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Abstract1

Systems as diverse as the interacting species in a community, alleles at a2

genetic locus, and companies in a market are characterized by competi-3

tion (over resources, space, capital, etc) and adaptation. Neutral theory,4

built around the hypothesis that individual performance is independent5

of group membership, has found utility across the disciplines of ecology,6

population genetics, and economics, both because of the success of the7

neutral hypothesis in predicting system properties and because deviations8

from these predictions provide information about the underlying dynam-9

ics. However, most tests of neutrality are weak, based on static system10

properties such as species-abundance distributions or the number of sin-11

gletons in a sample. Time-series data provide a window onto a system's12

dynamics, and should furnish tests of the neutral hypothesis that are more13

powerful to detect deviations from neutrality and more informative about14

to the type of competitive asymmetry that drives the deviation.15

Here, we present a neutrality test for time-series data. We apply this16

test to several microbial time-series and �nancial time-series and �nd that17

most of these systems are not neutral. Our test isolates the covariance18

structure of neutral competition, thus facilitating further exploration of19

the nature of asymmetry in the covariance structure of competitive sys-20

tems. Much like neutrality tests from population genetics that use relative21

abundance distributions have enabled researchers to scan entire genomes22

for genes under selection, we anticipate our time-series test will be useful23

for quick signi�cance tests of neutrality across a range of ecological, eco-24

nomic, and sociological systems for which time-series data are available.25

Future work can use our test to categorize and compare the dynamic �n-26

gerprints of particular competitive asymmetries (frequency dependence,27

volatility smiles, etc) to improve forecasting and management of complex28

adaptive systems.29

2

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 18, 2016. ; https://doi.org/10.1101/044495doi: bioRxiv preprint 

https://doi.org/10.1101/044495
http://creativecommons.org/licenses/by-nd/4.0/


Author Summary30

From �sheries and forestries to game parks and gut microbes, managing a com-31

munity of organisms is much like managing a portfolio. Managers care about32

diversity, and calculations of risk - for extinction or �nancial ruin - require33

accurate models of the covariance between the parts of the portfolio.34

To model the covariances in portfolios or communities, it helps to start sim-35

ple with a null model assuming the equivalence of species or companies relative36

to one another (termed "neutrality") and letting the data suggest otherwise.37

Researchers in biology and �nance have independently entertained and tested38

neutral models, but the existing tests have used snapshots of communities or the39

variance of �uctuations of individual populations, whereas tests of the covari-40

ances between species can better inform the development of alternative models.41

We develop a covariance-based neutrality test for time-series data and use42

it to show that the human microbiome, North American birds, and companies43

in the S&P 500 all have a similar deviation from neutrality. Understanding44

and incorporating this non-neutral covariance structure can yield more accurate45

alternative models of community dynamics which can improve our management46

of "portfolios" of multi-species systems.47

Introduction48

"(A)s more individuals are produced than can possibly survive, there must in49

every case be a struggle for existence, either one individual with another of the50

same species, or with the individuals of distinct species, or with the physical51

conditions of life." - Charles Darwin, Origin of Species [1]52

Adaptive evolution requires that rivalrous goods are consumed by agents,53

those agents have heritable variation in how they acquire and consume the54
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rivalrous goods, and the �tness of agents increases with the amount of goods55

consumed [2]. By Lewontin's listing of the necessary conditions of evolution, a56

variety of systems can be seen as evolving. Genes in populations, species in a57

community, companies in a market, and political groups in a society all satisfy58

Lewontin's axioms [2].59

Canopy space is a rivalrous resource in the multi-species closed-canopy forests.60

If nothing else intervenes, a competitively superior tree species will dominate61

the canopy just like a competitively superior gene will become �xed in a pop-62

ulation. In economic systems, companies compete over capital, customers, and63

labor, and a company well-adapted to a market will increase its share of the64

resources. In social systems, political groups compete over votes and occupied65

positions of power, and political groups with superior recruitment compared to66

other groups - either by persuasion, coercion, aggression, or reproduction with67

vertical transmission of culture - will increase the votes it receives and/or its68

representation in various positions of power.69

These generalized competitive systems are examples of "complex adaptive70

systems" [3, 4, 5] and understanding how they evolve can provide insight into the71

drivers of adaptive evolution [6], diversity maintenance in human and natural72

systems [7], portfolio construction in a market [8], and problems of recognition73

and representation in multicultural societies [9]. Much literature has explored74

the stochastic �uctuations of individual populations (e.g. [10, 11]) or asset prices75

