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Abstract

Many disciplines, from human genetics and oncology to plant and animal breeding, microbiology
and virology, commonly face the challenge of analyzing rapidly increasing numbers of genomes. In case
of Homo sapiens, the number of sequenced genomes will approach hundreds of thousands in the next few
years. Simply scaling up established bioinformatics pipelines will not be sufficient for leveraging the full
potential of such rich genomic datasets. Instead, novel, qualitatively different computational methods
and paradigms are needed. We will witness the rapid extension of computational pan-genomics, a new
sub-area of research in computational biology. In this paper, we examine already available approaches to
construct and use pan-genomes, discuss the potential benefits of future technologies and methodologies,
and review open challenges from the vantage point of the above-mentioned biological disciplines. As a
prominent example for a computational paradigm shift, we particularly highlight the transition from
the representation of reference genomes as strings to representations as graphs. We outline how this and
other challenges from different application domains translate into common computational problems,
point out relevant bioinformatics techniques and identify open problems in computer science. In this
way, we aim to form a computational pan-genomics community that bridges several biological and
computational disciplines.
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1 Introduction

In 1995, the complete genome sequence for the bac-
terium Haemophilus influenzae was published, fol-
lowed by the sequence for the eukaryote Saccha-
romyces cerevisiae in 1996 and the landmark pub-
lication of the human genome in 2001. These se-
quences, and many more that followed, have served
as reference genomes, which formed the basis for
both major advances in functional genomics and for
studying genetic variation by re-sequencing other
individuals from the same species. The advent
of rapid and cheap “next-generation” sequencing
technologies since 2006 has turned re-sequencing
into one of the most popular modern genome anal-
ysis workflows. As of today, an incredible wealth of
genomic variation within populations has already
been detected, permitting functional annotation of
many such variants, and it is reasonable to expect
that this is only the beginning.

With the number of sequenced genomes steadily
increasing, it makes sense to re-think the idea of a
reference genome. Such a reference sequence can
take a number of forms, including:

• the genome of a single selected individual,

• a consensus drawn from an entire population,

• a “functional” genome (without disabling mu-
tations in any genes), or

• a maximal genome that captures all sequence
ever detected.

Depending on the context, each of these alterna-
tives may make sense. However, many early refer-
ence sequences did not represent any of the above.
Instead, they consisted of collections of sequence
patches, assayed from whatever experimental ma-
terial had been available, often from a relatively
unstructured mix of individual biological sources.
Only lately has the rapid spread of advanced se-
quencing technologies allowed the reasonably com-
plete determination of many individual genome
sequences from particular populations, taxonomic
units, or environments. To take full advantage of
these data, a good “reference genome” should have
capabilities beyond the alternatives listed above.
This entails a paradigm shift, from focusing on
a single reference genome to using a pan-genome,
that is, a representation of all genomic content in
a certain species.

1.1 Definition of Computational
Pan-Genomics

The term pan-genome was first used by Sigaux [121]
to describe a public database containing an assess-
ment of genome and transcriptome alterations in
major types of tumors, tissues, and experimental
models. Later, Tettelin et al. [131] defined a mi-
crobial pan-genome as the combination of a core
genome, containing genes present in all strains, and
a dispensable genome (also known as flexible or ac-
cessory genome) composed of genes absent from one
or more of the strains. A generalization of such
a representation could contain not only the genes,
but also other variations present in the collection
of genomes. The idea of transitioning to a human
pan-genome is also gaining more and more atten-
tion1.

Here, we generalize the above definitions and use
the word pan-genome to refer to any collection of
genomic sequences to be analyzed jointly or to be
used as a reference. These sequences can be linked
in a graph-like structure, or simply constitute sets
of (aligned or unaligned) sequences. Questions
about efficient data structures, algorithms and sta-
tistical methods to perform bioinformatic analyses
of pan-genomes give rise to the discipline of com-
putational pan-genomics.

While being aware that the above definition of
a pan-genome is general, we argue that it is in-
strumental for identifying common computational
problems that occur in different disciplines. Our
notion of computational pan-genomics therefore in-
tentionally intersects with many other bioinformat-
ics disciplines. In particular it is related to metage-
nomics, which studies the entirety of genetic ma-
terial sampled from an environment; to compar-
ative genomics, which is concerned with retrac-
ing evolution by analyzing genome sequences; and
to population genetics, whose main subject is the
change of a population’s genetic composition in re-
sponse to various evolutionary forces and migra-
tion. All these fields have developed their own al-
gorithms and data structures to represent sets of
genomes and can therefore contribute to the pan-
genomics toolbox. By advocating computational
pan-genomics, we hope to increase awareness of

1See http://www.technologyreview.com/news/537916/

rebooting-the-human-genome, for an example of recent me-
dia coverage
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common challenges and to generate synergy among
the involved fields.

At the core of pan-genomics is the idea of replac-
ing traditional, linear reference genomes by richer
data structures. The paradigm of a single refer-
ence genome has endured in part because of its sim-
plicity. It has provided an easy framework within
which to organize and think about genomic data;
for example, it can be readily visualized through
a genome browser. With the currently rapidly
growing number of sequences we have at our dis-
posal, this approach increasingly fails to fully cap-
ture the information on variation, similarity, fre-
quency, and functional content implicit in the data.
Although pan-genomes promise to be able to rep-
resent this information, there is not yet a con-
ceptual framework or a toolset for working with
pan-genomes that has achieved widespread accep-
tance. For many biological questions, it is not yet
established how to best extract the relevant infor-
mation from any particular pan-genome represen-
tation, and even when the right approach can be
identified, novel bioinformatics tools often need to
be developed in order to apply it.

In this paper, we explore the challenges of work-
ing with pan-genomes, and identify conceptual and
technical approaches that may allow us to orga-
nize such data to facilitate its application in (green,
blue, red, and white [65]) biotechnology and funda-
mental research.

1.2 Goals of Computational Pan-
Genomics

On a high level, desirable features of a pan-genome
include completeness, or containing all functional
elements and enough of the sequence space to serve
as a reference for the analysis of additional individ-
uals; stability, or having uniquely identifiable fea-
tures that can be studied by different researchers
and at different points in time; comprehensibility,
or facilitating understanding of the complexities
of genome structures across many individuals or
species; and efficiency, or organizing data in such
a way as to accelerate downstream analysis.

These desiderata highlight the breadth of chal-
lenges facing pan-genomics as a field, some of which
go beyond scientific questions. Reaching complete-
ness, for instance, requires the necessary (financial
and technical) resources to collect and sequence a

sufficient number of genomes for a particular tis-
sue, organism, species, other taxonomic unit, eco-
logical community, or geospatial niche of inter-
est to be accurately represented. The availabil-
ity data sharing mechanisms will greatly influence
how quickly completeness can be achieved. Issues
of data sharing include technical ones (mostly due
to the data being big), political ones, and ethi-
cal/privacy concerns [53], as well as issues related
to the interplay of these three areas. Achieving
stability requires a central, recognized authority
equipped with the long-term resources for curat-
ing reference pan-genomes. Besides this organiza-
tional component, achieving stability also requires
reaching consensus about ways to define coordinate
systems on pan-genomes. The goal of comprehen-
sibility is mostly a biological problem. What it
means exactly can differ substantially between ap-
plication domains, as we outline below. The goal
of efficiency, on the other hand, is in the domain of
computer science. Aligning the needs of researchers
in the application domains with efforts to develop
algorithms and statistical methods is key to design-
ing efficient solutions. With this paper, we hope to
contribute significantly to this communication pro-
cess.

2 Applications

2.1 Microbes

Bacteria and fungi are widely studied—and
applied—in fields including biology, medicine, and
biotechnology. A full understanding of the func-
tional and evolutionary repertoire of microbial
genomes thus not only is interesting from a scien-
tific point of view, but also opens up possibilities for
developing therapies and engineering applications.

For a number of microorganisms, pan-genome se-
quence data is already available; refer to [79, 41]
for examples. Microbes provide a unique opportu-
nity for pan-genome construction: the size of their
genomes is relatively small, and for many species
there are multiple fully closed genome sequences
available. Furthermore, for some clinically interest-
ing bacterial species, up to thousands of sequenced
strains are available at sufficient depth to create
draft genome assemblies. This has enabled pan-
genome studies at the gene level [135], for which es-
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tablished workflows and mature software are avail-
able, as reviewed in [144]. With the current data,
however, we are in a position to create a pan-
genome at the sequence level, as in e.g. [99]. In
this context, a pan-genome is a representation that
encodes the complete sequence information of many
individual strains.

From an evolutionary point of view, microbial
pan-genomes support comparative genomics stud-
ies. These are particularly interesting due to most
microorganisms’ potential for horizontal gene ex-
change. This means that not all genes in a genome
adhere to the same phylogenetic sub-tree [36].
Thus, the evolution of microorganisms including
bacteria, but also higher organisms [26], is more
naturally represented as a phylogenetic network,
rather than a phylogenetic tree [62]. We envision
that these phylogenetic networks can be encoded in
the structure of the pan-genome.

