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Abstract 

Protein domains mediate drug-protein interactions and this effect can explain drug 

polypharmacology. In this study, we associate polypharmacological drugs with CATH 

functional families, a type of protein domain and we use the network properties of these 

druggable protein families to analyse their relationships with drug side effects. We found 

druggable CATH functional families enriched in drug targets, whose relatives are 

structurally coherent, gather together in the protein functional network occupying central 

positions, and tend to be free of proteins associated with drug side effects. Our results 
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demonstrate that CATH functional families can be used to identify drug-target interactions, 

opening a new research direction in target identification.  
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Introduction 

Systems Pharmacology emerged to address the potential limitations of viewing drug 

action from the perspective of a single target and has provided some rationale for the need 

for multi-target approaches in drug discovery1-3. The field provides a growing body of 

evidence against the “magic bullet”, a drug acting on one molecular target, affecting one 

biological process and thus effecting a cure with few other consequences. Many drugs bind 

to multiple targets and molecular targets are involved in multiple processes and perform 

multiple biological functions4. Therefore, polypharmacology, the ability of drugs to bind 

multiple molecular targets and thereby affect multiple biological processes, is likely to be a 

common phenomenon and can perhaps be harnessed to improve the impact of drug 

intervention2,5,6. 

However, polypharmacology is often recognised as an unintended phenomenon7, 

primarily studied from the perspective of side effects, and the rational design of 

polypharmacological ligands is less frequently undertaken and remains a challenging 

task2,8. Target identification is a crucial task when considering application of 

polypharmacological compounds and it is important to identify synergistic combinations of 

targets, rather than single targets1. This analysis is often complicated by the fact that many 

binding events will be silent with respect to phenotypic modulation and emergent drug 

efficacy. 

Most human targets are proteins that are composed of more than one domain9,10, but 

we lack a unified definition of protein domains. In general terms, domains are compact and 

functional structural units that can be considered the evolutionary and structural building 

blocks of proteins. Since domains are units of structure11and there is a limited repertoire of 
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domain types12, they are combined to form different proteins with different overall 

functions13. 

Recent studies have shown that protein domains dominate protein-protein 

interactions14, and mediate the interactions between a drug and its targets15-17. It has also 

been shown that they are a major factor in the polypharmacology of approved and 

experimental drugs18, tend to contain binding sites17, and that there are privileged 

druggable protein domains19. These results support the idea that a particular structural 

domain is likely to be the druggable entity in a protein target. Since proteins have a 

modular structure and domains recur in different proteins, a reasonable explanation for the 

fact that a compound binds different protein targets is that they share a domain that is the 

actual target for the compound. 

Under the accepted and general definition that a protein domain is a functional and 

structural module within a protein, there are several ways to identify and classify protein 

domains20: classification based on structure, SCOP21 and CATH22; classification based on 

sequence, Pfam23; and function oriented domain classifications such as the functional 

families classified in CATH, CATH-FunFams22,24. CATH-FunFams group together relatives 

likely to have highly similar structures and functions25, and have been highly ranked in the 

International Critical Assessment of Functional Annotation26,27. 

In this work, we assess the pharmacology of CATH-FunFams and we explore their 

ability to direct the biochemical interactions between drugs and their protein targets, since 

CATH-FunFams group domain targets into families of evolutionary relatives sharing similar 

structural and functional properties. We found that drug targets are overrepresented in 

some 81 druggable CATH-FunFams, whose relatives are structurally similar and contain 

conserved drug binding sites, group together in the protein functional network forming 
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communities, and do not tend to contain proteins associated with drug side effects. 

Therefore, druggable CATH-FunFams are enriched in potential drug targets rather than off-

targets. We propose that CATH-FunFams are a reasonable annotation level for studying the 

drug-target interactions of polypharmacological drugs, offering valuable insights into 

possible drug polypharmacology with potential applications in target identification and 

drug repurposing. 

Results and Discussion 

Drug binding proteins group in druggable CATH-FunFams 

Protein domains are classified into protein domain superfamilies when they share a 

clear evolutionary relationship derived from similarities in their sequence, structure or 

both. In the CATH classification, a superfamily is sub-classified into functional families 

(CATH-FunFams) which group domains sharing significant structural and functional 

similarity. These groupings are achieved by clustering together relatives that have highly 

similar patterns of sequence conservation and likely specificity determining residues. CATH-

FunFams have been benchmarked using experimentally characterised proteins in the 

Enzyme Classification (EC), SFLD and GO28 and have been independently validated by the 

CAFA independent assessment of function annotation27. 

There have been a number of efforts to describe the portion of the genome 

susceptible to interact with drugs conceptualised by the term "druggable genome”, coined 

by Hopkins and Groom19. Despite the use of different definition of protein families (SCOP, 

Pfam, InterPro) and their different estimates of druggable proteins reported, all the 

druggable genome studies noted that druggable proteins belong to certain protein families 

and therefore highlighted the existence of druggable domains19,29-31. Therefore, the first step 
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to analyse the role of CATH-FunFams in mediating drug-target interactions was the 

exploration of the druggable genome they depict. 