[12] in these systems, and accurate models of the stochastic time-evolution of76

multi-species systems can enable calculations of the risk of extinction [13], the77

dynamics of diversity (such as the entropy or evenness of a system), portfolio78

analysis, and other features of interest.79

A common stochastic model in which all groups are functionally equivalent,80

termed �Neutral Theory� in ecology and population genetics, has been used81
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across many systems [14, 15, 16, 17, 18]. By �functionally equivalent�, we mean82

that every agent's performance in acquiring the rivalrous resource is indepen-83

dent of their group membership. In other words, an organism's species identity,84

a company's strategy or sector, a citizen's political identity, or a political party's85

platform have no impact on their ability to hold or acquire new rivalrous re-86

sources. Neutrality is a parsimonious starting point for community modeling87

because it is based on �rst principles of random birth and death or acquisition88

and release of resources that are appropriate for many competitive systems, and,89

because neutrality does not assume particular traits that distinguish groups and90

complex interactions between groups, it is invariant to grouping: the popula-91

tions of neutral species can be aggregated into larger groups whose competition92

is also neutral.93

Neutrality is often posed as a null model for multi-species systems because94

it can be parsimonious to assume, initially, that all species are equivalent. The95

mathematical tractability of neutral systems has allowed for useful calculations96

[19] that can sometimes accurately describe features of the system. However,97

despite the mathematical ease, calculations for features such as extinction time98

or the dynamics of portfolio diversity based on neutrality may be inaccurate99

for systems with non-neutral dynamics such as positive or negative frequency-100

dependent selection. Thus, there is a need for powerful and informative tests of101

neutrality to assess whether or not the dynamics of the competitive system are102

neutral.103

In population genetics, tests of neutrality [20, 21] have facilitated rapid con-104

ceptual and empirical advancements [22], allowing researchers to scan entire105

genomes for neutral loci and identify loci that have been under selection. Neu-106

trality tests developed in ecological and sociological systems test features of107

rank-abundance and frequency-abundance distributions [16, 23, 24]. Many of108
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these existing neutrality tests utilize snapshots of a competitive system, but109

time-series contain a tremendous amount of data and can enable stronger tests110

of neutrality.111

Some work has been done developing and utilizing tools to test whether112

or not population dynamics are consistent with Neutral Theory [10, 25, 11].113

These tests rely on a particular description of Neutral Theory as the one-step114

process [26] posed by Kimura and Hubbell, but the proof [27] that the non-115

zero-sum volatility-stabilized market models [17] converge to neutral drift in116

relative abundances motivates a broader de�nition and more general tests of117

neutrality. Since neutrality is the per capita equivalence between species, it is118

necessarily relative, not absolute; a population is not neutral per se, but can119

only be neutral relative to another population. To the best of our knowledge, the120

existing time-series tests have all analyzed whether or not the variance in jumps121

in abundance increase linearly or quadratically with the population size prior122

to the jump, and none have examined the covariance structure of �uctuations123

in relative abundance.124

Here, we present, to our knowledge, the �rst covariance-based neutrality125

test for time-series data. Our test provides deeper insight into the nature of126

non-neutrality than traditional tests of rank-abundance distributions and the127

volatility of individual populations. Our test utilizes the grouping invariance of128

neutral systems to isolate and test the covariance between changes is species'129

relative abundances over small time intervals, allowing a rejection of neutral-130

ity for the entire community considered. We apply our test to 6 metagenomic131

time-series [28], a time-series of breeding birds across North America [29], and132

a time-series of market capitalization of companies in the S&P 500 from 2000-133

2005. We show that even some systems whose rank-abundance distributions ap-134

pear neutral can exhibit signi�cantly non-neutral covariances between species135
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Figure 1: Illustration of our method (A) The dynamics of a 15-species neutral community of