Applying genome-wide association studies
(GWAS) to microbes is an emerging field [39, 112],
promising to pinpoint genetic variables that
correlate with relevant traits such as drug resis-
tance or secondary metabolism. Such studies can
operate at the level of individual variants—such
as single-nucleotide polymorphisms (SNPs), in-
sertion/deletion variants (indels), and structural
variants (SVs)—or at the level of absence or
presence of whole genes, annotated functions,
or mobile genetic elements such as integrons
or prophages. Computational pan-genomic ap-
proaches could be applied at each of these levels.
Important challenges amenable to a pan-genomic
approach include establishing reliable data pro-
cessing pipelines to deliver variant calls, extracting
gene absence/presence signals from NGS data,
annotation for hypothetical genes and proteins,
and specifically computational challenges such as
the definition of a coordinate system to identify se-
quence loci on pan-genomes or the handling nested
variation, such as SNP positions in large insertions.
By addressing these challenges, computational
pan-genomics has the potential to substantially
contribute to the success of microbial GWAS.

2.2 Metagenomics

Metagenomics studies the genomic composition
of microorganisms sampled from an environment.
Abundant metagenomic data is currently being

generated from various environments such as hu-
man hosts [133, 76], the world’s oceans [142, 18],
and soil [59]. One main advantage of this approach
lies in allowing the sampling of all microorganisms
in an environment, not only those that can be cul-
tured. This however comes at the cost of having to
untangle the sequencing data generated from such
a mixture computationally. A first question often
asked is about the taxonomic composition of the
sample. Other relevant questions that can be ap-
proached with metagenomic data include ascertain-
ing the presence of certain gene products or whole
pathways, and determining which genomes these
functional genes are associated with.

Metagenomics can be applied to gain insights on
human health and disease. Metagenome-wide asso-
ciation studies that aim to associate the microbial
composition in the human gut with diseases such
as type 2 diabetes are an example [110]. Metage-
nomics has also been shown to be capable of re-
vealing the genomes of entire species, and tracing
them through environments, as in the example of
the shiga-toxigenic Escherichia coli being responsi-
ble for a recent major outbreak in Germany [81].

In the metagenomic setting, the set of genomic
sequences underlying a pan-genome is not defined
by ancestral relationships, but by co-occurrence in
an environment. This presents both a challenge
and an opportunity. On the one hand, constructing
such a pan-genome and drawing robust conclusions
from it is difficult, especially when sequencing reads
are short. On the other hand, it presents the chance
to reveal common adaptations to the environment
as well as co-evolution of interactions.

2.3 Viruses

Viruses are notorious mutation machines. A vi-
ral quasi-species is a cloud of viral haplotypes that
surround a given master virus [35]. Although vi-
ral genomes are comparatively short (RNA viruses
range from 3–30kb, DNA viruses are usually not
larger than 3Mb), their high sequence variabil-
ity makes it challenging to assemble full viral
genomes de novo. There are two major sequenc-
ing approaches for viruses: sequencing isolated
viral clones, and metagenomic sequencing. The
latter usually identifies a metapopulation consen-
sus genome sequence rather than a single hap-
lotype [40], and includes confounding genetic se-
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quences such as the genome of other community
members and of the cellular virus host. Thus far,
the obvious approach of viral particle sorting by
Fluorescence-Activated Cell Sorting (FACS), fol-
lowed by single virus sequencing, has remained
elusive due to their small genome size [5, 88].
New long-read technologies (e.g. PacBio, Oxford
Nanopore) are now providing the first promis-
ing results in the sequencing of complete viral
genomes [80, 136]. Currently, error rates in these
third-generation long read sequencing technologies
still far exceed the frequencies of rare strains or
haplotypes. However, as sequencing chemistry and
technologies progress, such techniques are likely to
become key tools for the construction of viral pan-
genomes.

Low frequency strains are hardly detectable, es-
pecially for fast evolving RNA viruses with a repli-
cation mutation rate of about the sequencing error
rates. Reliable viral haplotype reconstruction is not
fully solved, although to date many promising ap-
proaches have been presented [13]. Haplotype res-
olution techniques such as Strand-Seq [47] are not
applicable for small virus particles.

One of the goals of pan-genomics, both in vi-
rology and in medical microbiology, will be to
fight infectious disease. We expect that computa-
tional pan-genomics will assist GWAS approaches,
which may allow the prediction of crucial param-
eters such as the exact diagnosis, staging, and
suitable therapy selection from a given patient’s
viral pan-genome. For example, several studies
have shown relationships between genetic diversity
and disease progression, pathogenesis, immune es-
cape, effective vaccine design, and drug resistance
in HIV [74, 11, 20]. Thus, computational pan-
genomics promises to be useful when studying the
response of the quasi-species to the host immune
system, in the context of personalized medicine.

The molecular interactions between pathogens
and their hosts lead to a genetic arms race that al-
lows virus-host interactions to be predicted [30]. In
this context, metagenomics techniques can also be
applied [43, 96]. The large metagenomic datasets
mentioned in Section 2.2 can serve as input for
such studies. We expect that computational pan-
genomics will allow increased power and accuracy,
for example by allowing the pan-genome structure
of a viral population to be directly compared with
that of a susceptible host population.

2.4 Plants

Genomic hybridization of accessions of crops or
flowers has been exploited for over a century to cre-
ate offspring with desirable traits. Genes found in
wild varieties that improve important properties of
crops, such as appearance, nutrient content, resis-
tance to certain pests or diseases, or tolerance for
stresses such as drought or heat, are now routinely
bred into commercial crop varieties.

Large-scale genomics projects to characterize the
genetic diversity in plants are already ongoing, not
only for the model plant Arabidopsis thaliana [138],
but also for crops [10]. Examples include the
resequencing of hundreds to thousands of vari-
eties of rice [61], maize [64], sorghum [83], and
tomato [132]. Future projects aim to sequence
many more varieties, e.g. 100,000 varieties of rice2.
Mining and leveraging the sequence data in such
large-scale projects requires a pan-genomic ap-
proach. Particularly challenging is the fact that
many plant genomes are large, complex (contain-
ing many repeats) and often polyploid.

A pan-genome structure has multiple advantages
over a single, linear reference genome sequence in
plant breeding applications. Having a pan-genome
available for a given crop that includes its wild rel-
atives provides a single coordinate system to an-
chor all known variation and phenotype informa-
tion, and will allow for identification of novel genes
from the available germplasm that are not present
in the reference genome(s). Moreover, the pan-
genome will reveal chromosomal rearrangements
between genotypes which can hinder the introgres-
sion of desired genes. It also provides a compact
representation of polyploid genomes and, in case of
autopolyploids, allows for the quantitation of allele
dosage between individuals.

2.5 Rare Genetic Diseases

Mutations that are causal for rare Mendelian dis-
eases have successfully been discovered during the
past few years using whole exome and genome se-
quencing [50, 9]. Key for these studies is the
availability of databases of common and rare ge-
netic variants present in control populations that
do not carry the disease. Current resources such as

2http://irri.org/our-work/research
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the Exome Variant Server (EVS)3 and the ExAC
Browser [46] have amassed large amounts of rare
variants found in the human exome. Yet caution
is needed when relating a genetic variation to a
rare human disease, because any genome sequence
contains many potentially functional rare variants
that could result in false-positive associations to
disease [82]. Particularly for non-coding genetic
variants, assessing pathogenicity is a challenging
task given the lack of knowledge on predicting their
functional consequences.

An important step towards strengthening the
identification of disease-causing genetic variants
will be efforts to aggregate and categorize large
amounts of common and rare (population-specific)
genetic variation into a fully annotated pan-genome
data structure. Such a centralized data structure
would serve as a general baseline and circumvent
the need for comparing variant calls from patients
to several different variant resources generated by
a variety of consortia, for instance [120, 1, 49]. Fur-
thermore, encapsulating all possible genetic varia-
tions into a reference sequence would greatly im-
prove variant detection following read alignment,
or even as part of read alignment against a pan-
genome reference structure. This is especially rele-
vant for structural genomic changes, which play an
important role in rare disease genetics [126].

Despite tremendous efforts to capture structural
variation based on discordant mapping of short
reads, a major fraction remains undetected in large
part because of their complexity and due to the
incompleteness of the current reference genome [4,
21]. Incorporating fully resolved high-quality struc-
tural variation data into the reference, preferably
from long-read sequencing data, would greatly im-
prove the genotyping of known structural varia-
tions and limit false-positives among novel struc-
tural variation calls. This will be highly relevant
in the clinical setting, where genome sequencing is
expected to replace array-based copy number vari-
ation profiling within a few years.