There are 17229 CATH-FunFams containing 77082 human proteins. Most of them 

contain only a few protein relatives (the median number of relatives per CATH-FunFam is 

3) but a few of them are very highly populated, such as the MHC class I antigen (CATH-

FunFam ID 3.30.500.10_3475) which has ca. 14% of the human proteins among its 

relatives. Using information in ChEMBL32, and based on their affinity to bind drugs, we 

identified a set of 787 human proteins capable of binding drugs (see Methods for details). 

This set of drug-binding proteins comprise drug targets (i.e. proteins able to bind approved 

drugs with high affinity) and drug off-targets (i.e. proteins that bind drugs at lower 

affinities). The drug-binding proteins are distributed in 875 CATH-FunFams (note that 

many proteins have more than one domain and therefore are represented as relatives of 

different CATH-FunFams). Most of these functional families are small, containing less than 

2% of all human proteins. To have a clear view of the druggable genome captured by the 

CATH-FunFams, we analysed the proportion of drug-binding proteins across 195 CATH-

FunFams that have at least one drug-binding protein among their relatives and contain at 

least 2% of all the human proteins (Fig. 1).  Fig. 1A shows the main druggable protein 

classes in the 195 CATH-FunFams analysed. Smaller functional families tend to have a 

higher proportion of drug-binding proteins, although for some druggable classes such as the 

protein kinases we find very large functional families with a high proportion of drug-

binding proteins among their relatives. Fig. 1B suggests that the CATH-FunFams capture 

well the previously reported druggable genome19,31. 
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Figure 1. Drug-binding proteins across CATH-FunFams and druggable genome. A) 

Proportion of drug-binding proteins in CATH-FunFams that have at least one drug-binding 

protein amongst their relatives and that contain more than 2% of drug targets. B) 

Slopegraph comparing the previous distribution of druggable protein families (i.e. the 

druggable genome) by Hopkins and Groom19 and our distribution of druggable CATH-

FunFams. 

Hopkins and Groom defined the druggable genome (i.e. the subset of human 

proteins able to bind drugs) as a set of 130 InterPro protein families19; which were later 

expanded to an equivalent set of 182 Pfam domains31. Although there is no clear 

equivalence, we see the same main types of druggable domains among the CATH functional 

families, and the Interpro and PFam families of previous studies: Protein kinases, GPCRs 

and ion channels cover most of the druggable genome. A recent reassessment of the 

druggable genome identifies the same privileged druggable proteins families, accounting 
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for 44% of all human targets (GPCRs: 12%; ion channels: 19%; protein kinases: 10%; and 

nuclear receptors: 3%)33. It is interesting to note that the number of GPCRs among the 

CATH-FunFams analysed is considerably lower than expected based on previous reports of 

the druggable protein families (see Fig. 1B). One reason for this lies in the difference in 

purity of functional annotations in CATH-FunFams, compared to annotations in other 

protein families. CATH-FunFams tend to separate domains according to their functional 

similarity and multi domain context, and therefore proteins assigned to a single InterPro or 

Pfam family will be split into several smaller CATH-FunFams. In fact, we find many GPCRs 

scattered across CATH-FunFams with few relatives, which reflects the diverse functionality 

of this target category. The lower proportion of GPCRs among the drug-binding CATH-

FunFams is also explained by the structural nature of CATH functional families: GPCRs are 

membrane proteins many of which are structurally uncharacterised and therefore not 

classified in CATH yet, since CATH requires at least one relative with known structure to 

initiate a new domain superfamily. This limits the presence of GPCRs in CATH functional 

families. 

Drug targets are overrepresented in certain CATH-FunFams 

As mentioned already above, previous research has shown that drug binding sites 

are contained within protein domains17 and that protein domains mediate drug-target 

interactions16. Furthermore, the recurrent identification of domain families in the druggable 

genome suggests that the conserved sequence properties and functional similarities within a 

protein family, are associated with conservation of drug binding sites. This suggests that if 

one member of the protein family can bind a drug, other members would also be able to 

bind the same drug or a compound with similar physico-chemical properties19. Building on 

these ideas, we mapped polypharmacological drugs to CATH-FunFams to identify potential 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 17, 2017. ; https://doi.org/10.1101/044289doi: bioRxiv preprint 

https://doi.org/10.1101/044289
http://creativecommons.org/licenses/by/4.0/


 9 

new targets and off-targets. In other words, if a drug is associated with a functional family, 

the relatives of the functional family can be either new drug targets or potential off-targets, 

leading to undesirable pharmacological effects. 

We compiled a drug-target dataset by querying ChEMBL for approved multi-target 

drugs and the human proteins to which they bind directly at high affinity. For each drug, 

we computed the statistically significant overrepresentation of their targets for each of the 

CATH functional families we identified previously in our survey of drug-binding CATH-

FunFams (see Methods for details). Our resulting drug to CATH-FunFams mapping gave 

359 statistically significant associations (Benjamini-Hochberg false discovery rate p-val < 

0.001; see Supplementary Table S1) between 245 approved drugs and 81 CATH-FunFams, 

for which we will use the term druggable CATH-FunFams. We then investigated our 

druggable functional families to assess whether they are likely to bind drugs. 

