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 2

ABSTRACT 10 

 Species are fundamental units of comparison in biology. The newly discovered 11 

importance and ubiquity of host-associated microorganisms is now stimulating work on the roles 12 

that microbes can play in animal speciation. We previously synthesized the literature and 13 

advanced concepts of speciation by symbiosis with notable attention to hybrid sterility and 14 

lethality. Here, we review recent studies and relevant data on microbes as players in host 15 

behavior and behavioral isolation, emphasizing the patterns seen in these analyses and 16 

highlighting areas worthy of additional exploration. We conclude that the role of microbial 17 

symbionts in behavior and speciation is gaining exciting traction, and the holobiont and 18 

hologenome concepts afford an evolving intellectual framework to promote research and 19 

intellectual exchange between disciplines such as behavior, microbiology, genetics, symbiosis 20 

and speciation. Given the increasing centrality of microbiology in macroscopic life, microbial 21 

symbiosis is arguably the most neglected aspect of animal and plant speciation, and studying it 22 

should yield a better understanding of the origin of species.  23 

  24 
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MINIREVIEW 25 

 In 1998, Carl Woese referred to the microbial world as the "sleeping giant" of biology 26 

(1). Almost two decades later, unprecedented attention to our microbial world has turned the 27 

fields of zoology (2) and botany (3) inward - towards an increased awareness and understanding 28 

of individual animals and plants as holobionts (4–6). The term "holobiont" denotes a host plus all 29 

of its microbial symbionts, including inconstant and constant members that are either vertically 30 

or horizontally transmitted or environmentally acquired; it was first coined in 1991 by Lynn 31 

Margulis (reviewed in 5). The ubiquity and importance of microbes in and on holobionts, 32 

including humans, is evident in studies of host development (7), immunity (8), metabolism (9–33 

12), behavior (13, 14), speciation (15, 16), and numerous other processes. Host-microbe 34 

interactions provide the holobiont with disadvantages (17–19) such as increasing the risk of 35 

cancer (20), and advantages (7, 21–23)  such as driving the evolution of resistance to parasites 36 

and pathogens (24–26), and among other things producing signal components (i.e., metabolites) 37 

used to recognize differences in potential mates (27, 28).  38 

The newfound importance of diverse microbial communities in and on animals and plants 39 

led to the development of the hologenome theory of evolution (4, 29). The "hologenome" refers 40 

to all of the genomes of the host and its microbial symbionts, and the theory emphasizes that 41 

holobionts are a level of phenotypic selection in which many phenotypes are produced by the 42 

host and microbial members of the holobiont. This developing scientific framework distinguishes 43 

itself by placing importance not only on well-studied primary microbial symbionts and vertical 44 

microbial transmission, but also on the vast diversity of host-associated microbes and horizontal 45 

microbial transmission. The key reason for aligning these different transmission modes and 46 

levels of complexity into an eco-evolutionary framework is that the community-level parameters 47 
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among host and symbionts in the holobiont (e.g., community heritability, selection and 48 

coinheritance) can be analyzed under a common set of concepts to the parameters that occur in 49 

the nuclear genome (6, 30).  50 

As natural selection operates on variation in phenotypes, the hologenome theory’s most 51 

significant utility is that it reclassifies the target of "individual" selection for many animals and 52 

plants traits to the holobiont community. This claim is straightforward given the overwhelming 53 

influence of microbes on host traits (31–34). The question going forward is whether the response 54 

to this community-level selection is relevant to the biology of holobionts. In other words, can 55 

host-associated microbial communities be selected such that shifts in the microbial consortia 56 

over multiple generations are a response to selection on holobiont traits? Community selection at 57 

the holobiont level is shaped by genetic variation in the host and microbial species and 58 

covariance between hosts and their microbial consortia, the latter of which can be driven by (i) 59 

inheritance of the microbial community from parents to offspring (35, 36) and/or (ii) community 60 

heritability H2
C (30, 37). We recently summarized ten foundational principles of the holobiont 61 

and hologenome concepts, aligned them with pre-existing theories and frameworks in biology, 62 

and discussed critiques and questions to be answered by future research (6).  63 

In the context of the widely accepted Biological Species Concept (38, 39), the principles 64 

of holobionts and hologenomes offer an integrated paradigm for the study of the origin of 65 

species. The Biological Species Concept operationally defines species as populations no longer 66 

capable of interbreeding. Reproductive isolation mechanisms that prevent interbreeding between 67 

holobiont populations are either prezygotic (occurring before fertilization) or postzygotic 68 