Addition of variation in genome structure to
a human reference genome sequence provides a
more complete gene complement for the human
population including resolved paralogous genes,
genome assembly collapses, redundant regions and
population-specific genes. Inclusion of the pheno-

3http://evs.gs.washington.edu/EVS

typic effects of these variants will also pave the way
for methods to diagnose a patient in silico. This is
essential for disease-gene identification for patients
with a hitherto unexplained genetic disease.

2.6 Cancer

Cancer is caused mostly by somatic DNA alter-
ations that accumulate during an individual’s life-
time [128]. Somatic mutations in different individ-
uals arise independently, and recent large cancer
studies have uncovered extensive inter-patient het-
erogeneity among somatic mutations, with any two
tumors presenting a different complement of hun-
dreds to tens of thousands of somatic mutations
[66, 72]. Heterogeneity also manifests intra-patient,
with different populations of cells presenting differ-
ent complements of mutations in the same tumor
[90, 91].

Inter-patient and intra-patient heterogeneity
pose several challenges to the detection and the
interpretation of somatic mutations in cancer.
The availability of a pan-genome reference would
greatly improve the detection of somatic mutations
in general, through improved quality of read map-
ping to polymorphic regions, and in particular in
cases when matched normal tissue is not available
or when only a reduced sequence coverage can be
obtained.

In addition to a pan-genome reference, a somatic
cancer pan-genome, representing the variability in
the observed as well as inferred background alter-
ation rate across the genome and for different co-
horts of cancer patients, would enhance the identifi-
cation of genomic alterations related to the disease
(driver events) based on their recurrence across in-
dividuals. Even more important would be the avail-
ability of a somatic pan-genome describing the gen-
eral somatic variability in the human population,
which would provide an accurate baseline for as-
sessing the impact of somatic alterations.

For the medium and long term future, we en-
vision a comprehensive cancer pan-genome to be
build for each tumor patient, comprising single-cell
data, haplotype information as well as sequencing
data from circulating tumor cells and DNA. Such a
pan-genome will most likely constitute a much bet-
ter basis for therapy decisions compared to current
cancer genomes which mainly represent the most
abundant cell type.
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2.7 Phylogenomics

Phylogenomics reconstructs the evolutionary his-
tory of a group of species by using their complete
genome sequences, and can exploit various signals
such as sequence or gene content [38, 124]. Compu-
tational pan-genomics will allow genomic features
with an evolutionary signal to be rapidly extracted,
such as gene content tables, sequence alignments
of shared marker genes, genome-wide SNPs, or in-
ternal transcribed spacer (ITS) sequences, depend-
ing on the level of relatedness of the included or-
ganisms. This will facilitate evolutionary analy-
ses ranging from the reconstruction of species phy-
logenies, where heterogeneity between genomes is
high [23], to tracing epidemic outbreaks and can-
cer lineages within a patient, where heterogeneity
between genomes is low. For example, the yeast
dataset described in [93] allowed a phylogenetic
classification based on the presence and location of
mobile elements in several strains of S. cerevisiae.
Computational pan-genomics would also enhance
such mobilomics analysis when the pan-genome is
build from a set of distinct strains of the same
species.

Unambiguous phylogenomic trees of organismal
or cellular lineages form invaluable input data for
applications in various biomedical fields, for exam-
ple to map the evolutionary dynamics of mutation
patterns in genomes [16] or to understand the trans-
fer of antibiotic resistance plasmids [31]. At the
same time, the size of the pan-genome often ham-
pers the inference of such a “tree of life” compu-
tationally as well as conceptually. One clear bonus
offered by the pan-genome, is that for traditional
phylogenomics only the best aligned, and most well
behaved residues of a multiple sequence alignment
can be retained. In contrast, the pan-genomic rep-
resentation of multiple genomes allows for a clear
encoding of the various genomic mutations in a
model of the evolutionary events. This leads to
the possibility for radical new evolutionary discov-
eries in fields including the origin of complex life
[141], the origin of animals [97] and plants [147], or
the spread of pathogens [44, 57], but also inferring
the relationships between cancer lineages within a
single patient [52, 24].

2.8 Gene Regulation

All genomes contain functional elements such as
genes, but also numerous signals to control their ex-
pression and to ensure the genome’s maintenance.
Transcription factors that need to bind to specific
motifs in a regulatory region of a gene in order
to initiate transcription are one example of such
a mechanism [25]. Likewise, the replication and
sharing of the DNA between two daughter cells is
a crucial and hence highly regulated mechanism.
Again, specific sequence motifs control order and
origins of genome replication [32].

Computational tasks related to understanding
gene regulation therefore include detecting a given
motif or to find all its occurrences in certain ge-
nomic context, or in a discovery mode, to extract or
infer such over-represented motifs from positive and
negative examples; refer to [116, 29] for reviews.
These tasks are relevant for all species, because the
underlying biological phenomena are universal.

Clearly, for such sequence analysis tasks, the use
of a pan-reference and of a dedicated data struc-
ture for interrogating multiple genomes efficiently
promises substantial improvements both in terms
of sensitivity and efficiency. Indeed, a pan-genome
structure gives access to all variants for a given ge-
nomic locus: searching the motif against it informs
us about the presence or absence of the motif, but
also on its frequency in the sampled population,
strains, or species—depending on the phylogenetic
level at which the pan-genome was computed. This
information is useful for estimating the statistical
significance of occurrences, but also to gain evolu-
tionary insights on the mechanisms under investi-
gation.

Overall, a pan-genome search increases the
chance to detect occurrences across strains or
species. Improvement in efficiency follows from
the fact that a pan-genome search avoids search-
ing each genome individually, and offers a common
coordinate system. Furthermore, it might facilitate
an easy and integrated use of information on both
sequence and evolutionary conservation.
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3 Impact of Sequencing Tech-
nology on Pan-Genomics

Next-generation short-read sequencing has con-
tributed tremendously to the increase in the known
number of genetic variations in genomes of many
species. The inherent limitations of commonly used
short-read sequencing are three-fold. First, the
short read lengths prohibit the interrogation of ge-
nomic regions consisting of repetitive stretches, the
direct phasing of genetic variants [51], and the de-
tection of large structural variations [21]. Second,
non-random errors hamper the detection of genetic
variations [6]. Third, there is a non-uniform distri-
bution of sequencing coverage [115] due to various
factors including biases in PCR amplification, poly-
merase processivity, and bridge amplification.

Establishing pan-genome sequences ideally re-
quires a complete set of phased – that is, hap-
lotype resolved – genetic variations. Experimen-
tal techniques to capture such linkage information
have witnessed significant progress recently, as re-
viewed by [125]. Ultimately, specialized protocols
for haplotype-resolved sequencing will be rendered
obsolete once sufficiently long sequencing reads are
routinely available.

The most promising developments in sequenc-
ing technology involve single-molecule real-time
sequencing of native DNA strands. Currently,
SMRT sequencing (Pacific Biosciences) is widely
used for variation discovery and genome assem-
bly [21]. The MinION device (Oxford Nanopore
Technologies) [118] provides even longer reads of
single DNA molecules, but has been reported to
exhibit GC biases [71]. Data generated on the Min-
ION platform has been successfully used for assem-
bly of small genomes and for unraveling the struc-
ture of complex genomic regions [7, 84].

Despite this progress, sequencing reads are not
yet sufficiently long to traverse and assemble all
repeat structures and other complementary tech-
nologies are necessary to investigate large, more
complex variation. Presently, array comparative
genomic hybridization (arrayCGH), synthetic long
reads (Moleculo [70], 10X Genomics [146]), chro-
matin interaction measurements [19] and high-
throughput optical mapping [130, 54, 85] all aid
the detection of structural variation.

Beyond interrogating genomes, sequencing tech-

nologies also serve to measure various other signals
that can be seen as additional layers of information
to be stored and analyzed in a pan-genome frame-
work. Most notably, specialized protocols exist to
measure transcriptomes, DNA-protein interaction,
3D genome structure, epigenetic information, or
translatomes. In all these cases a current challenge
consists in transitioning from bulk to single-cell se-
quencing.

We expect that novel technologies will continue
to greatly improve all mentioned applications in ge-
nomics and beyond. Nonetheless, further decreas-
ing costs and conducting appropriate benchmark
studies that illustrate specificity and sensitivity are
problems yet to be tackled.

4 Data Structures

4.1 Design Goals

Different applications give rise to different re-
quirements for data structures that represent pan-
genomes. Refer to Figure 1 for a schematic
overview. Depending on the specific application,
a pan-genome data structure may need to offer any
of the following capabilities:

Construction and Maintenance. Pan-
genomes should be constructable from different
independent sources, such as (1) existing linear
reference genomes and their variants, (2) haplotype
reference panels, and (3) raw reads, either from
bulk sequencing of complex mixtures or from
multiple samples sequenced separately. The data
structure should allow dynamic updates of stored
information without rebuilding the entire data
structure, including local modifications such as
adding a new genetic variant, insertions of new
genomes, deletion of contained genomes.