Similar drugs map to the same druggable CATH functional families 

We expect that CATH-FunFams mediating the interaction between drugs and targets 

would share the same characteristics as drug targets. One way to evaluate this is the 

compliance with the Similarity Property Principle (SPP), which establishes that drugs with 

similar molecular structure are likely to have the same properties34. Since the most relevant 

drug property is biological activity, produced by interaction with molecular targets35, to 

comply with the SPP a pair of drugs should have similar targets. Therefore, evaluating 

target similarity for structurally similar drugs is a direct way to compare protein drug 

targets and CATH-FunFams. 

Fig. 2 shows the similarities of the interaction profiles of drugs as a function of their 

molecular similarity for proteins and CATH-FunFams. For each drug, we determined two 

different interaction profiles: one is the set of protein targets it binds, and the other is the 
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set of CATH-FunFams that contain the targets of the drug among their relatives. For each 

drug pair, we compute the similarity of their interaction profile by the Jaccard index. High 

values of the Jaccard index indicate that a pair of drugs have similar interaction profiles 

(either protein interaction profiles or CATH-FunFam interaction profiles). Thus, where the 

association index is 1 the two drugs have the same targets. We observe that for proteins, 

structurally similar drugs (Tc ≥ 0.65, see Supplementary Fig. S2) tend to have similar 

interaction profiles (i.e. they tend to bind the same targets) while structurally different 

drugs bind different targets. Furthermore, when we consider CATH-FunFams this 

observation is still apparent, suggesting that our drug to CATH-FunFam mapping points to 

druggable CATH functional families. 

 

Figure 2. Correlation of the interactions profiles of a drug pair with their molecular 

similarity. Each circle is the average Jaccard index for the two drug-target datasets at a 

given bin of Tc similarity (bin size 0.01). The size of the circles is proportional to the 

number of drug pairs in the corresponding Tc bin. The vertical dashed line indicates the 

drug similarity threshold, Tc = 0.65 (see Supplementary Fig.S2). 
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Relatives in druggable CATH-FunFams are structurally similar with conserved binding sites 

Protein targets contain drug-binding sites. Therefore, if our 81 druggable CATH-

FunFams are enriched in new potential drug targets, their relatives must contain drug-

binding sites. To evaluate the presence of drug binding sites in these 81 druggable CATH-

FunFams we examined the 57 CATH-FunFams that have a crystal structure in the PDB, for 

their enrichment in druggable cavities compared with a set of 100 random non-druggable 

CATH-FunFams, 63 of them with crystal structure. We found that 75% of the 57 druggable 

CATH-FunFams with structural information available, have cavities where binding of 

prodrugs or drug-like molecules is possible. Out of the set of 63 random non-druggable 

CATH-FunFams with defined structure, only 66% have cavities capable of binding drug-like 

molecules. Thus, druggable CATH-FunFams have a greater proportion of cavities able to 

bind drug-like molecules (p-val < 0.0001, Fisher exact test), suggesting that the 81 

druggable CATH-FunFams are enriched in potential drug targets. 

Since CATH functional families are structurally and functionally coherent, the 

relatives of a CATH-FunFam that are associated with a drug should have binding sites for 

that drug. We investigated this by analysing the drugs associated with CATH-FunFams for 

which there are structures of drug-target complexes in the PDB. Out of the 14 cases we 

found, we selected 6 examples to illustrate the presence of drug binding sites in the 

relatives of the druggable CATH-FunFams (Fig. 3). We can see that the drug binding site is 

very well conserved among the relatives of the functional family, suggesting that all the 

relatives of a CATH-FunFam that have been associated with a drug, can bind that drug. 
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Figure 3. Conservation of the binding site within CATH-FunFams.  Structural alignment of 

the CATH-Funfams associated with: A) acetazolamide (CATH ID: 3.10.200.10-FF1430), B) 

nilotinib (CATH ID: 1.10.510.10-FF78758), C) Sildenafil (CATH ID: 1.10.510.10-FF78946), 
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D) tadalafil (CATH ID: 1.10.1300.10-FF1260), E) Tretinoin (CATH ID: 1.10.565.10-

FF5060) and F) vorinostat (CATH ID: 3.40.800.20-FF2855) and the drug-target complexes 

of this drugs. The protein domain in all is grey, except the ligand binding residues, which 

have been mapped across the domains, coloured yellow. The drug molecules are coloured 

in rainbow. 

The mean RMSD for the aligned domain across all the six CATH-Funfams is 1.169 ± 

0.812 Å suggesting that the druggable CATH-FunFams are structurally coherent. In order to 

evaluate the structural conservation of the druggable CATH-FunFams, we clustered the 

relatives within each druggable CATH-FunFam at 60% sequence identity and aligned the 

structural representatives of each cluster using the SSAP algorithm36. The median RMSD 

normalised by the number of aligned residues for the 30 druggable CATH-FunFams with 

structures available is below 5 Å (see Fig. 4), implying that the druggable CATH-FunFams 

are indeed structurally conserved and that the high conservation of drug binding sites 

observed in the examples above can be extended to all the druggable CATH-FunFams. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 17, 2017. ; https://doi.org/10.1101/044289doi: bioRxiv preprint 

https://doi.org/10.1101/044289
http://creativecommons.org/licenses/by/4.0/


 14 

Figure 4. Normalised RMSD of druggable CATH-FunFams. Boxplots of the structural 

conservation within druggable CATH-FunFams. The RMSD is normalised by the number of 

residues in each structural alignment. 