(occurring after fertilization).  In the absence of reproductive isolation and population structure, 69 

unrestricted interbreeding between holobiont populations will homogenize populations of their 70 
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genetic and microbial differences (6). While postzygotic isolation mechanisms include hybrid 71 

sterility or inviability, prezygotic isolation mechanisms can include biochemical mismatches 72 

between gametes and behavior mismatches between potential partners.  73 

Symbionts can cause prezygotic reproductive isolation in two modes: broad-sense and 74 

narrow-sense (40). Broad-sense symbiont-induced reproductive isolation refers to divergence in 75 

host genes that result in a reproductive barrier because of selection on the host to accommodate 76 

microorganisms. In this case, loss or alteration of the symbiont does not have an impact on the 77 

capacity to interbreed; rather host genetic divergence and reproductive isolation evolve in 78 

response to microbial symbiosis and cause isolation regardless of whether the hosts are germ-79 

free or not.  Conversely, narrow-sense symbiont-induced reproductive isolation occurs when 80 

host-microbe or microbe-microbe associations result in a reproductive barrier, namely one that 81 

can be ameliorated or removed via elimination of the microbes. Therefore, narrow-sense 82 

isolation can be experimentally validated if it is reversible under microbe-free rearing conditions 83 

and inducible with the reintroduction of microbes. Isolation barriers that require host and 84 

microbial component underpin hologenomic speciation  (6, 16).  85 

We recently synthesized the literature and concepts of various speciation mechanisms 86 

related to symbiosis, with notable attention to postzygotic isolation (40–42). While aspects of the 87 

microbiology of prezygotic isolation are less understood, seminal cases exist (43–45) and control 88 

of behavior by symbionts is an emerging area of widespread interest (14, 46, 47). Here we 89 

emphasize the patterns seen in these new and old analyses (Table 1) and highlight important and 90 

tractable questions about the microbiome, behavior, and speciation by symbiosis. For the 91 

purposes of this review, we refer to the microbiome as the community of microorganisms in and 92 

on a host. 93 
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 94 

 95 

SIGNALING & MICROBIOME HOMOGENIZATION 96 

 Recognizing signals of species membership (48), gender (49), relatedness (50), and 97 

colony or group membership (51) is relevant to choosing a mate. Visual (48), auditory (49), and 98 

chemosensory signals (52) can each be used to relay this information, with the latter being 99 

particularly influenced by the microbiome in either "microbe-specific" or "microbe-assisted" 100 

ways. Both mechanisms involve the expression of chemosensory cues, but microbe-specific 101 

processes involve bacterial-derived products such as metabolites while microbe-assisted 102 

mechanisms involve bacterial modulation of host-derived odorous products (Fig. 1). 103 

 The microbiome’s capacity to provide identity information for mate recognition may rely 104 

on products being an honest signal of holobiont group membership, requiring that many or all 105 

members of the group (i.e., gender, population or species) contain appropriate microbial 106 

members that express equivalent signal profiles. Holobionts can be colonized by similar 107 

microbes via a number of different mechanisms, spanning behavioral similarities and contact 108 

with shared environmental sources (53, 54), similar ecological niches and diets (55–57), and host 109 

genetic effects (16, 58). Each of these mechanisms may explain a portion of the variation in the 110 

microbial communities of holobionts (40, 42, 59–61).  111 

In the context of group living, humans in the same household (54, 62) and chimpanzees 112 