Coordinate System. A pan-genome defines the
space in which (pan-)genomic analyses take place.
It should provide a “coordinate system” to un-
ambiguously identify genetic loci and (potentially
nested) genetic variants. Desirable properties of
such a “coordinate system” include that nearby po-
sitions should have similar coordinates, paths rep-
resenting genomes should correspond to monotonic
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Genome 3 TCTGGAGTTCCAAATAAGGACCCGCTCC

Figure 1: Illustration of operations to be supported by a pan-genome data structure.

sequences of coordinates where possible, and coor-
dinates should be concise and interpretable.

Biological Features and Computational Lay-
ers. Annotation of biological features should be
coherently provided across all individual genomes.
Computationally these features represent addi-
tional layers on top of pan-genomes. This includes
information about (1) genes, introns, transcription
factor binding sites; (2) epigenetic properties; (3)
linkages, including haplotypes; (4) gene regulation;
(5) transcriptional units; (6) genomic 3D structure
and (7) taxonomy among individuals.

Data Retrieval. A pan-genome data structure
should provide positional access to individual
genome sequences, access to all variants and to
the corresponding allele frequencies. Haplotypes
should be reconstructable including information
about all maximal blocks and linkage disequilib-
rium between two variants.

Searching within Pan-Genomes. Compar-
isons of short and long sequences (e.g. reads)
with the pan-genome ideally results in the corre-
sponding location and the best matching individual
genome(s). This scenario may occur for transcrip-
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tomic data as well as for DNA re-sequencing data,
facilitating the identification of known variants in
new samples (variant calling).

Comparison among Pan-Genomes. Given
any pair of genomes within a pan-genome, we ex-
pect a data structure to highlight differences, vari-
able and conserved regions, as well as common syn-
tenic regions. Beyond that, a global comparison of
two (or more) pan-genomes, e.g. with respect to
gene content or population differentiation, should
be supported.

Simulation. A pan-genome data structure
should support the generation (sampling) of
individual genomes similar to the genomes it
contains.

Visualization. All information within a data
structure should be easily accessible for human eyes
by visualization support on different scales. This
includes visualization of global genome structure,
structural variants on genome level and local vari-
ants on nucleotide level, but also biological features
and other computational layers (see above) should
be represented.

Efficiency. We expect a data structure to use as
little space on disk and memory as possible, while
being compatible to computational tools with a low
running time. Supporting specialized hardware,
such as general purpose graphics processing units
(GPGPUs) or field-programmable gate arrays (FP-
GAs), is partly an implementation detail. Yet, in
some cases, the target platform can influence data
structure design significantly.

4.2 Approaches

There are natural trade-offs between some of the
desiderata discussed above. For instance, the ca-
pability to allow dynamic updates might be diffi-
cult to achieve while using only small space and
allowing for efficient indexing. It is one of the core
challenges of computational pan-genomics to design
data structures that support (some of) the above
query types efficiently. While desirable in principle,
we consider it difficult, if not impossible, to develop
a solution that meets all the listed requirements at

once. Therefore, future research should aim to de-
lineate the compromises that may have to be made
and thereby provide guidance on which solution is
suitable for which application scenario. As the field
matures, additional queries will appear, and data
structures will need to adapt to support them.

In the following, we discuss traditional ap-
proaches to meet fundamental requirements for
genome analysis, first extensions for pan-genomes,
as well as future challenges.

Unaligned Sets of Sequences. The conceptu-
ally simplest representation of a pan-genome con-
sists of a set of individual sequences (Figure 2a),
which might be either whole genomes or parts of
it. The traditional view of a species’ pan-genome
as the set of all genes [135], which is prevalent in mi-
crobiology, can be considered an example for this.
Unaligned whole genome sequences on the other
hand are, in general, of limited utility for most ap-
plications, especially when the genomes are long.
So we consider collections of individual genomes
mostly as input to build the more advanced repre-
sentations discussed in the following.

Multiple-Sequence-Alignment Based Repre-
sentations. Pan-genomes can be represented by
alignments of multiple genomes. In a multiple
sequence alignment (MSA), the input sequences
are aligned by inserting gap characters into each
sequence (Figure 2b). The result is a matrix,
where each column represents putatively homolo-
gous characters. Refer to [42, 102] for reviews on
current methods and remaining challenges. Such
classical colinear alignments are not able to capture
larger rearrangements like inversions and translo-
cations well and hence only apply to short ge-
nomic regions such as single genes or to very similar
genomes.

One advantage of using an MSA as a represen-
tation of a pan-genome is that it immediately de-
fines a coordinate system across genomes: a column
in the alignment represents a location in the pan-
genome. MSAs furthermore support many compar-
ison tasks.

All approaches designed for linear reference
genomes can, in principle, be extended to multi-
ple alignments at the expense of adding bookkeep-
ing data structures to record where the gaps are.
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Figure 2: Selected examples of pan-genome representations: (a) three unaligned sequences, colors highlight sim-
ilarities; (b) a multiple sequence alignment of the same three sequences; (c) the De Bruijn graph of the first (red)
sequence block; (d) acyclic sequence graph, paths representing the three haplotypes shown as solid/dashed/dotted
lines; (e) cylic sequence graph; (f) Li-Stephens model of the first nine characters with states indicated by circles,
emission distributions given in boxes and transitions given by arrows; dashed arrows indicate the (less likely)
“recombination” transitions.
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Efficient data structures for prefix sum, rank, and
select queries exist [98], which can be used for the
purpose of doing projections to and from a sequence
and its gapped version as a row of an MSA. Mul-
tiple sequence alignments can be compactly repre-
sented by journaled string trees [111]. This data
structure also allows for efficiently executing se-
quential algorithms on all genomes in the MSA
simultaneously. One example for such a sequen-
tial algorithm is online pattern matching, that is,
searching all genomes for the exact or approximate
occurrence of a pattern without building an index
structure first.

When aligning two or more whole genomes,
structural differences such as inversions and
translocations need to be taken into account. Stan-
dard methods for a colinear MSA are therefore not
applicable. Instead, one aims to partition the in-
put genomes into blocks such that sequences within
blocks can be aligned colinearly. Creating such
a partitioning is a non-trivial task in itself and
mostly approached through graph data structures
that represent local sequence similarities and adja-
cencies. On the one hand, such graphs therefore
facilitate whole genome alignment. On the other
hand, they can be understood as representations of
the pan-genome. Concrete realizations of this idea
include A-Bruijn graphs [108], Enredo graphs [106]
and Cactus graphs [104, 105]. For detailed defini-
tions and a comparison of these concepts we refer
the reader to the review [68].

Block-based multiple sequence alignments can
also serve as the basis for a coordinate system on a
pan-genome: by numbering blocks as well as num-
bering columns inside each colinearly aligned block,
a notion of a position in a pan-genome can be de-
fined. This idea is explored by Herbig et al. [56],
who furthermore show how it can serve as a foun-
dation for visualization.

k-mer-Based Approaches. Starting from ei-
ther assembled genomes, contigs, or just collections
of (error-corrected) reads, a pan-genome can also
be represented as a collection of k-mers, i.e. strings
of length k. The task of efficiently counting all k-
mers occurring in an input sequence has been stud-
ied extensively in recent years and many solutions
are available, including Jellyfish [92], DSK [114]
and KMC2 [33]. Such a k-mer collection is a rep-

resentation of the corresponding de Bruijn Graph
(DBG), illustrated in Figure 2c. DBGs were in-
troduced in the context of sequence assembly [94],
but can be used as pan-genome representations sup-
porting many applications beyond assembly. When
k-mer neighborhood queries are sufficient, and no
k-mer membership queries are required, then even
more space-efficient data structures for DBGs ex-
ist [22].

When building DBGs for multiple input samples,
one can augment each k-mer by the set of samples
containing it. This idea is realized in colored DBGs
where we color each k-mer according to the input
samples it occurs in. Colored DBGs have been
used successfully for reference-free variant calling
and genotyping [63]. Recently, Holley et al. [58] in-
troduced bloom filter tries, a data structure able to
efficiently encode such colored DBGs.

For k-mer based representations of pan-genomes,
the length k is obviously an important parameter
and picking the right value depends on the intended
application. Data structures able to represent a
pan-genome at different granularities (i.e. at differ-
ent values of k) are hence an interesting research
topic. For instance, Minkin et al. [95] show that it-
eratively increasing k helps to capture nested syn-
teny structure.

Pan-genomes encompassing many species can be
encoded as a mapping between k-mers and clades:
given a phylogenetic tree, each k-mer is mapped to
the lowest common ancestor of all genomes contain-
ing it. This technique was introduced by Wood and
Salzberg [143], who show that it efficiently supports
the task of analyzing the composition of metage-
nomic samples.