Network properties of druggable CATH-FunFams 

Molecular systems are modular at different levels, so cellular functions are carried 

out by modules made up of interacting molecules37. Protein functional networks are used to 

capture this phenomenon – where a link between two proteins means that both are 

involved in the same function or biological process – and are highly clustered, reflecting 

this modular design38. Therefore, proteins with similar functions tend to be connected or 

close to each other in the same neighbourhood of the protein functional network39. There 

are many examples of this phenomenon. For example: proteins associated with a disease 

tend to form modules40; modules in protein functional networks are used to predict and 

uncover protein functions inaccessible to experimental analysis41,42; and proteins 

participating in the same signalling pathway form functional modules43,44. 
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Drug-binding proteins can be either drug targets or off-targets. That is, drugs exert 

their biological function through interaction with their targets whilst the binding of drugs 

with off-targets usually results in undesirable side effects45. We hypothesised that the 

targets and the off-targets of a drug may have different network properties and that these 

may be related in some way to the side effects of a drug. 

Since results had indicated that druggable CATH-FunFams contain potential new 

drug targets and also new off-targets that may lead to undesirable side effects, we analysed 

the network properties of drug targets and off-targets in order to identify druggable CATH-

FunFams that might contain off-targets, leading to undesirable drug side effects. 

Drug targets aggregate in the protein functional network forming neighbourhoods 

We analysed the network aggregation of drug targets and off-targets by measuring 

the mean similarities of the targets of each drug across the kernel transformation of a 

protein functional network derived from the functional associations between human 

proteins captured in the STRING database. STRING computes functional associations 

between proteins through a combined score (ranging from 0 to 1), which indicates the 

confidence of a given association based on the different types of information supporting 

that association46. We derived a matrix from STRING where the value in row 𝑖, column 𝑗 

had the STRING combined score between protein 𝑖 and protein 𝑗. This matrix serves the 

purposes of a similarity kernel42, where two proteins with high kernel similarity (i.e. 

STRING combined score) have a strong connection in the protein functional network.  

For each drug, we computed the mean STRING kernel similarity of their targets, off-

targets and sets of random proteins with the same number of proteins as the set of drug 

targets. Figure 5 shows the cumulative distribution function of the STRING kernel 

similarities for these three datasets. Drug targets have higher STRING kernel similarities 
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than off-targets and both tend to be more similar to each other according to the STRING 

kernel scores, than expected by chance. This means that drug targets tend to aggregate in 

the functional network, either forming modules of directly connected proteins or by 

mapping close to each other in the network, which we dubbed the drug neighbourhood. 

This tendency of targets to form drug neighbourhoods in the functional network is stronger 

than off-targets and remarkably larger than expected by chance. We also measured the 

ability of drug targets to form drug neighbourhoods using the network distance based 

metrics developed by Menche et al. 40 and proved, using this alternative approach, that 

drug targets tend to form drug neighbourhoods regardless of the method used to detect 

them (see Supplementary Fig. S4). 

 

Figure 5. Drug neighbourhoods in the protein functional network. Cumulative distribution 

function of the kernel similarity of drug targets (blue line), off-targets (red line) and 

random sets of proteins (green line).  
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This shows that drug targets tend to cluster in the same neighbourhood of the 

functional network, whereas off-targets tend to disperse in the network. Since modules in 

the functional network imply proteins involved in the same process or biological function, 

we expect that the interaction between a drug and its targets will result in the alteration of 

one or only a few biological functions (resulting therefore in the drug’s pharmacological 

effect). By contrast the more dispersed nature of off-targets, which are more likely to be 

involved in disparate biological processes, will result in many side effects. In other words, 

proteins binding drugs with many side effects are likely to be more scattered in the 

functional network whereas proteins binding with less side effects will be more clustered in 

the functional network. 

Our drug-target dataset contains drugs belonging to up to 77 ATC level 2 categories. 

ATC L01, i.e. antineoplastic agents, is one of the most populated ATC categories in our 

dataset with 40 drugs. These cancer drugs are an important group that varies widely in the 

clustering of their targets in the protein functional network (kernel similarities range from 

0.00 to 0.93) and their number of side effects (from 13 to 268 adverse drug reactions 

extracted from SIDER47[exp2016-09-19]). Therefore, this is an interesting group of drugs to 

examine the relationship between drug neighbourhoods in the protein functional network 

and associated side effects. We observed a strong and significant negative correlation 

between the kernel similarity of proteins that bind cancer drugs and the number of side 

effects reported for these drugs in IntSide48 (Pearson’s correlation, r = -0.62; p-val < 0.01). 

The tendency of proteins that bind drugs with many side effects to be dispersed in the 

functional network holds when we analyse all the drugs in our datasets, although it is 

weakened by the lack of known side effects data for many of them. This suggests that drug 

neighbourhoods inform drug safety, and therefore the drug’s potential to affect many 

biological processes via unintended interactions with other proteins. 
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Drug targets are central in the protein functional network 

Network centrality is a measure of the importance of certain nodes in the network 

topology i.e. central nodes are important nodes around which the network revolves. 