(63) or baboons (53) in the same social group have more similar microbial communities than 113 

non-group members. Among several mammalian species, microbial community composition 114 

covaries with odorous secretions, and similarities are shared based on host age, sex, and 115 

reproductive status allowing for potential signaling and recognition of these traits (27, 64). In 116 
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hyenas, there is less microbial community variation within species than between them, and clans 117 

have more comparable microbial communities due to the marking and remarking of collective 118 

territory to signal clan ownership (64). In baboons, there is less microbiome variation within 119 

social groups than between them, and baboons involved in communal grooming behaviors share 120 

even more similarities (53). Insect populations such as termites can stabilize their gut 121 

microbiomes by way of trophallaxis, a behavior in which nestmates supply nutrients and 122 

microbes (e.g., cellulolytic microbes) to other colony members through fluids they excrete from 123 

their hindgut (65). However, Tung et al appropriately note, "one of the most important 124 

unanswered questions is whether social network-mediated microbiome sharing produces net 125 

fitness benefits or costs for hosts" (53). From the perspective of the origin of species, it will be 126 

similarly important to determine if fitness impacts of the microbiome in turn affect the evolution 127 

of group living and reproductive isolation. On one hand, socially-shared microbiomes could 128 

drive the evolution of population-specific mating signals and ensuing behavioral isolation. On 129 

the other hand, they could fuse incipient species in sympatry that socially share bacterial 130 

communities responsible for mating signals.  131 

Similarities in diet can also influence microbiome homogenization, particularly in the 132 

digestive tract. For instance, Drosophila melanogaster reared on similar food sources carry 133 

comparable microbial communities (43). Trophically similar ant species also share microbial 134 

species (66). In humans, gut microbiome variation in taxonomy and functions correlates with 135 

dietary variation (67), and alterations in human diet can rapidly and reproducibly change the 136 

structure of the microbiome (68, 69). Seasonal variation in wild howler monkey diet is also 137 

correlated to shifts in the microbiome (70). Mediterranean fruit flies (71) and olive flies (72) 138 

acquire microbes from their food that increase clutch size and oviposition rate of females 139 
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exposed to diets lacking essential amino acids  (71, 72). Intriguingly, male sexual 140 

competitiveness of Mediterranean fruit flies increases up to two-fold with diets enriched with 141 

Klebsiella ozytoca versus a conventional diet (73).  142 

Host genetics also affects microbial community assembly. In mice, there are 18 candidate 143 

loci for modulation and homeostatic maintenance of Bacteroidetes, Firmicutes, Rikenellaceae, 144 

and Provetellaceae in the gut (58, 74). Moreover, the presence of many rare bacterial groups in 145 

the gills of the Pacific oyster are correlated to genetic relatedness (75). Congruently, genetic 146 

variability in human immune-related pathways are associated with microbial profiles on several 147 

body sites including various locations along the digestive tract (76), and the largest twin cohort 148 

to date examined members of the gut microbiome and found that the bacterial family 149 

Christensenellaceae has the highest heritability (h2 = 0.39), and associates closely with other 150 

heritable gut bacterial families (77). Human genetic background also influences the risk of 151 

developing gastric cancer caused by Helicobacter pylori, indicating that incompatibilities 152 

between hosts and symbionts can produce deleterious effects (20). Phylosymbiosis, characterized 153 

by microbial community relationships that reflect host phylogeny (30), has also been reported in 154 

several cases. For instance, closely related Nasonia species that diverged roughly 400,000 years 155 

ago share more similar microbial communities than species pairs that diverged a million years 156 

ago (16, 40). Similar phylosymbiotic patterns are observed in hydra (59), ants (60) and primates 157 

(61).  158 

 The overall complexity inherent in microbial community structures and processes may 159 

be problematic for animal holobionts seeking to interpret a vast array of signaling information. 160 

However, recognition and differentiation of these microbe-induced signals may be possible if a 161 

subset of the microbiome affects the production of the particular signal. Furthermore, it may also 162 
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be challenging to disentangle social, environmental, and diet effects on microbial assemblages in 163 

natural populations (53). Nonetheless, the important theme among all of these cases is that 164 

microbial community variation often appears to be less within holobiont groups/species than 165 

between them. This pattern, if sustained in natural populations, could facilitate the evolution of 166 

microbe-specific and/or microbe-assisted mating signals that promote recognition within 167 

populations or species and discrimination between them. Once this critical point is passed, 168 

speciation has commenced. There are parallels here with inclusive fitness theory, which posits 169 

that individuals can influence their own reproductive success or the reproductive success of other 170 

individuals with which they share genes (78, 79). If one follows the continuity from genes to 171 

microbial symbionts, then the inclusive fitness framework may also apply to holobionts in which 172 

specific microbial symbionts may influence their reproductive success by increasing the 173 

reproductive success of their hosts through microbe-specific and/or microbe-assisted mating. A 174 

case-by-case analysis of the reliance of the symbiont on the host for transmission (e.g., maternal, 175 

social, environmental transmission) will augment the relevance of this framework. 176 