Advantages of k-mer-based representations in-
clude simplicity, speed, and robustness: it is not
necessary to produce an assembly or an alignment,
which both can be error-prone, and very efficient
data structures to store them exist. However, they
do not explicitly represent structural information
at distances greater than the k-mer length. For ap-
plications where such information is needed, DBGs
can sometimes serve as a basis to design richer data
structures. Colored DBGs [63, 58] are an example
of this since they store information about occur-
rence in individual genomes on top of each k-mer.
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Further Sequence Graphs. Building on the
above ideas, more general approaches conceptualize
a pan-genome as an (edge- or node-labeled) graph
of generic pieces of sequence. Such graphs are not
necessarily constructed using an MSA and the con-
stituting sequences are not necessarily fixed-length
k-mers. Figures 2d and 2e show examples of a di-
rected and an undirected sequence graph, respec-
tively. Individual genomes can be represented as
paths in such graphs and node identifiers can serve
as a “coordinate system”.

Compressed DBGs (also called compacted
DBGs), which collapse chains of non-branching
nodes in a DBG into a single node, are an exam-
ple of this. Marcus et al. [89] show how such com-
pressed DBGs can be constructed for a pan-genome
by first identifying maximal exact matches using a
suffix tree, by-passing uncompressed DBGs. Beller
and Ohlebusch [14] and Baier et al. [8] show how
the same can be achieved more efficiently, using
an FM index resp. compressed suffix trees and the
Burrows-Wheeler transform.

Useful data structures for pan-genomes may
combine some of the basic approaches discussed so
far. For example, PanCake [45] uses a graph-based
structure to represent common genomic segments
and uses a compressed multiple-alignment based
representation in each node of the graph. Dilthey
et al. [34] propose a generative model by represent-
ing sequence variation in a k-mer-emitting HMM.

Further examples of implementations of sequence
graphs include the Global Alliance for Genomics
and Health (GA4GH) “side graph” data model and
the FASTG format4. Side graphs represent a pan-
genome as a set of sequences and an additional set
of joins, each of which defines an extra adjacency
between the sides of two bases within the sequences.
The GA4GH graph tools5 allow side graphs and
embeddings of individual sampled genomes in that
graph to be made available over the Internet, for
data distribution and remote analysis.

Haplotype-Centric Models. When a fixed set
of (non-nested) sequence variants is considered, ev-
ery haplotype in a population can be represented as
a string of fixed length. The character at position

4http://fastg.sourceforge.net
5https://github.com/ga4gh/server and

https://github.com/ga4gh/schemas

k reflects the status of the k-th variant. When all
variants are bi-allelic, then these haplotype strings
are formed over a binary alphabet. Such collections
of haplotypes are often referred to as haplotype pan-
els. This representation is favorable for many popu-
lation genetic analyses since it makes shared blocks
of haplotypes more easily accessible, for instance
compared to sets of paths in a graph.

A recent data structure to represent haplotype
panels, termed Positional Burrows-Wheeler Trans-
form (PBWT) [37], facilitates compression and
supports the enumeration of maximal haplotype
matches.

One of the most widely used haplotype-based
models is the Li-Stephens model [77]. In a nut-
shell, it can be viewed as a hidden Markov model
(HMM) with a grid of states with one row per hap-
lotype and one column per variant, as sketched in
Figure 2f. Transitions are designed in a way such
that staying on the same haplotype is likely but
jumping to another one is also possible with less
probability. It hence is a generative probabilistic
model for haplotypes that allows for sampling new
individuals and provides conditional probabilities
for new haplotypes given the haplotypes contained
in the model.

5 Computational Challenges

Pan-genomic data have all of the standard proper-
ties of big data — in particular, volume, variety,
velocity and veracity. Especially due to the sheer
size of generated sequencing data, extreme hetero-
geneity of data and complex interaction on differ-
ent levels, pan-genomics comes with big challenges
for algorithm and software development [12]. The
International Cancer Genome Consortium (ICGC)
has amassed a dataset in excess of two petabytes
in just five years with the conclusion to store data
generally in clouds, providing an elastic, dynamic
and parallel way of processing data in a cheap, flex-
ible, reliable and secure manner [127].

Currently large high computing infrastruc-
ture providers and large public repositories (e.g.
NCBI/EBI/DDBJ) are completely separated. We
need hybrids that offer both large public reposito-
ries as well as the computing power to analyze these
in the context of individual samples/data. We con-
sider it desirable to bring the computation as close
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as possible to the data by uploading queries or in-
database computing.

These general Big-Data-related challenges apply
to all individual computational problems we discuss
below.

5.1 Read Mapping

Given a set of reads sequenced from a donor, read
mapping consists in identifying parts of the refer-
ence genome matching each read. Read mapping to
a pan-genome has a potential to improve alignment
accuracy and subsequent variant calling, especially
in genomic regions with a high density of (complex)
variants.

For a single reference sequence, the read map-
ping problem has mostly been solved by indexing
the reference into a data structure that supports
efficient pattern search queries. Most successful
approaches use k-mer based or Burrows-Wheeler
transform based indexes, as reviewed in [75]. In-
dexing a pan-genome is more complicated.

Efficient indexing of a set of reference genomes
for read mapping was first studied in [86, 87]. The
approach uses compressed data structures, exploit-
ing the redundancy of long runs of the same letter
in the Burrows-Wheeler transform of a collection of
similar genomes. This approach yields a reasonably
compressed representation of the pan-genome, but
read alignment efficiency is hampered by the fact
that most reads map to all of the references, and
that extraction of these occurrence locations from
a compressed index is potentially slow. More re-
cently, approaches based on Lempel-Ziv compres-
sion have been proposed to speed-up the reporting
of occurrences, as reviewed in [48].

The earliest approach to index a sequence graph
(see Section 4.2) was proposed in [117], where k-
mer indexing on the paths of such a graph was
used; instead of a full sequence graph, a core se-
quence graph was used where columns were merged
in regions of high similarity (core genome) to avoid
extensive branching in the graph. After finding
seed occurrences for a read in this graph, the align-
ment was refined locally using dynamic program-
ming. Similar k-mer indexing on sequence graphs
has since been used and extended in several read
mapping tools such as MuGI [27], BGREAT [78]

and VG6.
Instead of k-mer indexing, one can also use

Burrows-Wheeler-based approaches, based on ap-
pending extracted contexts around variations to
the reference genome [60]. Context extraction ap-
proaches work only on limited pattern length, as
with long patterns they suffer from a combinato-
rial explosion in regions with many variants; the
same can happen with a full sequence graph when
all nearby k-mer hit combinations are checked us-
ing dynamic programming. There is also a special
Burrows-Wheeler transform and an index based on
that for a sequence graph [122, 123]. This ap-
proach works on any pattern length, but the in-
dex itself can be of exponential size in the worst
case; best case and average case bounds are sim-
ilar to the run-length compressed indexes for set
of references like [87]. The approach is also likely
to work without exponential growth on a core se-
quence graph of [117], but as far as we know, this
combination has not been explored in practice. A
recent implementation7 avoids the worst case expo-
nential behavior by stopping the construction early;
if this happens, the approach also limits the max-
imum read length. This implementation has been
integrated into VG as an alternative indexing ap-
proach. HISAT28 implements an index structure
that is also based on [122], but builds many small
index structures that combinedly cover the whole
genome.

In summary, a number of approaches to perform
read mapping against a pan-genome reference un-
der various representation models exist, and effi-
cient implementations for daily usage are under ac-
tive development. However, we consider this field
as being far from saturated and still expect con-
siderable progress in both algorithmic and software
engineering aspects. To reach the full potential of
these developments, the interactions between read
mapping and variant calling methods need to be
considered.

5.2 Variant Calling and Genotyping

The task of determining the differences between a
sequenced donor genome and a given (linear) ref-
erence genome is commonly referred to as variant

6https://github.com/ekg/vg
7https://github.com/jltsiren/gcsa2
8https://ccb.jhu.edu/software/hisat2/index.shtml
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calling. In case of diploid or polypoid organisms,
we additionally want to determine the correspond-
ing genotype. In the face of pan-genome data struc-
tures, variant calling becomes decomposed into two
steps: identifying known variants already repre-
sented in the data structure and calling novel vari-
ants. Refer to Schneeberger et al. [117] for an early
work on pan-genome variant calling. They do not
only show the feasibility of short read alignment
against a graph representing a pan-genome refer-
ence (see Section 5.1) but also demonstrate its pos-
itive impact on variation calling in the frame of the
Arabidopsis 1001 Genomes Project.

Known Variants. By using a pan-genome ref-
erence, one merges read mapping and calling of
known variants into a single step. Read align-
ments to sequence variants encapsulated in our
pan-genome data structure indicate the presence
of these variants in the donor genome. In partic-
ular, this applies not only to small variants which
can be covered by a single read (such as SNPs and
indels), but also to larger structural variants such
as inversions or large deletions. Integrating those
steps potentially decreases overall processing time
and, more importantly, removes read-mapping bi-
ases towards the reference allele and hence improves
accuracy of calling known variants. One important
challenge is to statistically control read mapping
ambiguity on a pan-genome data structure. Lever-
aging the associated statistical models for estimat-
ing genotype likelihoods is expected to lead to sig-
nificant improvements in genotyping.