10,000 individuals and migration probability m = 0.0002 (shown here) can be approximated by a

WFP with λ = 20. If the community is neutral, then the CVTs should yield homoskedastic plots

of νt versus ft. We test neutrality by randomly drawing from the 2n possible CVTs, performing

homoskedasticity tests on νt versus ft, and then testing the uniformity of the resulting P-value distri-

bution using a modi�ed KS-test (see details in supplement section S3). (B) The relative abundances

of 15 independent, mean-reverting geometric Brownian motions, d logXt = µ(b− logXt)dt+ σdWt

with µ = 15, σ = 30, b = 10. Neutrality is rejected by the highly non-uniform distribution of

P-values. The left-skewed P-value distribution indicates many CVTs had volatilities that depended

on the state variable, ft.

as detected by our test. Furthermore, our test, based on random groupings136

of species, illustrates how to analyze the volatility of randomly formed groups137

to reveal state-dependent volatility that di�ers from neutrality.The non-neutral138

state-dependent covariance structure uncovered here can be incorporated to im-139

prove our models of community dynamics and calculations of species' extinction140

times, portfolio risk, and more.141

Results142

Our method is proven analytically in the Materials & Methods section, and a143

demonstration of the method is provided in Figure 1.144

We apply our neutrality test to 8 di�erent datasets. Six of these datasets145

are sequence-count data of microbial communities [28] from three body sites on146

two individuals. One dataset is survey of breeding birds across North America147

from 1966-2014 [29], and one dataset is �nancial data, obtained from the Cen-148

ter for Research in Security Prices, of the day-end market shares and market149

capitalization of 451 companies in the S&P 500 from January 1, 2000 to Jan-150

uary 1, 2005. These datasets are long, time-series datasets, many of which have151

rank-abundance distributions that are decently �t by neutral theory's expected152

rank-abundance distribution (see supplement part S1 for a detailed description153
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Figure 2: Applying our test to time-series datasets reveal non-neutral competitive dynamics in

microbial and �nancial systems. Goodness of �t P-values displayed are from a modi�ed KS-test

which accounts for dependence among the observations. Despite decent �ts of neutral species-

abundance distributions, our time-series test reveals that competitive asymmetries are important

drivers in all systems except the female tongue bacteria.

of the datasets and �ts of neutral theory's rank-abundance distributions).154

Our test relies on multiple groups of species. To group the species, we155

randomly selected ai = ±1, for 4,000 independent groups, we then calculated156

νt as in equation (6), and used a White test [30] to test the homoskedasticity157

of νt. The White test performed auxiliary regression with a generalized linear158

model with a log-normal link function of the form159

ε̂2 = β0 + β1ft + β2f
2
t + γ (1)

where ε̂2 are the squared residuals from similar quadratic regression of ft on160

νt. With a 0.005 signi�cance threshold, neutrality was rejected in all but one161

dataset (�gure 2).162

Rejecting neutrality for these competitive systems motivates further investi-163

gation on whether the rejection of neutrality stems from sampling error or from164

true competitive asymmetries in the system. For the �nancial datasets, there165

is no sampling error - the reported values of day-end prices are the true values.166

For the metagenomic datasets, sampling error for sequence count data could be167

driving apparent non-neutrality.168

Figure 3 examines the competitive asymmetry in the male tongue's bacterial169

community. Scatter plots of νt vs. ft reveal a downward trend indicative of mean170

reversion - jumps in ft are positive when ft is above its mean and negative when171

ft is above its mean (�gure 3A). The mean reversion is regressed out prior to172

our auxiliary regression, but such strong mean reversion is not apparent in the173

simulated neutral community of �gure 1. The discrepancy between the mean174
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Figure 3: (A-D) Analyzing the non-neutrality of competitive systems (A) The negative relation-

ship between νt vs. ft indicates mean reversion. Overlaying νt vs. ft scatter plot from a particular

CVT from the male tongue data onto the results from 4,000 WFP trajectories with long sampling

intervals, ∆t, shows that mean reversion can be accounted for by sparse time-sampling of the data.

(B) However, even when correcting for sparse time-sampling, the left-skewed P-value distribution

in the male tongue indicates stronger signal of non-neutral volatility than 16,000 surrogate WFPs.