 177 

MICROBE-ASSISTED MODIFICATION OF MATING SIGNALS  178 

 A common, microbe-assisted modification involves manipulation of host signals (Fig. 179 

1A). One seminal study found that D. melanogaster acquires more Lactobacillus when reared on 180 

starch than on a molasses-cornmeal-yeast mixture (43, 80). The increased Lactobacillus 181 

colonization correlates with an upregulation of 7,11-heptacosadiene, a cuticular hydrocarbon sex 182 

pheromone in the female fly, resulting in an ability to distinguish fly holobionts raised in the 183 

starch environment from those reared on the molasses-cornmeal-yeast substrate (43, 81). This 184 

microbe-assisted positive assortative mating is reproducible, reversible, and maintained for 185 
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several dozen generations after diet homogenization (43, 82). Moreover, this diet-dependent 186 

homogamy appears to be directly mediated by different gut bacteria, as inoculation of germ-free 187 

flies with Lactobacillus causes a significant increase in mating between flies reared on the 188 

different diets (43). Replication of these experiments found that inbred strains specifically 189 

followed this mating pattern (82). Moreover, another D. melanogaster study involving male mate 190 

choice and antibiotics revealed that female attractiveness is mediated by commensal microbes 191 

(83). These laboratory studies provide a critical model for how microbe-assisted modifications in 192 

a signaling pathway, ensuing behavioral changes, and mating assortment can potentiate 193 

behavioral isolation and possibly speciation. Indeed, natural populations of D. melanogaster 194 

express positive assortative mating and differential signal production based on food sources (84), 195 

and a bacterial role in these instances should be explored.  196 

Microbe-assisted signaling also occurs in laboratory mice (Mus musculus), in which 197 

bacterial conversion of dietary choline into trimethylamine (TMA) leads to attraction of mice 198 

while also repelling rats (85). Antibiotic treatment decreases TMA production, and genetic 199 

knockout of the mouse receptor for TMA leads to decreased attraction in mice (85). Antibiotic 200 

treatment and subsequent depletion of TMA in mice could in turn result in a decrease in 201 

repellence of rats (85), though this possibility has not yet been tested in vivo. Another study 202 

found that female mice are more attracted to males not infected with Salmonella enterica 203 

infected compared to those that are, yet females mated multiply and equally in mating choice 204 

tests with the two types of males (86).  205 

Mate preference based on infection status fits well with the Hamilton-Zuk hypothesis of 206 

parasite-mediated sexual selection, which posits that traits related to infection status can 207 

influence mating success (87). One seminal study showed that male jungle fowl infected with a 208 
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parasitic roundworm produce less developed ornamentation and are less attractive to females 209 

(87). In house finches, male plumage brightness indicates their quality of broodcare and is 210 

associated with resistance to the bacterial pathogen Mycoplasma gallicepticum (88). The 211 

Hamilton-zuk hypothesis has been reviewed in detail (89). 212 

 213 

MICROBE-SPECIFIC SIGNALS 214 

 Microbe-specific signals frequently involve the release of volatile microbial metabolites, 215 

often through excretions from specialized glands on the host’s body (Fig. 1B). Microbial 216 

volatiles can transmit information utilized for social signaling (13, 90) and intra- or interspecies 217 

mate recognition (85, 91). For example, beetles (91), termites (51), nematodes (92), hyenas (64), 218 

meerkats (27), and badgers (93) produce and recognize bacterial metabolites in communication 219 

that can modulate their behavior. In termites, fecal metabolites produced by intestinal bacteria 220 

(51) coat the termite body and hive walls to signal colony membership. Termite holobionts 221 

lacking colony-specific metabolite profiles are attacked and killed by the hive (51). In contrast, 222 

some beetles and mammal species excrete bacterial metabolites from colleterial and anal scent 223 

glands, respectively (27, 64, 91). For example, female grass grub beetles house bacteria within 224 

their colleterial glands peripheral to the vagina that are used to attract males to mate (91).  225 