As a first major step in that direction,
Dilthey et al. [34] cast the (diploid) variant calling
problem into finding a pair of paths through a pan-
genome reference represented as a k-mer-emitting
Hidden Markov Model. They demonstrate that this
leads to substantially improved performance in the
variation-rich MHC region.

Novel Variants. Detecting variants not present
in a pan-genome data structure is similar to tradi-
tional variant calling with respect to a linear ref-
erence genome. Still, differences exist that require
special attention. The most straightforward way
to use established variant calling methods is to use
read alignments to a pan-genome and project them
onto a linear sequence. For small variants such as

SNPs and indels, that are contained within a read,
this approach is likely to be successful. Methods to
characterize larger structural variation (SV) need
to be significantly updated. SV calling methods
are usually classified into four categories based on
the used signal: read pair, read depth, split read,
and assembly, as reviewed by Alkan et al. [4]. Each
of these paradigms has its merits and shortcom-
ings and state-of-the-art approaches usually com-
bine multiple techniques [129]. Each of these ideas
can and should be translated into the realm of pan-
genomes. For split-read and assembly based ap-
proaches, the problem of aligning reads and con-
tigs, respectively, to a pan-genome data structure
(while allowing alignments to cross SV breakpoints)
needs to be addressed. In case of read pair meth-
ods, a different notion of “distance” is implied by
the pan-genome model and has to be taken into ac-
count. For read depth methods, statistical models
of read mapping uncertainty on pan-genomes have
to be combined with models for coverage (biases).
Developing standards for reporting and exchanging
sets of potentially nested variant calls is of great
importance.

Somatic Mutations. Calling somatic mutations
from paired tumor/normal samples is an important
step in molecular oncology studies. Refer to Sec-
tion 2.6 for details and to [3] for a comparison of
current work flows. Calling somatic variants is sig-
nificantly more difficult compared to calling germ-
line variants, mostly due to tumor heterogeneity,
the prevalence of structural variants, and the fact
that most somatic variants will be novel. Pan-
genome data structures promise to be extremely
useful in cancer studies for the stable detection
of somatic variants. A conceivable approach for
leveraging pan-genome data structures in this con-
text would be to map reads from the matched nor-
mal sample to the pan-reference, call germline mu-
tations, create a restricted pan-genome with de-
tected variants and map tumor reads to that pan-
reference for calling somatic mutations. There are
many more potential applications including build-
ing a pan-genome representation of a heterogeneous
tumor to be used as a starting point for retracing
tumor evolution.
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Storing Variants. Storing and exchanging vari-
ant calls genotyped in a large cohort of samples
increasingly becomes a bottleneck with growing co-
hort sizes. Some improvement is achieved by adopt-
ing binary instead of text-based data formats for
variant calls, i.e. using BCF instead of VCF9, but
more efficient approaches are urgently needed. Or-
ganizing data by individual rather than by vari-
ant while sorting variants by allele frequency has
proven beneficial for compression and some re-
trieval tasks [73]. We expect the question of stor-
ing, querying and exchanging variant data to re-
main an active and relevant field of research in the
coming years.

5.3 Haplotype Phasing

Humans are diploid, that is, each chromosome
comes in two copies, one inherited from the mother
and one inherited from the father. The individual
sequences of these two chromosomal copies are re-
ferred to as haplotypes, where one often restricts the
attention to polymorphic sites. The process of as-
signing each allele at heterozygous loci to one of the
two haplotypes is referred to as phasing. Plants are
often polyploid. For example, wheat can be tetra-
(= 4 copies) or hexaploid (= 6 copies), while certain
strawberries are even decaploid (= 10 copies). As
an extreme, the “ploidy” of viral quasispecies, that
is the number of different viral strains that popu-
late an infected person (see Section 2.3) is usually
unknown and large. The same applies to heteroge-
neous tumors, as discussed above.

Pan-genome data structures have the potential
to, on the one hand, store haplotype informa-
tion and, on the other hand, be instrumental for
phasing. Currently, several approaches for obtain-
ing haplotype information exist. Statistical phas-
ing [17] uses genotype information of large cohorts
to reconstruct haplotypes of all individuals based
on the assumption that haplotype blocks are con-
served in a population. Once sets of haplotypes,
called reference panels, are known, additional indi-
viduals can be phased by expressing the new haplo-
types as a mosaic of the already known ones. The
question of how to best organize and store refer-
ence panels is open. To this end, Durbin [37] has
proposed the aforementioned PWBT index struc-

9http://samtools.github.io/hts-specs/

ture. We consider marrying reference panels to
pan-genome data structures an important topic for
future research.

To determine haplotypes of single individuals, in-
cluding rare and de novo variants, statistical ap-
proaches are not suitable and experimental tech-
niques to measure linkage are needed. Such tech-
niques include specialized protocols and emerging
long-read sequencing platforms, as discussed in Sec-
tion 3. Currently, first approaches for haplotype-
resolved local assembly are being developed [113].
More literature exists on the problem of phasing
from aligned long reads, e.g. [107, 109, 69]. In
practice, this technique is hampered by insufficient
alignment quality of long error-prone reads. Since
phasing is based on heterozygous loci, avoiding al-
lelic biases during read mapping by means of pan-
genome data structures can contribute to solving
this problem. Combining the virtues of read-based
phasing with statistical information from reference
panels is an active area of research [70]. Leveraging
pan-genome data structures that encode reference
haplotypes towards this goal constitutes a promis-
ing research direction.

These problems are amplified when phasing or-
ganisms or mixtures of higher or unknown ploidy
such as plants, viral quasispecies or tumors. Algo-
rithms with manageable runtime on polyploid or-
ganisms [2, 15] and for the reconstruction of qua-
sispecies [145, 134] require the use of specialized
techniques (especially when allele frequencies drop
below sequencing error rates). Extending these ap-
proaches to pan-genome data structures, as out-
lined above for the diploid case, is another chal-
lenging topic for future research.

5.4 Visualization

Pan-genomics introduces new challenges for data
visualization. Fundamentally, the problems relate
to how to usefully view a large set of genomes and
their homology relationships, and involve questions
of scale and useful presentation in the face of huge
volumes of information.

At a high-level of abstraction, pan-genome bag-
of-genes approaches can be visualized using meth-
ods for comparing sets, such as Venn diagrams,
flower plots, and related representations. For ex-
ample, the recent tool Pan-Tetris visualizes a gene-
based pan-genome in a grid [55], color-coding ad-
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ditional annotation. For divergent genomes, as in
bacterial- and meta- pan-genomics, and where com-
plete assembly is not possible, such approaches pro-
vide useful summary information.

For the viewing of individual, assembled genomes
or sequences, genome browsers and applications fre-
quently display an individual sequence along a lin-
ear or circular axis upon which other genomics in-
formation is visualized, as reviewed in [101]. This
trope, which is popular and widely understood,
forces interpretation through the lens of one cho-
sen genome. When this genome is a distantly re-
lated reference genome there is a visual reference
bias which may lead to misinterpretation.

Pan-genome displays can potentially help to al-
leviate this visual bias. One option is to aim to im-
prove linear visualizations: either the chosen indi-
vidual reference sequence can be replaced by a more
visually useful imputed pan-genome reference, or
the pan-genome data structures which relate dif-
ferent genomes in the population can be used to
translate information to the most closely related
genome possible for the display. In the former case,
a pan-genome display can be made more inclusive
than any single genome [100]. At the base level
such inclusive displays are somewhat analogous to
popular multiple sequence alignment displays such
as Mauve [28] or Jalview [137] that focus on dis-
playing all the differences between a set of sequence
as clearly as possible. The latter case, translation,
where a pan-genome alignment is used to show in-
formation on the most closely related genome possi-
ble, is likely to become more popular as the number
of available personal genomes grows, see [99] for an
early example of such an approach.

More adventurously than linear layouts, pan-
genome displays can attempt to visualize graphs
of variation. This has the flexibility of allowing
arbitrary genome variation within a clean seman-
tic model, but can prove visually complex for even
small, non-trivial examples. For example, a graph
of a few dozen bacterial strains contains tens to
hundreds of thousands of nodes and edges. So far
graph visualizations have proved popular for assem-
blies, and the visualization of heterozygosity, for
example DISCOVAR [139] contains a module that
allows you to visualize subsets of an assembly graph
in a figure. One popular tool is Cytoscape [119],
which is a generic biological graph/network visual-
ization tool, but lacks scalability and semantic nav-

igation. Another tool, Bandage [140], visualizes de
novo assembly graphs specifically.