(C) The parameter β2 from signi�cantly (P < 0.001 for male tongue, P < 0.01 for surrogate data)

heteroskedastic auxiliary regressions in equation 7 reveals signi�cantly more β2 > 0 than β2 < 0 in

the data. The di�erent P-value cuto�s are for visualization - the same bias for β2 > 0 holds for a

standard cuto� of P < 0.01 (D) Overlaying scatterplots of the residuals, ε̂2, from all heteroskedastic

cases (P < 0.01) of the male tongue data, reveals the empirical pattern of heteroskedasticity. Com-

pared to surrogate neutral data, the male tongue is more volatile when the groupings are uneven,

suggesting that either rare or abundant groups are more volatile - or equal groupings are relatively

less volatile - than neutrality would predict. (E) All datasets have the same over-abundance of

β2 > 0 for heteroskedastic (P < 0.05) CVTs.

reversion in the data and the simulated neutral community may be due to a175

stronger and/or non-linear mean reversion in the microbial system, or it may176

be due to the relatively long time between time points in the data relative to177

the turnover rate of the community. Such sparse time-sampling could a�ect the178

accuracy of our test, which relies on the assumption that ∆t in equation 3 is179

small. A neutral community may still have mean reversion due to migration180

from a metacommunity or mutation/conversion rates between classes of agents,181

and sparsely sampling a time-series of such a neutral community may yield the182

same downward trend on plots of νt versus ft.183

To examine if the long time between time points accounts for the perceived184

non-neutrality from our analysis of �gure 2, we produced surrogate data by185

simulating neutral communities with similarly sparse time points. Parameter186

estimation of λ, ρ andWFP simulation is described in the supplement section S4.187

For one particular CVT, we simulated 4,000 independent trajectories to allow188

the superposition of the νt vs ft scatter plots from the male tongue data over189

the points from the surrogate data. Much of the strong mean reversion in the190

data can in fact be accounted for by the sparsity of time points (�gure 4A), but191
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the P-value distribution from constant-volatility tests of 16,000 randomly drawn192

surrogate CVT simulations is much more uniform than the same distribution193

from the male tongue, which has many small P-values indicative of consistent194

state-dependent volatility of ft (�gure 3b). Thus, the non-neutrality of the male195

tongue dataset is not due to long sampling intervals.196

The male tongue microbiome deviates from neutrality by having a signi�-197

cantly more β2 > 0 than β2 < 0 for those auxiliary regressions yielding signi�-198

cant heteroskedasticity (�gure 3C). β2 > 0 indicates that the volatility increases199

farther away from the mean and plotting the residuals, ε̂2 against the state vari-200

able, ft, reveals the form of heteroskedasticity (�gure 3D). A similar signi�cant201

hyper-abundance of β2 > 0 exists for all datasets considered here (�gure 3E).202

Discussion203

Evolution, driven by competition over rivalrous goods or limiting resources,204

is a phenomenon common to ecology, economics and sociology, and accurate205

statistical models of how competitive systems evolve can allow us to forecast,206

manage, and invest in them [2, 3, 8, 1, 31]. Neutral Theory is a null model of207

competition which assumes that all players are equal - that a canopy tree �lls a208

gap in the canopy independent of its species' identity, a dollar �nds its way to209

another dollar independent of who owns the dollar, and a seat in congress is �lled210

by someone independent of the racial, cultural or political traits of the successor211

or predecessor. It's been hypothesized that neutrality could arise naturally as212

a result of competitively inferior species going extinct [32], and thus systems213

would tend towards neutrality over long periods of time, but the accuracy and214

generality of Neutral Theory as a dynamical model for a range of competitive215

systems was unclear.216

We have provided a time-series test of neutral covariance structure that217
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reveals a common feature of non-neutrality across a range of ecological and218

economic systems. Our test is based on the grouping invariance of neutral219

communities, and this grouping invariance is maintained by a particular co-220

variance structure of volatilities, namely where the volatility of a group, Xi
t ,221