Similarly, for a biological system modelled by a protein functional network, there are 

essential elements fundamental for maintaining the function of that system. Thus, central 

nodes of a protein functional network correlate with essential elements of the complex 

system described by that network49,50. 

Drug targets have been shown to exhibit a differentiated behaviour on molecular 

networks, occupying central positions and connecting functional modules51. Among the 

different measures of centrality, betweenness centrality captures best the ability of 

important nodes to be ‘between’ functional modules and also captures the link between the 

importance of a node in the network and the essentiality of the protein in the biological 

system52. We used the betweenness centrality measure to assess the importance of drug 

targets in the protein functional network. Figure 6 shows that drug targets have a higher 

betweenness centrality than proteins not associated with drugs, represented here by sets of 

random proteins. However, drug targets are not as central as proteins associated with side 

effects by IntSide48. 
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Figure 6. Betweenness centrality of drug targets. The mean betweenness centrality of drug 

targets (red line) and proteins associated with side effects in IntSide (blue line), in the 

protein functional network, is compared with the distribution of the mean betweenness 

centralities of random protein sets. 

We observed that drug targets exhibit an interesting nuanced behaviour in the 

centrality-essentiality continuum: They are important elements in the protein functional 

network, often bridging two or more modules51; however, their essentiality is correlated 

with the presence of side effects53. That is, drug targets occupy central positions in the 

protein functional network, but if they are highly central (i.e. they are essential) targeting 

them produces side effects. 

Druggable CATH-FunFams form neighbourhoods in the protein functional network 

We extended our analysis to relatives of druggable CATH-FunFams found to mediate 

drug binding identified by our drug-target association schema. We observed that these are 

more likely to cluster in the same neighbourhood of the protein functional network 
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(median kernel similarity 0.55) than CATH-FunFams that do not mediate the interactions 

between drugs and targets (median kernel similarity 0.36). Furthermore, druggable CATH-

FunFams can contain relatives that behave as off-targets as well as the relatives that behave 

as drug-targets. Since the interaction between drugs and off-targets is the main cause of 

side effects54, a CATH-FunFam containing relatives associated with side effects is more 

likely to include off-targets.  

In order to recognise CATH-FunFams, more likely to contain potential targets than 

off-targets, we built a logistic regression model of the probability of a CATH-FunFam being 

free of side effect proteins, given its median kernel similarity. According to this statistical 

model, the probability that a CATH-FunFam which has its relatives completely dispersed on 

the functional network (i.e. their kernel similarity = 0) does not contain any protein 

associated with side effects, is 39%. Whilst median kernel similarities greater than 0.43 

correspond to an odds ratio greater than 1, that a CATH-FunFams is free of proteins 

associated with side effects (pval < 0.05). Using this threshold, we can therefore be 

confident that the relatives of a CATH-FunFam, that gather in the same neighbourhood of 

the functional network, are more likely to be potential drug targets rather than off-targets 

and will not be associated with drug side effects. 

Furthermore, from our network analyses we previously observed that druggable 

CATH-FunFams are more likely to be central in the protein functional network than non-

druggable CATH functional families (see Fig. 7), and whilst druggable CATH-FunFams have 

betweenness centralities corresponding to drug targets, they are not enriched in highly 

central (i.e. essential) proteins whose inhibition would lead to side effects. 
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Figure 7. Betweenness centrality of druggable CATH functional families. The mean 

betweenness centrality of CATH-FunFams (dashed line) is compared with the distribution 

of the median betweenness centralities of random sets of non-druggable CATH-FunFams in 

the protein functional network. 

Druggable CATH-FunFams and the polypharmacology and safety of protein 

kinase inhibitors 

Targeted therapies in cancer rely on the inhibition of protein kinases by small-

molecule protein kinase inhibitors (PKI) and monoclonal antibodies33,55. The superfamily of 

protein kinases is one of the most important set of drug targets because their dysregulation 

plays a major causal role in most types of cancer. Kinases are also the largest druggable 

protein family that bind a common substrate, ATP; so protein kinase inhibitors (PKI) have a 

great potential for polypharmacology. According to our data, PKI acts on a median number 

of 28 kinases with high affinity and just 3 of the 37 approved PKI (as of June 201633) are 

specific to one kinase. Although PKI are considered less toxic than conventional 
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chemotherapeutics, this is not always the case: their broad polypharmacology is a major 

cause of the observed side effects55,56. 