 An exciting area of research regarding microbe-specific bacterial signaling involves 226 

mammalian fermentation. The mammalian fermentation hypothesis (27, 64)  states that 227 

fermentative bacteria within mammalian scent glands produce odorous metabolites involved in 228 

recognition. For example, hyena subcaudal scent pouches store bacteria that are mostly 229 

fermentative (64). When marking territory, hyenas deposit species-specific, bacterial-derived 230 

volatile fatty acids from this gland onto grass stalks (64). Bacterial metabolite secretions are 231 
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more variable in the social hyena species, presumably because the complexity of signals from 232 

social species improves intraspecies identification (64). Alternatively, social hyenas may 233 

permissively transmit more diverse bacteria leading to diverse metabolite profiles. Hyena 234 

microbiomes also covary with group membership, sex, and reproductive state (64). Similarly, 235 

bacterial communities in meerkat anal scent secretions vary with host sex, age, and group 236 

membership (27). In both cases, the signal diversity may allow animal holobionts to recognize 237 

diverse biotic characteristics. 238 

Humans also carry bacteria related to odor production. Breath (94, 95), foot (96), and 239 

underarm (97) odor covary with oral and skin microbiomes, respectively. Many diseases (e.g., 240 

smallpox, bacterial vaginosis, syphilis, etc.) are associated with distinct odors, and have 241 

historically been used by physicians in diagnosis (98). Clothing made from different materials 242 

even carry different odor profiles based on material-specific bacterial colonization (99, 100). 243 

Male odor has been associated with women’s interpretation of a male’s attractiveness (101–103), 244 

possibly influencing their choice in a mate. 245 

The salient theme among the aforementioned cases is that host-associated microbes 246 

frequently emit odors, and sometimes this microbe-specific chemosensory information can affect 247 

mate choice. Reciprocally, ample evidence shows that chemical signals mediate sexual isolation 248 

(104), and a full understanding of whether these signals are traceable to host-associated microbes 249 

is worthy of serious attention. Germ-free experiments and microbial inoculations should be a 250 

prerequisite for such studies; otherwise they risk missing the significance of microbes in 251 

chemosensory speciation (104). Additional behaviors involved in speciation, such as habitat 252 

choice and pollinator attraction, are also likely to be influenced by microbe-specific products. 253 

Indeed, classic model systems of speciation await further experimentation in this light. For 254 
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example, food-specific odors on apples and hawthorn translate directly into premating isolation 255 

of incipient host races of fruit flies of the genus Rhagoletis (105). Furthermore, the fruit fly 256 

Drosophila sechellia exclusively reproduces on the ripe fruit of Morinda citrifolia, which is toxic 257 

to other phylogenetically-related Drosophila species, including D. melanogaster and D. 258 

simulans. Some of the volatile compounds involved in these interactions, such as isoamyl 259 

acetate, have been associated with fermentative bacteria like Lactobacillus plantarum (106), 260 

suggesting that food-based premating isolation may be related to bacterial associations with the 261 

food source, though this requires further study. In summary, new challenges necessitate the 262 

concerted effort of scientists of diverse backgrounds to explore questions at the boundaries of 263 

many biological disciplines and to develop the tools to untangle and interpret this intricate web 264 

of interactions. Critical topics to be explored in the future include determining the microbial role 265 

in animal mate choice, quantifying the extent to which microbe-induced mating assortment 266 

impacts the origin of species, and identifying the mechanisms involved in these interactions. 267 

 268 

ENDOSYMBIONTS AND MATE CHOICE 269 

Wolbachia, Spiroplasma, Rickettsia, Cardinium, and several other endosymbiotic 270 

bacteria can change animal sex ratios and sex determination mechanisms to increase their 271 

maternal transmission and thus frequency in the host population from one generation to the next. 272 

Notably, these reproductive alterations affect mate choice (107), and here we highlight a few 273 

prominent examples and discuss how endosymbiotic bacteria can influence behavioral isolation 274 

and the origin of species.  275 

Cytoplasmic Incompatibility: Wolbachia are the most well-studied reproductive distorters 276 