is v(Xi
t) = cXi

t(1 − Xi
t) for some constant, c, which can only be invariant to222

grouping if the covariance between groups i, and j is Σi,j = −cXi
tX

j
t . We test223

neutrality by randomly grouping species and testing if the volatility of those224

random groups is of the form of v(x). A deviation from v can indicate non-225

neutral covariance structure. If, for instance, instead of a quadratic curve of226

v, the volatility of random groups in the data follows a bell-shaped curve with227

positive curvature at the end-points, it could indicate that there is a positive228

covariance between rare species, possibly due to kill-the-winner e�ects or due229

to the relative abundances being driven by �uctuations in the largest popula-230

tions. Conversely, excessive negative curvature could indicate strong negative231

covariances between rare species, possibly due to relatively constant populations232

of abundant species. Future work analyzing the volatility surfaces of random233

groups can improve our test and allow researchers to quickly isolate particular234

forms and �ngerprints of common, non-neutral competitive asymmetries.235

The results presented here are limited to the particular choice of species (the236

taxonomic scale), resource (trophic scale), and time scale. However, an analysis237

restricted to a particular scale means that our test can also allow researchers to238

probe multiple taxonomic, trophic and time-scales to see if there are patterns in239

which scales are most/least neutral in their dynamics. An alternative grouping240

of these original OTUs by genera may reveal di�erent results by conditioning the241

groupings of species on a particular sub-set of possible groups, namely by group-242

ing species with recent ancestors and shared traits together, and consequently243

this test could serve as a tool for evaluating competition at multiple taxonomic244
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scales. The results are also limited to the choice of resource: companies within245

a sector governed by trust-busting policies which break the neutral symmetry in246

their market capitalization dynamics may still be neutral in their competition247

over the ethnic or cultural composition of their labor force. It's possible that248

microbes in the gut are not neutral in their short-term �uctuations over the249

course of a year, but perhaps are neutral over longer time-scales that average250

out short-term �uctuations in diet and physiological state that are known to251

have predictable e�ects on microbial communities [33, 34].252

Our test can be applied to any community of competing agents classi�ed into253

discrete groups for which time-series of relative abundances (or market share,254

etc) of the groups are available. This test is most e�ective when the time-series255

is long and the spacing between samples is short relative to the turnover rate of256

the underlying resources (trees, dollars, congressional seats). There are many257

ways to build on our method. Explicit calculations of the drift and volatility258

over long time-intervals can improve our method for datasets with sparse time259

points. The dependence of the CVTs may be calculated as copulas allowing the260

implementation of a more exact goodness of �t test [35]. There may be more261

CVTs that solve the Hamilton-Jacobi equation, and di�erent CVTs might be262

more specialized at detecting di�erent asymmetries in competitive systems.263

Neutrality tests of time-series data can help us understand the stochastic264

time-evolution of competitive systems and facilitate better prediction and man-265

agement. For bacteria in the gut, for instance, understanding the important266

non-neutral forces governing the dynamics could allow progress towards the267

stochastic pharmacokinetics of probiotics [36]. Understanding the predictability268

of invasions at di�erent taxonomic scales can tell us whether to evaluate metage-269

nomic or ecological datasets based on the species, or whether other taxonomic270

levels will yield a more informative analysis - perhaps grouping tropical trees271
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into the family Fabaceae, the family Melastomataceae, the genus Cecropia, and272

all other trees reveals trophic structure of tropical forests and competitive asym-273

metries that are drowned out by analyses at the species level. Demonstrating274

that the non-neutrality of portfolios is consistent with rare-species advantages275

in the Atlas model [8] would have major implications for portfolio design. In all276

cases, the �rst step of empirically demonstrating the existence of competitive277

asymmetries in time-series data can now be done with the test provided here.278

Materials and Methods279

Neutral Theory and the Wright-Fisher Process280

Large neutral communities are well-approximated by a Wright-Fisher Process281

(WFP) [37, 38]. The convergence of discrete neutral communities to the contin-282

uous di�usion model of the WFP is covered in [39], and some numerical methods283

used for parameter estimation and simulation have been produced by [31]. The284

WFP is a continuous-state, continuous-time approximation of Kimura's theory285

[14], it is an approximation of Hubbell's neutral theory [15] when speciation286

rates are negligible over the timescale of interest, and it describes the dynam-287

ics of relative abundances of non-zero-sum volatility-stabilized market models288