We have shown above that druggable CATH-FunFams whose relatives aggregate in 

network neighbourhoods are likely to be enriched in potential targets and free of off-

targets. In fact, we observe a strong correlation between the network spread of CATH-

FunFams and the side effects of the PKI associated with them (Pearson's correlation, r = 

0.58; p-val < 0.05). The polypharmacology and mixed safety of PKIs provide an excellent 

ground to illustrate the use of our druggable CATH-FunFams in spotting potential 

interactions between drugs and off-targets that lead to side effects. When a kinase inhibitor 

is associated with a CATH-FunFam that forms a tight network neighbourhood we predict 

that the inhibitor will have few side effects, conversely a kinase inhibitor associated with a 

CATH-FunFam much more dispersed in the protein functional network will have many side 

effects. This is exemplified by the contrast between lapatinib and erlotinib. Lapatinib is a 

tyrosine kinase inhibitor directed against the oncogenes EGFR and HER2 often used in 

breast cancer treatment57. Lapatinib is regarded as a well-tolerated cancer drug58, a 

characteristic that we could have derived from the association between lapatinib and the 

CATH-FunFam to which its targets belong and whose relatives form a tightly connected 

module in the network (see Supplementary Table S1). The median kernel similarity of this 

CATH-FunFam is 1. In contrast, we associated erlotinib –another EGFR inhibitor used in 

metastatic non-small cell lung cancer and pancreatic cancer, amongst other types of cancer, 

and implicated in many severe adverse drug reactions59– with a CATH-FunFam whose 

relatives are more dispersed on the functional protein network (median kernel similarity of 

0.22). Therefore, we can anticipate the diversity of side effects caused by erlotinib through 

the network properties of the druggable CATH functional family associated with it. 
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Our drug to CATH-FunFams mapping also yields insights into the adverse side 

effects associated with sunitinib –a receptor tyrosine kinase inhibitor used in the treatment 

of renal cell carcinoma and other cancers60, which has raised safety concerns due to its 

many adverse reactions61,62. We associated sunitinib with two CATH functional families, 

both very dispersed on the protein functional network (median kernel similarities of 0.16 

and 0.15) and hence prone to contain off-targets and cause side effects. Thus, the broad 

polypharmacology of sunitinib which is associated with functionally diverse targets is 

captured by our druggable CATH-FunFams. In other words, by targeting more CATH-

functional families which are highly spread on the protein functional network, sunatinib 

causes numerous side effects. 

Conclusion 

We have provided fundamental support to the idea suggested by previous research 

that domain families like CATH functional families provide a useful level of abstraction for 

a systematic understanding of small molecule bioactivity and drug action15-18,63,64. In this 

work, we conducted further analyses to test whether CATH-FunFams are druggable and 

have shown that the domains in these families have the potential to be the druggable 

entities within drug targets. CATH-FunFams comply with the similarity property principle, 

that is drugs binding domains in these families show a correlation between similarity in 

their molecular structure and similarity in the targets to which they bind. Furthermore, the 

functional categories of CATH-FunFams closely agree with the druggable genome reported 

by other groups examining the functional categories of drug targets. Our studies also 

examined whether relatives within these functional families tended to be central in the 

protein functional network (i.e. have high betweenness centrality) and examined whether 

they were clustered together or highly dispersed in this network. These analyses revealed a 
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greater tendency of druggable CATH-FunFams to be central, than non-druggable CATH-

FunFams, and a greater likelihood of relatives in druggable CATH-FunFams to locate close 

together in the protein network. The value of using CATH-FunFams as proxy targets is 

further enhanced by the fact that the extent of side effects associated with a drug can be 

gauged by the dispersion in the protein functional network of relatives in the CATH-

FunFams to which the targets of the drug belong.  

In summary, our work supports the idea that drug protein interactions are mediated 

by drug-domain interactions. We have identified the CATH-FunFams as a reasonable 

annotation level for drug-target interactions, opening a new research direction in target 

identification with potential applications in drug repurposing. 

Methods 

Drug-proteins dataset 

We compiled a drug-protein dataset with 637 drugs and 679 human proteins 

(including drug targets and off-targets) by querying ChEMBL release 21. ChEMBL allows us 

to define drug target and drug off-targets based on the concentration at which a drug 

affects the protein. This provides a way to restrict our dataset to biologically meaningful 

drug-protein associations. We considered a drug as a small molecule with therapeutic 

application (THERAPEUTIC_FLAG =1), not currently known to be a pro-drug, reporting a 

direct binding interaction with single protein (ASSAY_TYPE = 'B'; RELATIONSHIP_TYPE = 

'D'; TARGET_TYPE = 'SINGLE PROTEIN'), with a maximum phase of development reached 

for the compound of 4 (meaning an approved drug). For drug-target interactions we 

excluded non-specific interactions between small molecules and biological targets by 

filtering out weak activities (i.e. the activity of a drug against a human protein target 
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should be stronger than 1 μM, where activity includes IC50, EC50, XC50, AC50, Ki, Kd; 

pchembl_value ≥ 6), while we used a pchembl value threshold between 1 and 4 to capture 

the less specific interactions between drugs and off-targets32. 

CATH-FunFams resource 

We used CATH-FunFams v4.1 from CATH-Gene3D v12.024,65. CATH is a protein 

domain classification system that makes use of a combination of manual and automated 

structure- and sequence-based procedures to decompose proteins into their constituent 

domains and then classify these domains into homologous superfamilies (groups of 

domains that are related by evolution); domain regions in CATH are more clearly defined 

than in other domain resources by the use of structural data which is more highly 

conserved than the sequence. CATH-Gene3D is a large collection of CATH22 domain 

predictions for genome sequences ~20 million66. CATH superfamilies map to at least 60% 

of predicted domain sequences in completed genomes using in-house HMM protocols-and 

as high as 70-80% if more sophisticated threading-based protocols are used67. Domain 

sequences in each superfamily in CATH-Gene3D have been clustered into functionally 

coherent families (FunFams) using an in-house protocol28. This method identifies distinct 

FunFams within a superfamily having unique patterns of specificity determining residues. 

