 —n)az + nba, (A7)
A(n)[2,1] = (1 —n)as + nbs, (A8)
An)[2,2] = (1 —n)aqg + nby. (A9)

so that the equilibrium condition for n* is

n* [(bl — bg) + (b4 — bz) + (az — a4) + (a3 — al)]+(a1 —a3)—|—(a4—a2) = [(a4 — az) +n* ((b4 — bg) + ((12 — a4))} (1+9)

(A10)

or equivalently,
n* [(bl — bg) — 0(b4 — bg) — 9(&2 — a4) + (a3 — al)] = (a3 — al) + 9(@4 — ag) (A].l)
o = (a1 — a3) + 0(az — ay) (A12)

(bg — b1) + 0(by — b2) + 0(as — a2) + (a1 — as)

The point of interest n* satisfies r; = ro. Hence, from (B5) an (B3) above, then

Sign <g—g> =(1—-n")(as — az) +n"(bs — b2) (A13)

T
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In other words the interior fixed point is unstable when dg/0x > 0, equivalently:

*

n

Gz — G4

” (a2 — az) + (b2 — b2)

(A14)

Recall that ag > a4 and by > by in the games we consider and further that the r.h.s. of Eq. (Al4) is equivalent to
n.(0) in the main text, i.e., the intersection of the nullcline of & with the (z = 0,n) boundary. We can then write the

condition on instability as

(CLg — (11) + 9(0,4 — CLQ)

a2 — Q4

(b1 — b3) +0(b2 — bs) + O(az — as) + (a3 — a1) ~

(a2 — a4) + (b4 - bg) (A15)

We denote the strictly positive dummy variables C; = a3 — a1, Cy = by — b3, D1 = a4 — as and Dy = by — by and

rewrite Eq. (A15) as:

C1+6D D
L0 > ! (A16)
Ci+Cy+60D1+60Dy Di+ Dy
which after some algebraic re-arrangement yields
Ch Dy
> A17
Ci+Cy D+ Dy (AL7)
where we recognize the Lh.s. as
S (A18)

(a1 —az) + (bs — b1)

or equivalent to n.(1) in the main text, i.e., the intersection of the nullcline of & with the (z = 1,n) boundary. To

summarize, the interior fixed point is unstable when

a; — as

a2 — a4

(a1 —as) + (bs—b1)

This can be further reduced to the boxed equation in the main text:

by — by

bs — by

A19

(ag —ay) + (bg — ba) (A19)

> d27 (A20)
a1 — as

Deriving the conditions for the intersection of the
interior critical manifold with the boundary critical
manifold

Consider the generalized payoff matrix

A(n):(l—n)[al “2]+n[bl b2] (A21)

as a4

where 0 < n < 1, a1 > asz, as > a4, a1 > ag, b1 < b3,
by < by and by > by. Further, let n.(0) and n.(1) denote
the intersection of the interior critical manifold with the
boundary critical manifold of the fast-system at z = 0
and x = 1, respectively. We find these points by setting
r1(0,m) = r2(0,n) and r1(1,n) = r2(1, n), respectively:

1 = An)[1, 1]z + A(n)[1,2](1 — z)
ro = A(n)[2, 1]z + A(n)[2,2](1 — )

(A22)
(A23)

(

where the notation [¢,j] denotes the i-th row and j-th
column of the matrix. We find

a2 — G4

n:(0) = A24

©) (ba = b2) + (a2 — a4) (A24)
a]; — as

ne(l) = A25

( ) (bg—b1)+(a1—a3) ( )

Therefore n.(0) < n.(1) when
b4 — b2 a2 — Q4
A2
b3 — bl a; — asg ( 6)

which is Eq. (A20) in this Appendix and Eq. (26) in the
main text.
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