[17, 27]. Using the WFP as a continuous approximation of large, �nite communi-289

ties simpli�es the covariance in the jumps between species' relative abundances,290

thereby permitting the analysis below.291

The WFP models the stochastic time-evolution of relative abundances of n292

species. Let Xt =
(
X1
t , ..., X

n
t

)
be the vector of relative abundances, the WFP293

is de�ned by the Ito SDE294

dXt = λ (ρ−Xt) dt+ σ (Xt) dWt (2)

13

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 18, 2016. ; https://doi.org/10.1101/044495doi: bioRxiv preprint 

https://doi.org/10.1101/044495
http://creativecommons.org/licenses/by-nd/4.0/


where λ > 0 and ρ > 0. The covariation between relative abundances of di�erent295

species is given by the elements of Σ = σσT /2, where296

Σi,j (x1, ..., xn) =


xi (1− xi)

xixj

i = j

i 6= j

. (3)

The deterministic motion, or drift, of the WFP - λ(ρ−Xt) - yields exponen-297

tial mean reversion like many dynamical systems reverting to a nearby stable298

equilibrium. The quadratic covariation of the WFP, Σ, captures the stochastic299

�ngerprint of neutrality; it arises from randomly drawing a resource to be freed300

from its agent followed by randomly drawing one of the remaining agents to301

acquire that resource with a probability proportional to the agent's current re-302

source ownership. The family of Wright-Fisher Processes is closed to grouping,303

meaning that if a multi-species community's dynamics are governed by a WFP,304

species can be grouped (e.g. collecting species into genera or higher taxonomic305

levels) and the dynamics of the resulting, re-grouped community will also be306

governed by a WFP.307

Testing Neutral Covariance Structure308

We developed a test that is intentionally sensitive to the state-dependent noise309

of the WFP, allowing researches to test the underlying stochastic model of the310

random turnover of resources at the heart of neutral competition. Developing311

a strong test of the state-dependent covariance is not trivial, though, because312

direct measurement of the covariance of jumps conditioned on the state of the313

system, Cov [∆Xt|Xt], would require many replicate time points each with the314

same initial state, Xt, and, even with multiple time points at the same state,315

the sparsity of the high-dimensional data challenges the accurate estimation316

and signi�cance testing of the covariance matrix. To circumvent these problems317
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of replicate time points and high dimensionality and develop a strong test the318

state-dependent noise of the WFP, we �nd a variance-stabilizing transformation319

for the WFP that allows a regression-based heteroskedasticity test [40].320

To be precise, we are looking for a real-valued function f(Xt) such that for321

Xt obeying the WFP law in equation (1),322

lim
∆t→0

Var

[
f (Xt+∆t)− f (Xt)√

∆t

]
= const. (4)

This approach is conceptually similar to the variance-stabilizing tools used for323

population �uctuation analyses [10, 25, 11] which stabilize the variance in jumps324

of a population size, except our function must stabilize the covariance of jumps325

between populations, not just the variance. In particular, to have a constant326

volatility, our function f must satisfy the Hamilton-Jacobi equation,327

∇fTΣ∇f = const. (5)

(see supplement part S2 for more details). The grouping invariance of the WFP328

can be used to intuit and show that there are at least 2n di�erent variance-329

stabilizing transformations of the WFP, parametrized by a vector a:330

fa (Xt) = arcsin
(
a1X

1
t + ...+ anX

n
t

)
, (6)

where ai = ±1 for all i.331

After transforming the data with fa, we need to perform a constant-volatility332

test. To test the constant volatility of f , we test the homoskedasticity of stan-333

dardized jumps,334

νt = (ft+∆t − ft) /
√

∆t, (7)

following regression on ft to eliminate the state-dependent drift.335
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A homoskedasticity test of νt for a single CVT is a test of neutrality for336

time-series data. However, with 2n di�erent CVTs, one can perform multiple337

hypothesis tests. For any multiple-hypothesis tests, if the null hypothesis is true,338

the distribution of P-values is uniform. In this paper, we test the uniformity339