CATH-FunFams have been demonstrated to group together relatives likely to have similar 

structures and functions 28. They have also been top-ranked in a blind test of functional 

annotation performance undertaken by the CAFA international assessment27. 

Overrepresentation of drug targets in CATH functional families 

We evaluated whether the targets 𝕋	{T', …	T*} of a drug 𝑑 are significantly 

overrepresented among the relatives of a CATH-FunFam ℙ	{P', …	P*}. In other words, we 
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want to find whether the CATH-FunFam is enriched in the targets of 𝑑. For each 

combination of drug and CATH functional family we defined a test list as the relatives of 

the CATH-FunFam and a reference list containing all the drug targets. We also defined the 

expected value for the number of drug targets in the test list, as the number of drug targets 

that would be expected to be present in the test list based on the reference list. In other 

words, this is the expected probability that any drug target is a relative of a CATH-FunFam. 

For example, let’s assume there are a total of 1000 drug targets and 20 of them are 

relatives of the CATH-FunFam 𝐹𝐹, then the expected value for 𝐹𝐹 is 0.02 i.e. 2%. If 𝕋 

contains 17 proteins we would expect that 0.34 of them are relatives of 𝐹𝐹, if we observe 

more than 0.34 targets of 𝑑 among the relatives of 𝐹𝐹, the targets of 𝑑 are overrepresented 

on 𝐹𝐹. Therefore, the overrepresentation of the targets of a drug among the relatives of a 

CATH-FunFam depends on the expected probability that a protein belongs to the CATH-

FunFam. This probability is defined for each CATH-FunFam as the fraction of total drug 

targets that belongs to the CATH-FunFam. 

We calculated a p-value (Benjamini–Hochberg corrected for multiple testing) to 

determine whether each observed overrepresentation is statistically significant by means of 

the binomial test. The binomial test evaluates the statistical significance of deviations from 

the binomial distribution of observations that fall into two categories: (i) the protein is a 

relative of the CATH-FunFam under consideration, or (ii) the protein is not a relative of the 

CATH-FunFam under consideration. The binomial distribution is the discrete probability 

distribution of the number of successes in a sequence of independent yes/no experiments 

each one with defined success probability. In our case the sequence of independent 

experiments is 𝕋, the targets of 𝑑; a success is that a protein from 𝕋 is a relative of the 

CATH-FunFam under evaluation. Each individual success has a probability 𝑃11 = 	
*33
4

, 
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which is the expected probability that a protein is a relative of 𝐹𝐹, where 𝑛11 is the number 

of relatives of the CATH-FunFam 𝐹𝐹 and 𝑁 is the total number of proteins relatives of all 

CATH-FunFams (i.e. all human proteins).  

The null hypothesis is that the proteins in 𝕋 are sampled from the same general 

population as the proteins in ℙ, and thus the probability of observing a target of 𝑑 as a 

relative of 𝐹𝐹 is the same as observing any protein as a relative of 𝐹𝐹 i.e. 𝑃11. Therefore, 

the p-value of the binomial test indicates if observing proteins from 𝕋 in the test list ℙ is 

likely to happen by chance. That is, the p-value for a drug-CATH functional family 

association indicates the probability of observing the targets of the drug among the relatives 

of the CATH-FunFam. 

For example, let’s consider 𝐹𝐹 with ℙ relatives and 𝑑 with 𝕋 targets, then: 

• Success: number of targets from 𝕋 that are in ℙ 

• Trials: number of targets of drug d in 𝕋 

• Probability of success under the null hypotesis: 𝑃11 = 	
*33
4

 

• Overrepresentation threshold: Trials	×	𝑃11  

The tables below show two examples of overrepresentation of targets of a drug 

across four CATH-FunFams. For both cases there are 25 possible targets distributed 

amongst the CATH-FunFams. 

1. The drug’s targets belong mainly to one CATH-FunFam 

FunFam 𝒏𝑭𝑭 PFF success trials Overrep. 
threshold p-val 

FF1 6 0.24 0 7 1.68 0.28 
FF2 3 0.12 1 7 0.84 0.59 
FF3 7 0.28 6 7 1.96 0.003 
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FF4 9 0.36 0 7 2.52 0.054 

We observe that the targets of the drug are overrepresented for FF2 and FF3 

but the overrepresentation is significant only in FF3. 

2. The drug’s targets are spread across several FunFams 

FunFam 𝒏𝑭𝑭 PFF success trials Overrep. 
threshold p-val 

FF1 6 0.24 1 5 1.2 1 
FF2 3 0.12 2 5 0.6 0.11 
FF3 7 0.28 1 5 1.4 1 
FF4 9 0.36 1 5 1.8 0.66 

The targets of the drug are overrepresented for FF2 but with no statistical 

significance. 