A number of challenges exist moving forwards. In
a useful visualization it will be possible to navigate
and to zoom in and out on pan-genome structures.
Zooming should be done semantically, i.e. differ-
ent zoom levels can use different representations
of the data to convey biologically relevant infor-
mation. The upper scales should give information
about global genome structure. Zooming in the
visuals should focus on structural variants in a ge-
nomic region and the most zoomed in views should
enable exploration of local variants on nucleotide
level. Furthermore these visuals need to be put
in the context of the phylogeny, e.g. the relation of
the various samples that went into the pan-genome.
This will enable rapid identification and interpreta-
tion of observed variants. Finally, any pan-genome
graph visualization should offer the same basic fea-
tures that current reference based genome browsers
have. There should be visual ways to indicate bi-
ologically interesting features such as gene annota-
tions and position based continuous valued signals
such as wiggle tracks in the UCSC genome browser.
Basic analytical capabilities would be beneficial to
visually highlight interesting biologically relevant
mutations. For example, it would be useful to have
different visual representations for different types of
mutations: indels, (non)-synonymous SNPs, struc-
tural variants, repeats etc.

5.5 Data Uncertainty Propagation

One of the computational (and modeling) chal-
lenges facing the field of pan-genomics is how to
deal with data uncertainty propagation through the
individual steps of analysis pipelines. In order to
do so, the individual processing steps need to be
able to take uncertain data as input and to provide
a ‘level of confidence’ for the output made. This
can, for instance, be done in the form of posterior
probabilities. Examples where this is already com-
mon practice include read mapping qualities and
genotype likelihoods.

Computing a reasonable confidence level com-
monly relies on weighing alternative explanations
for the observed data. In the case of read mapping
for example, having an extensive list of alternative
mapping locations aids in estimating the probabil-
ity of the alignment being correct. A pan-genome
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expands the space of possible explanations and can,
therefore, facilitate the construction of fairer and
more informative confidence levels.

As an illustration, consider a pipeline includ-
ing read mapping, variant calling and genotyping,
phasing and association testing. Substantial un-
certainty and sequence composition biases are al-
ready inherent to the input data generated by next-
generation sequencing [67]. The following read
alignment step adds uncertainty in read placement,
leading to uncertain coverage and uncertain frag-
ment lengths. These uncertainties translate into
uncertainties in variant calling and genotyping, and
further into uncertainties in phasing. This, fi-
nally, results in uncertainties in association testing
in genome-wide association studies. The precise
quantification of the propagation of these effects is
largely unclear. The advent of ever larger and re-
fined panels, supported by appropriate pan-genome
data structures, bears the promise of making quan-
tification and alleviation of such effects possible.

6 Conclusions

Already today, the DNA having been sequenced for
many biologically coherent ensembles—such as cer-
tain taxonomic units or virus populations—likely
captures the majority of their frequently occurring
genetic variation. Still, the pace at which genomes
are currently sequenced is on a steep rise, thanks to
accumulation of sequencers in laboratories and fre-
quent, significant advances in sequencing technol-
ogy. Therefore, capturing all of genomes, in terms
of genetic variation content and abundance, is no
longer wishful thinking, but will materialize soon
for many species, populations and cancer genomes.
In other words, life sciences have entered the era
of pan-genomics, which is characterized by know-
ing all major genetic variation of a collection of
genomes of interest. In this white paper, we have
been addressing how to arrange and analyze this in-
credible wealth of knowledge and also how to deal
with some of the consequences in downstream anal-
yses.

The computational aspects that need to be con-
sidered fan out across a large variety of particu-
lar challenges, usually governed by the realm of
application they stem from. We have listed the
many facets of pan-genomes in terms of func-

tionality, annotational detail, computational effi-
ciency issues and visualization. We have discussed
how the availability of well-arranged pan-genomes
will affect population genetics, cancer genomics,
pathogen research, plant breeding, phylogenomics,
functional genomics as well as genetic disease re-
search and genome-wide association studies. We
have surveyed the impact of sequencing technol-
ogy advances on the field of pan-genomics, and we
have considered also the complications that come
along with these advances. We have put particular
emphasis on data structures and supporting algo-
rithms that make it possible to consistently work
with pan-genomes. One of the currently most ev-
ident processes in computational pan-genome re-
search is the move away from linear reference
genomes towards reference systems that are rooted
in graph theory in some form. The effort of the
Data Working Group of the Global Alliance for
Genomics and Health (GA4GH) is a prominent ex-
ample for this. We have also discussed how the
transition in terms of data structures will affect
operations such as read mapping, variant discov-
ery, genotyping and phasing, all of which are at
the core of modern genomics research. Last but
not least, we have analyzed the issues that arise in
visualizing pan-genomes, and we have also briefly
discussed future issues in uncertain data handling,
recently an ever recurring theme in genome data
analysis, often arising from the repetitive structure
of many genomes.

We have concentrated on computational chal-
lenges of pan-genomics in this survey. We are aware
that there are also political challenges that have to
be addressed that concern data sharing and privacy.
Clearly, the usefulness of any pan-genomic repre-
sentation will increase with the number of genomes
it represents, strengthening its expressive and sta-
tistical power. Unfortunately, however, only a frac-
tion of the sequenced data is currently publicly
available. This is partly due to the confidential
nature of human genetic data, but also, to a large
extent, by missing policies and incentives to make
genomic data open access or to prevent intentional
withholding of data. Funding agencies like the Na-
tional Institutes of Health (NIH) in the US have
started to address these issues [103]10.

Overall, we have provided a broad overview of

10see also http://www.nih.gov/news-events/news-releases/

nih-issues-finalized-policy-genomic-data-sharing

19

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 29, 2016. ; https://doi.org/10.1101/043430doi: bioRxiv preprint 

http://www.nih.gov/news-events/news-releases/nih-issues-finalized-policy-genomic-data-sharing
http://www.nih.gov/news-events/news-releases/nih-issues-finalized-policy-genomic-data-sharing
https://doi.org/10.1101/043430


computational pan-genomics issues, which we hope
will serve as a reference for future research propos-
als and projects. However, so far, we have mostly
been addressing how to deal with genomes as se-
quences, that is from a “one-dimensional” point
of view, and so we have been focusing on storing
and analyzing sequences and the mutual relations
of particular subsequence patches, like variant alle-
les and their interlinkage, genes and/or transcrip-
tomes. We have done this because we believe that
at this point in genomics history, only the con-
sistent exploration and annotation of exhaustive
amounts of sequence information can lay the solid
foundation for additional “pan-genomics oriented”
steps.

Yet, even after having resolved the correspond-
ing issues—and we are hopeful that, at this point,
our summary has helped to consistently structure
these—there is more to follow. New approaches
have already appeared on the horizon that will
benefit from the cornerstone provided by primar-
ily sequence-driven pan-genomics. For example, it
can be expected that one can lift pan-genomes into
three dimensions in the mid-term future, thanks
to rapidly developing techonolgies that allow to in-
fer their three-dimensional conformation. This will
mean that future, three-dimensional pan-genomes
will not only represent all sequence variation ap-
plying for species or populations, but also encode
their spatial organization as well as their mutual
relationships in that respect.

Epigenomics topics have not been exhaustively
addressed here either, but will need to be addressed
as soon as the first “primary” pan-genomes stand.
Technologies, by which to not only monitor sequen-
tial and three-dimensional arrangement, but also
additional biochemical modifications have likewise
been on a steep rise recently. Most importantly, we
will be in position to link sequential pan-genomes
to maps that indicate hypo- and hypermethylated
regions relatively soon. Likely, the integration of
such basic biochemical modification will serve as
template for further, often more complex elements
of biochemical genomic maps.

In summary, the emergence of computational
pan-genomics as a field is an expression of a major
advance in contemporary genomics research. For
the first time, we have entered an era that holds
the promise to close large gaps in global maps of
genomes and to draw the full picture of their vari-

ability. We therefore believe that we can expect to
witness amazing, encompassing insights about ex-
tent, pace, and nature of evolution in the mid-term
future.
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Hach, S. Cenk Şahinalp, Turkish Human

26

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 29, 2016. ; https://doi.org/10.1101/043430doi: bioRxiv preprint 

https://doi.org/10.1101/043430


Genome Project, Can Alkan, and Mah-
mut Şamil Sağıroğlu. Robustness of mas-
sively parallel sequencing platforms. PLoS
ONE, 10(9):e0138259, September 2015.

[68] Birte Kehr, Kathrin Trappe, Manuel Holt-
grewe, and Knut Reinert. Genome alignment
with graph data structures: a comparison.
BMC Bioinformatics, 15(1):99, April 2014.

[69] Volodymyr Kuleshov. Probabilistic single-
individual haplotyping. Bioinformatics,
30(17):i379–i385, September 2014.

[70] Volodymyr Kuleshov, Dan Xie, Rui
Chen, Dmitry Pushkarev, Zhihai Ma,
Tim Blauwkamp, Michael Kertesz, and
Michael Snyder. Whole-genome haplotyping
using long reads and statistical methods.
Nature Biotechnology, 32(3):261–266, March
2014.