of the distribution of resultant P-values from homoskedasticity tests of νt for340

a number of randomly drawn CVTs. Figure 1 illustrates this test for 2,000341

randomly drawn CVTs and shows the successful rejection of the WFP for the342

relative abundances of a mean-reverting geometric Brownian motion.343

The P-values arising from homoskedasticity tests of di�erent CVTs are not344

independent. Consequently, a Kolmogorov-Smirnov test of the P-value distri-345

bution against a uniform distribution would have a high false-positive rate. To346

reduce the false-positive rate, we perform a perturbation analysis to generate347

conservative estimates of cuto�s for the KS statistic at 0.05 and 0.005 signi�-348

cance levels. Details of the sensitivity analysis are provided in the supplement349

part S3.350

Acknowledgments351

The authors would like to thank R. Chisholm, S. Levin, S. Pacala, J. O'dwyer,352

and J. B. Socolar for their discussions and feedback. In particular, A.D.W.353

would like to thank J. B. Socolar for numerous excellent recommendations that354

have greatly improved this manuscript, and both A. Gammie and D. Nemergut355

for their encouragement and support.356

References357

[1] Darwin C, Bynum WF. The origin of species by means of natural selection:358

or, the preservation of favored races in the struggle for life. AL Burt; 2009.359

16

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 18, 2016. ; https://doi.org/10.1101/044495doi: bioRxiv preprint 

https://doi.org/10.1101/044495
http://creativecommons.org/licenses/by-nd/4.0/


[2] Lewontin RC. The units of selection. Annual review of ecology and sys-360

tematics. 1970;p. 1�18.361

[3] Holland JH. Complex adaptive systems. Daedalus. 1992;p. 17�30.362

[4] Levin SA. Ecosystems and the biosphere as complex adaptive systems.363

Ecosystems. 1998;1(5):431�436.364

[5] Arthur WB. Complexity and the economy. science. 1999;284(5411):107�365

109.366

[6] Grant PR, Grant BR. Evolution of character displacement in Darwin's367

�nches. science. 2006;313(5784):224�226.368

[7] Bengtsson J. Interspeci�c competition increases local extinction rate in a369

metapopulation system. Nature. 1989;340(6236):713�715.370

[8] Fernholz ER. Stochastic portfolio theory. Springer; 2002.371

[9] Taylor C, et al.. Multiculturalism: Examining the Politics of Recognition,372

ed. Amy Gutmann. Princeton: Princeton University Press; 1994.373

[10] Lande R, Engen S, Saether BE. Stochastic population dynamics in ecology374

and conservation. Oxford University Press Oxford; 2003.375

[11] Kalyuzhny M, Seri E, Chocron R, Flather CH, Kadmon R, Shnerb NM.376

Niche versus Neutrality: A Dynamical Analysis. The American Naturalist.377

2014;184(4):439�446.378

[12] Black F, Scholes M. The pricing of options and corporate liabilities. The379

journal of political economy. 1973;p. 637�654.380

[13] Halley JM, Iwasa Y. Neutral theory as a predictor of avifaunal extinc-381

tions after habitat loss. Proceedings of the National Academy of Sciences.382

2011;108(6):2316�2321.383

17

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 18, 2016. ; https://doi.org/10.1101/044495doi: bioRxiv preprint 

https://doi.org/10.1101/044495
http://creativecommons.org/licenses/by-nd/4.0/


[14] Kimura M. The neutral theory of molecular evolution. Cambridge Univer-384

sity Press; 1985.385

[15] Hubbell SP. The uni�ed neutral theory of biodiversity and biogeography386

(MPB-32). vol. 32. Princeton University Press; 2001.387

[16] Bentley RA, Hahn MW, Shennan SJ. Random drift and culture change.388

Proceedings of the Royal Society of London B: Biological Sciences.389

2004;271(1547):1443�1450.390

[17] Fernholz R, Karatzas I. Relative arbitrage in volatility-stabilized markets.391