(108, 109) and are estimated to infect approximately 40% of all arthropod species (110).  Across 277 
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the major insect orders, Wolbachia cause cytoplasmic incompatibility (CI), a phenomenon in 278 

which Wolbachia-modified sperm from infected males leads to post-fertilization embryonic 279 

lethality in eggs from uninfected females or from females infected with a different strain of 280 

Wolbachia, but not in eggs from infected females (111). 281 

In this context, Wolbachia-induced CI can promote the evolution of mate discrimination 282 

between populations or species because females can be selected to avoid males that they are not 283 

compatible with (Fig. 2C). Among closely related species of mushroom-feeding flies, 284 

Wolbachia-infected Drosophila recens and uninfected D. subquinaria contact each other and 285 

interspecifically mate in their sympatric range in Eastern Canada. However, gene flow between 286 

them in either cross direction is severely reduced due to the complementary action of CI and 287 

behavioral isolation.  Wolbachia-induced CI appears to be the agent for evolution of behavioral 288 

isolation as asymmetric mate discrimination occurs in flies from the zones of sympatry but not in 289 

flies from the allopatric ranges (112). A similar pattern of Wolbachia-induced mate 290 

discrimination occurs among strains of the two-spotted spider mite, Tetranychus urticae (113) 291 

and D. melanogaster cage populations (45). Moreover, discrimination between particular 292 

semispecies of D. paulistorum is associated with their Wolbachia infections (44). In cases where 293 

host populations or species harbor different Wolbachia infections that are bidirectionally 294 

incompatible, for example in different Nasonia species that exist sympatrically (114, 115), 295 

reciprocal mate discrimination has evolved (114, 116). In contrast to these examples, 296 

interspecific mate discrimination in Nasonia giraulti is diminished when non-native transfections 297 

of Wolbachia spread throughout the whole body including to the brain, suggesting that 298 

Wolbachia can also inhibit pre-existing mate discrimination (117).  299 
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These cases reveal, to varying degrees, that Wolbachia can be causal to the evolution of 300 

assortative mating within and between species. Indeed, population genetic theory demonstrates 301 

that mate choice alleles spread quicker in populations or species with CI than those with nuclear 302 

incompatibilities (118). This is primarily due to the dominance of these Wolbachia-induced 303 

incompatibilities since CI causes F1 inviability, while nuclear incompatibilities are typically 304 

expressed in the F2 hybrids due to the recessive nature of hybrid incompatibility alleles.  305 

Male killing: Male killing is the most common form of endosymbiont-induced sex-ratio 306 

manipulation and can occur during embryonic (119, 120) or larval development (121, 122). The 307 

effect of male killing is to increase the number of female hosts in a population, thereby 308 

increasing endosymbiont transmission rates.  To prevent complete fixation of females and 309 

population extinction (123), selection can favor hosts to (i) suppress male killing via genes that 310 

reduce Wolbachia densities or functions (25, 124–126) or (ii) electively choose mates whereby 311 

uninfected males preferentially mate with uninfected females (127, 128). If mate choice evolves 312 

as a behavioral adaptation to avoid male killing, it could begin to splinter infected and uninfected 313 

populations and initiate the first steps of the speciation process (Fig. 2A). One significant caveat 314 

in this conceptual model is that the infected population will go extinct without uninfected males 315 

to mate with. Thus, if mate preference based on infection status was complete, it would cause 316 

speciation between the infected and uninfected populations, resulting in the immediate extinction 317 

of the infected population that requires uninfected males to reproduce. We term this phenomena 318 

"behavioral extinction" (Figure 2).  319 

Wolbachia-induced male killing can reach a state of equilibrium, as suggested by their 320 

long-term maintenance in natural populations of butterflies (129). Discriminatory males 321 

occasionally mate with infected females allowing for the infection to remain in the population 322 
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(127), and eventually an equilibrium is reached (129). However in some cases, the infection rate 323 

is high (>95%), and male preference for uninfected females has not been identified (123). It is 324 

not known what mechanisms are involved in preventing male killing from reaching fixation in 325 

these situations. 326 

 Feminization: Feminization, or the conversion of genetic males to morphological and 327 

functional females, has similar evolutionary consequences to male killing (Fig. 2B). This process 328 

occurs in many different arthropod species including butterflies (130, 131), leafhoppers (132), 329 

and woodlouse (133). Resistance to these effects in the pillbug Armadillidium vulgare has 330 

evolved in the form of feminization suppressors and male preference towards uninfected 331 

females. Males that mate with infected females produce feminized males (24, 134). Ultimately, a 332 

female-biased sex-ratio in feminized woodlouse populations results in an increase in male mate 333 

choice, male mating multiplicity, and sperm depletion. In the context of sperm depletion, initial 334 

mating encounters are normal, but upon increased mating frequency, males provide less sperm to 335 

subsequent females. Moreover, infected females are curiously less fertile at lower sperm 336 

densities possibly because they are less efficient at utilizing small quantities of sperm (128). 337 