Molecular similarity calculation and pairwise associations of drug interaction 

profiles 

We performed a significance analysis of the molecular similarity for our set of drugs, 

in order to choose a threshold Tc which will define a statistically significant level of 

similarity between any pair of drugs in our dataset. We retrieved the chemical table 

representing the chemical structure record of 2015 approved drugs (regardless of their 

targets) from ChEMBL release 21 and we obtained their MACCS molecular fingerprints 68. 

We computed the Tanimoto similarity coefficients (Tc) between each drug and the 

remaining 2014 drugs using the RDKit package69. The Tc similarity quantifies the fraction of 

features common to the molecular fingerprints of the pair of drugs to the total number of 

features of the molecular fingerprints of each drug in the pair 70. From these distributions of 

Tc values, we extracted the cumulative distribution function 𝐹(𝑡) that gives the probability 

of having a similarity less or equal than a given Tc value. A significance level (p-value) 

defined as 𝑝 = 1 − 𝐹(𝑡) was assigned to every drug for each Tc value, according to 
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Maggiora et al.34. Based on this analysis, the Tc threshold to define that two drugs have 

similar structure is 0.65 (𝑝=0.005; see Supplementary Fig. S2). 

For each drug, its interaction profile is the set of targets (proteins or CATH-

FunFams) the drug is linked to. We analysed the interaction profile similarity between two 

drugs by means of the Jaccard association indices (𝐽FG)71, defined as 𝐽FG =
*H∩*J
*H∪*J

 where  𝑛F 

is the set of elements linked with drug 𝑎 (proteins or CATH-FunFams) and 𝑛G  is the 

corresponding set of elements linked with drug 𝑏. 

Drug binding sites in CATH-FunFams 

We used the Fpocket platform 72 to detect druggable cavities in the structure of 

selected domains, i.e. cavities that can bind drug-like molecules. Fpocket is a fast protein 

pocket prediction algorithm that identifies cavities on the surface of proteins and ranks 

them according to their ability to bind drug-like small molecules. Thus, Fpocket assesses the 

ability of a given binding site to host drug-like organic molecules in terms of a druggability 

scoring function described in 73. 

To explore whether CATH-FunFams associated with drug binding consist of 

members with a similar binding pocket and similar amino acid residues, we looked in detail 

at six examples of FunFams which bind the drugs: acetazolamide, nilotinib, sildenafil, 

tadalafil, tretinoin and vorinostat. Structural domains from these four different CATH-

FunFams were pairwise structurally aligned using SSAP. SSAP scores were used to 

construct a distance matrix and maximum spanning tree which was then used to derive a 

multiple superposition of the structural relatives. Data on residues involved in binding each 

of the drugs of interest were extracted from the NCBI IBIS resource 74 using the following 

PDB IDs as queries: 3ML5 for acetazolamide; 3CS9 for nilotinib; 1UDT for sildenafil; 1UDU 
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for taladafil; 2LBD for treinoin; 4LXZ for vorinostat. These four PDB IDs were chosen as 

they were the only PDBs in each CATH-FunFam with drug binding information. These drug-

binding residue positions were mapped onto the other structural domains using the SSAP 

alignment data. When producing the figures in PyMOL (www.pymol.org), the number of 

redundant structural domains in the acetazolamide and vorinostat alignments was reduced 

to improve clarity. 

Structural coherence of the druggable CATH-FunFams 

The structural comparisons of relatives across the druggable CATH-FunFams were 

done with the SSAP algorithm. Since it is computationally expensive to compare all the 

relatives of each CATH-FunFam, we analysed the representatives of structural clusters 

within each CATH-FunFam. Relatives were clustered using CD-HIT75 at 60% sequence 

identity threshold, which indicates significant structural and functional similarity. 

Representative members of the clusters were used for all-against-all SSAP structural 

alignments, generating RMSD values normalised by the number of aligned residues in each 

case.  

Measuring protein neighbourhood in the functional network 

We chose STRING to define the protein functional network because it is widely used 

and frequently updated. STRING compiles protein interaction and functional association 

data from several sources. These are benchmarked independently, and a combined score 

(which ranges from 0 to 1) is computed indicating the confidence of the association 

between two proteins. Therefore, protein associations have higher confidence when more 

than one type of information supports it76, the STRING data can be represented as a 
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network where proteins are linked by their functional and links are  weighted by the 

combined score.  

We transformed the STRING network (all edge weights) into a similarity matrix, by 

taking its adjacency matrix. The adjacency matrix of the full STRING network (i.e. no 

combined score cut-off) contains all the information of the functional associations between 

proteins: the value in row 𝑖, column 𝑗 had the STRING combined score (0-1) between 

protein 𝑖 and protein 𝑗. This adjacency matrix has the properties of a Kernel similarity 

matrix and reflects the integration of the disparate protein interaction types and sources 

implemented in STRING (see42,77 for details on the use of graph-kernels in data integration). 

Based on this matrix we defined the kernel similarity of a group of proteins as their mean 

STRING combined score, which reflects the closeness of these proteins in the protein 

functional network, i.e. proteins with high kernel similarity gather together in the protein 

functional network. 

All data processing, statistics analysis and results plots were produced using Python 

and Networkx78, the R computing environment79, and the R library ggplot280. 
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