[71] T. Laver, J. Harrison, P. A. O’Neill,
K. Moore, A. Farbos, K. Paszkiewicz, and
D. J. Studholme. Assessing the performance
of the Oxford Nanopore Technologies Min-
ION. Biomolecular Detection and Quantifi-
cation, 3:1–8, March 2015.

[72] Michael S. Lawrence, Petar Stojanov, Paz
Polak, Gregory V. Kryukov, Kristian Cibul-
skis, Andrey Sivachenko, Scott L. Carter,
Chip Stewart, Craig H. Mermel, Steven A.
Roberts, Adam Kiezun, Peter S. Hammer-
man, Aaron McKenna, Yotam Drier, Li-
hua Zou, Alex H. Ramos, Trevor J. Pugh,
Nicolas Stransky, Elena Helman, Jaegil Kim,
Carrie Sougnez, Lauren Ambrogio, Elizabeth
Nickerson, Erica Shefler, Maria L. Cortés,
Daniel Auclair, Gordon Saksena, Douglas
Voet, Michael Noble, Daniel DiCara, Pei Lin,
Lee Lichtenstein, David I. Heiman, Timothy
Fennell, Marcin Imielinski, Bryan Hernandez,
Eran Hodis, Sylvan Baca, Austin M. Dulak,
Jens Lohr, Dan-Avi Landau, Catherine J.
Wu, Jorge Melendez-Zajgla, Alfredo Hidalgo-
Miranda, Amnon Koren, Steven A. McCar-
roll, Jaume Mora, Ryan S. Lee, Brian Cromp-
ton, Robert Onofrio, Melissa Parkin, Wendy
Winckler, Kristin Ardlie, Stacey B. Gabriel,
Charles W. M. Roberts, Jaclyn A. Biegel,
Kimberly Stegmaier, Adam J. Bass, Levi A.

Garraway, Matthew Meyerson, Todd R.
Golub, Dmitry A. Gordenin, Shamil Sun-
yaev, Eric S. Lander, and Gad Getz. Muta-
tional heterogeneity in cancer and the search
for new cancer-associated genes. Nature,
499(7457):214–218, July 2013.

[73] Ryan M. Layer, Neil Kindlon, Konrad J. Kar-
czewski, Exome Aggregation Consortium,
and Aaron R. Quinlan. Efficient genotype
compression and analysis of large genetic-
variation data sets. Nature Methods, advance
online publication, November 2015.

[74] Thomas Lengauer and Tobias Sing.
Bioinformatics-assisted anti-HIV therapy.
Nature Reviews Microbiology, 4(10):790–797,
October 2006.

[75] Heng Li and Nils Homer. A survey of
sequence alignment algorithms for next-
generation sequencing. Briefings in Bioinfor-
matics, 11(5):473–483, September 2010.

[76] Junhua Li, Huijue Jia, Xianghang Cai,
Huanzi Zhong, Qiang Feng, Shinichi Suna-
gawa, Manimozhiyan Arumugam, Jens Roat
Kultima, Edi Prifti, Trine Nielsen, Ag-
nieszka Sierakowska Juncker, Chaysavanh
Manichanh, Bing Chen, Wenwei Zhang, Flo-
rence Levenez, Juan Wang, Xun Xu, Liang
Xiao, Suisha Liang, Dongya Zhang, Zhaoxi
Zhang, Weineng Chen, Hailong Zhao, Ju-
mana Yousuf Al-Aama, Sherif Edris, Huan-
ming Yang, Jian Wang, Torben Hansen, Hen-
rik Bjørn Nielsen, Søren Brunak, Karsten
Kristiansen, Francisco Guarner, Oluf Peder-
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[111] René Rahn, David Weese, and Knut Rein-
ert. Journaled String Tree - A scalable data
structure for analyzing thousands of simi-
lar genomes on your laptop. Bioinformatics,
30(24):3499–3505, July 2014.

[112] Timothy D. Read and Ruth C. Massey. Char-
acterizing the genetic basis of bacterial phe-
notypes using genome-wide association stud-
ies: a new direction for bacteriology. Genome
Medicine, 6(11):109, November 2014.

[113] Andy Rimmer, Hang Phan, Iain Math-
ieson, Zamin Iqbal, Stephen R. F. Twigg,
Wgs500 Consortium, Andrew O. M. Wilkie,
Gil McVean, and Gerton Lunter. Inte-
grating mapping-, assembly- and haplotype-
based approaches for calling variants in clini-
cal sequencing applications. Nature Genetics,
46(8):912–918, August 2014.

[114] Guillaume Rizk, Dominique Lavenier, and
Rayan Chikhi. DSK: k-mer counting with
very low memory usage. Bioinformatics,
29(5):652–653, March 2013.

[115] Michael G. Ross, Carsten Russ, Maura
Costello, Andrew Hollinger, Niall J. Lennon,
Ryan Hegarty, Chad Nusbaum, and David B.
Jaffe. Characterizing and measuring bias in
sequence data. Genome Biology, 14(5):R51,
May 2013.

[116] Geir K. Sandve and Finn Drabløs. A sur-
vey of motif discovery methods in an inte-
grated framework. Biology Direct, 1(1):11,
April 2006.

30

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 29, 2016. ; https://doi.org/10.1101/043430doi: bioRxiv preprint 

https://doi.org/10.1101/043430


[117] Korbinian Schneeberger, Jörg Hagmann,
Stephan Ossowski, Norman Warthmann,
Sandra Gesing, Oliver Kohlbacher, and
Detlef Weigel. Simultaneous alignment
of short reads against multiple genomes.
Genome Biology, 10(9):R98, September 2009.

[118] Grégory F. Schneider and Cees Dekker. DNA
sequencing with nanopores. Nature Biotech-
nology, 30(4):326–328, April 2012.

[119] Paul Shannon, Andrew Markiel, Owen Ozier,
Nitin S. Baliga, Jonathan T. Wang, Daniel
Ramage, Nada Amin, Benno Schwikowski,
and Trey Ideker. Cytoscape: A Software En-
vironment for Integrated Models of Biomolec-
ular Interaction Networks. Genome Research,
13(11):2498–2504, November 2003.

[120] S. T. Sherry, M. H. Ward, M. Kholodov,
J. Baker, L. Phan, E. M. Smigielski, and
K. Sirotkin. dbSNP: the NCBI database of
genetic variation. Nucleic Acids Research,
29(1):308–311, January 2001.

[121] François Sigaux. [Cancer genome or the
development of molecular portraits of tu-
mors]. Bulletin de l’Académie nationale
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dexing Graphs for Path Queries with Appli-
cations in Genome Research. IEEE/ACM
Transactions on Computational Biology and
Bioinformatics, 11(2):375–388, March 2014.

[123] Jouni Sirén, Niko Välimäki, and Veli
Mäkinen. Indexing Finite Language Rep-
resentation of Population Genotypes. In
Teresa M. Przytycka and Marie-France
Sagot, editors, Algorithms in Bioinformatics,
number 6833 in Lecture Notes in Computer
Science, pages 270–281. Springer Berlin Hei-
delberg, 2011.

[124] Berend Snel, Martijn A. Huynen, and Bas E.
Dutilh. Genome trees and the nature of
genome evolution. Annual Review of Micro-
biology, 59:191–209, 2005.

[125] Matthew W. Snyder, Andrew Adey, Jacob O.
Kitzman, and Jay Shendure. Haplotype-
resolved genome sequencing: experimental
methods and applications. Nature Reviews
Genetics, 16(6):344–358, June 2015.

[126] Pawe l Stankiewicz and James R. Lupski.
Structural variation in the human genome
and its role in disease. Annual Review of
Medicine, 61:437–455, 2010.

[127] Lincoln D. Stein, Bartha M. Knoppers, Pe-
ter Campbell, Gad Getz, and Jan O. Korbel.
Data analysis: Create a cloud commons. Na-
ture, 523(7559):149–151, July 2015.

[128] Michael R. Stratton, Peter J. Campbell, and
P. Andrew Futreal. The cancer genome. Na-
ture, 458(7239):719–724, April 2009.

[129] Lorenzo Tattini, Romina D’Aurizio, and Al-
berto Magi. Detection of genomic struc-
tural variants from next-generation sequenc-
ing data. Frontiers in Bioengineering and
Biotechnology, 3:92, 2015.

[130] Brian Teague, Michael S. Waterman, Steven
Goldstein, Konstantinos Potamousis, Shiguo
Zhou, Susan Reslewic, Deepayan Sarkar, An-
ton Valouev, Christopher Churas, Jeffrey M.
Kidd, Scott Kohn, Rodney Runnheim, Casey
Lamers, Dan Forrest, Michael A. Newton,
Evan E. Eichler, Marijo Kent-First, Ur-
vashi Surti, Miron Livny, and David C.
Schwartz. High-resolution human genome
structure by single-molecule analysis. Pro-
ceedings of the National Academy of Sciences,
107(24):10848–10853, June 2010.
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