Annals of Finance. 2005;1(2):149�177.392

[18] Danger�eld C, Kay D, Burrage K. Stochastic models and simulation of ion393

channel dynamics. Procedia Computer Science. 2010;1(1):1587�1596.394

[19] Volkov I, Banavar JR, Hubbell SP, Maritan A. Neutral theory and relative395

species abundance in ecology. Nature. 2003;424(6952):1035�1037.396

[20] Tajima F. Statistical method for testing the neutral mutation hypothesis397

by DNA polymorphism. Genetics. 1989;123(3):585�595.398

[21] Fay JC, Wu CI. Hitchhiking under positive Darwinian selection. Genetics.399

2000;155(3):1405�1413.400

[22] Leigh EG. Neutral theory: a historical perspective. Journal of evolutionary401

biology. 2007;20(6):2075�2091.402

[23] McGill BJ, Maurer BA, Weiser MD. Empirical evaluation of neutral theory.403

Ecology. 2006;87(6):1411�1423.404

[24] Chave J, Alonso D, Etienne RS. Theoretical biology: comparing models of405

species abundance. Nature. 2006;441(7089):E1�E1.406

18

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 18, 2016. ; https://doi.org/10.1101/044495doi: bioRxiv preprint 

https://doi.org/10.1101/044495
http://creativecommons.org/licenses/by-nd/4.0/


[25] Chisholm RA, Condit R, Rahman KA, Baker PJ, Bunyavejchewin S, Chen407

YY, et al. Temporal variability of forest communities: empirical estimates408

of population change in 4000 tree species. Ecology letters. 2014;17(7):855�409

865.410

[26] van Kampen NG. Stochastic processes in physics and chemistry. Amster-411

dam ; New York : New York: North-Holland; 1981.412

[27] Pal S. Analysis of market weights under volatility-stabilized market models.413

The Annals of Applied Probability. 2011;21(3):1180�1213.414

[28] Caporaso JG, Lauber CL, Costello EK, Berg-Lyons D, Gonzalez A,415

Stombaugh J, et al. Moving pictures of the human microbiome. Genome416

Biol. 2011;12(5):R50.417

[29] Pardieck K, Ziolkowski Jr D, Hudson M. North american breeding bird418

survey dataset 1966-2013, version 2013.0. US Geological Survey, Patuxent419

Wildlife Research Center< www pwrc usgs gov/BBS/RawData. 2014;.420

[30] White H. A heteroskedasticity-consistent covariance matrix estimator and421

a direct test for heteroskedasticity. Econometrica: Journal of the Econo-422

metric Society. 1980;p. 817�838.423

[31] Washburne A. Competition and Coexistence in an Unpredictable World;424

2015.425

[32] Hubbell SP. Neutral theory in community ecology and the hypothesis of426

functional equivalence. Functional ecology. 2005;19(1):166�172.427

[33] P�ughoeft KJ, Versalovic J. Human microbiome in health and disease.428

Annual Review of Pathology: Mechanisms of Disease. 2012;7:99�122.429

19

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 18, 2016. ; https://doi.org/10.1101/044495doi: bioRxiv preprint 

https://doi.org/10.1101/044495
http://creativecommons.org/licenses/by-nd/4.0/


[34] David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe430

BE, et al. Diet rapidly and reproducibly alters the human gut microbiome.431

Nature. 2014;505(7484):559�563.432

[35] Chicheportiche R, Bouchaud JP. Goodness-of-�t tests with dependent433

observations. Journal of Statistical Mechanics: Theory and Experiment.434

2011;2011(09):P09003.435

[36] Marteau P, Vesa T. Pharmacokinetics of probiotics and biotherapeutic436

agents in humans. Bioscience and micro�ora. 1998;17(1):1�6.437

[37] Fisher RA. The genetical theory of natural selection. Clarendon; 1930.438

[38] Wright S. Evolution in Mendelian populations. Genetics. 1931;16(2):97.439

[39] Durrett R. Probability models for DNA sequence evolution. Springer Sci-440

ence & Business Media; 2008.441

[40] Everitt BS, Skrondal A. The Cambridge dictionary of statistics. Cambridge:442

Cambridge. 2002;.443

20

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 18, 2016. ; https://doi.org/10.1101/044495doi: bioRxiv preprint 

https://doi.org/10.1101/044495
http://creativecommons.org/licenses/by-nd/4.0/