Insufficient sperm utilization and slight differences in infected female courtship behaviors can 338 

result in male preference for uninfected females within the population (133). Just as with male 339 

killing, assortative mating within infected and uninfected populations may initiate the early 340 

stages of speciation and lead to behavioral extinction (Figure 2) 341 

Parthenogenesis: Microbial-induced parthenogenesis is common among haplodiploid 342 

arthropods such as wasps, mites, and thrips (135–137), wherein unfertilized eggs become 343 

females (138, 139). As we previously discussed (140), parthenogenesis-induced speciation by 344 

endosymbiotic bacteria falls neatly with the Biological Species Concept because parthenogenesis 345 
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can sever gene flow and cause the evolution of reproductive isolation between sexual and 346 

asexual populations. Microbe-induced parthenogenesis does not necessarily exclude sexual 347 

capability of parthenogenetic females, but instead removes the necessity of sexual reproduction 348 

and can potentially drive divergence in sexual behaviors and mate choice (141). Speciation 349 

therefore commences between sexual and asexual populations under two models: (i) Sexual 350 

Degeneration and (ii) Relaxed Sexual Selection (140) (Fig. 2D).  351 

The Sexual Degeneration model posits that the asexual population becomes incompetent 352 

to engage in sexual interactions due to mutational accumulation and thus trait degeneration while 353 

the sexual population remains otherwise the same (140). In this case, parthenogenetic lineages 354 

accumulate mutations in genes involved in sexual reproduction. Traits subject to mutational 355 

meltdown may span secondary sexual characteristics, fertilization, mating behavior, signal 356 

production, among others (142–144). For instance, long-term Wolbachia-induced 357 

parthenogenesis in mealybugs and some parasitoid wasps prevents females from attracting mates 358 

or properly expressing sexual behaviors (144, 145). Similarly in primarily asexual populations, 359 

male courtship behavior and sexual functionality is often impaired (142, 146, 147). The accrual 360 

of these mutations prevents sexual reproduction, thus causing the parthenogenetic population to 361 

become "locked in" to an asexual lifestyle. While this model is an attractive hypothesis for the 362 

onset of reproductive isolation between asexual and sexual populations, it is not always easily 363 

distinguishable from the alternative Relaxed Sexual Selection model (140). In this model, the 364 

sexual population diverges by evolving new or altered mating factors (e.g., courtship sequence, 365 

signals, etc.) while the asexual population does not degrade, but rather stays the same and thus 366 

can no longer mate with individuals from the diverging sexual population (140)  367 

 368 
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CONCLUSIONS 369 

 Over the past decade, biology has stood vis-à-vis with what Carl Woese referred to as the 370 

"sleeping giant" of biology - the microbial world (1). During this period of groundbreaking 371 

research, a new vision for the increasing importance of microbiology in many subdisciplines of 372 

the life sciences has emerged. As such, studies of animal and plant speciation that do not account 373 

for the microbial world are incomplete. We currently know that microbes are involved in a 374 

multitude of host processes spanning behavior, metabolite production, reproduction, and 375 

immunity. Each of these processes can in theory or in practice cause mating assortment and 376 

commence population divergence, the evolution of reproductive isolation, and thus speciation. 377 

Understanding the contributions of microbes to behavior and speciation will require concerted 378 

efforts and exchanges among these biological disciplines, namely ones that embrace the recent 379 

“unified microbiome” proposal to merge disciplinary boundaries (148).  380 

 381 

  382 
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 935 

FIGURE LEGENDS 936 

 937 

Figure 1. Microbe-assisted and microbe-specific signaling. (A) Microbe-assisted processes 938 

denote the production of a host signal with input from the microbiome. It occurs in two possible 939 

scenarios. On the left, the host and microbial symbionts produce products that interact or 940 

combine to form a signaling compound; on the right, microbial symbionts modify host signal 941 

expression, but they do not make a specific product directly involved in the signal itself. (B) 942 

Microbe-specific processes denote the production of a microbial signal without input from the 943 

host. It occurs in two possible scenarios. On the left, the host and microbial symbionts produce 944 

products that are both required to elicit a response; on the right, microbial symbionts produce 945 

compounds used by the host for signaling. Mouse image source: Wikimedia Commons, Angelus. 946 

 947 

Figure 2. Endosymbiont-induced behavioral isolation and extinction. U (blue) and I (pink) 948 

represent the uninfected and infected populations, respectively. Horizontal solid arrows represent 949 

the direction of gene flow (from males to females) and vertical dashed arrows represent 950 

divergence time. Different subscript numbers for U and I represent evolutionary change in traits 951 

involved in behavioral extinction and behavioral isolation. Behavioral changes induced by (A) 952 

Male Killing (MK) and (B) Feminization (FM) evolve in response to selection on uninfected 953 

males to mate preferentially with uninfected females. If male preference is completely penetrant, 954 

then total loss of mating between the uninfected and infected population ensues, effectively 955 

leading the infected population to extinction since infected females rely on (the now 956 

discriminating) uninfected males to reproduce. We term this model "Behavioral Extinction". In 957 

contrast, behavioral changes induced by (C) Cytoplasmic Incompatibility (CI) and (D) 958 

Parthenogenesis Induction (PI) can result in reduced or no gene flow between the infected and 959 

uninfected populations. CI-assisted reproductive isolation can be enhanced by the evolution of 960 

mate discrimination and specifically uninfected female mate choice for uninfected males. While 961 

this model does not sever gene flow in reciprocal cross directions, asymmetric isolation barriers 962 

can act as an initial step in speciation. PI-assisted reproductive isolation is mediated by two 963 

possible mechanisms: (i) Sexual Degeneration which involves the degeneration of sexual traits in 964 

the infected population that ultimately lock the populations into uninfected sexual and infected 965 

parthenogenetic species, and (ii) Relaxed Sexual Selection which involves the evolution of new 966 
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sexual characteristics in the uninfected sexual population that prevent mating with the infected 967 

parthenogenetic population.  Wolbachia image source: Tamara Clark, Encyclopedia of Life, 968 

Wolbachia page. 969 
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Table 1. Microbe-induced traits that associate with or cause changes in behavior and barriers to interbreeding 
Traits Host Species Common Name Symbiont(s) Behavior or reproductive outcome References 
Host signal modification Drosophila bifasciata Fruit fly Unknown Assortative mating based on familiarity (149) 
 Drosophila subobscura Fruit fly Unknown Assortative mating based on kinship (149) 
 Drosophila melanogaster Fruit fly Lactobacilli plantarum Assortative mating based on diet (43, 82) 
 Mus musculus House mouse Unknown gut bacteria Species recognition (85) 
      
Bacterial metabolite production D. melanogaster Fruit fly L. brevis , L. plantarum Assortative mating based on diet (28) 
 Reticulitermes speratus  Termite Unknown gut bacteria Exclusion of non-colony members (51) 
 Costelytra zealandica Grass grub Unknown bacteria in 

colleterial glands 
Mate attraction (91) 

 Crocuta crocuta  Spotted hyena Unknown bacteria in anal 
scent glands 

Clan, age, sex, and reproductive status recognition (64) 

 Hyaena hyaena Striped hyena Unknown bacteria in anal 
scent glands 

Clan, age, sex, and reproductive status recognition (64) 

 Meles meles European badger Unknown bacteria in anal 
scent glands 

Possible mate discrimination (93) 

 Suricata suricatta Meerkat Unknown bacteria in anal 
scent glands 

Group, age, and sex recognition (27) 

      
Odor production M. musculus House mouse Salmonella enterica Initial avoidance of infected males (86) 
 Homo sapiens Humans Unknown Attractiveness (101–103) 
      
Cytoplasmic incompatibility Drosophila paulistorum Fruit fly Wolbachia Assortment within semispecies (44) 
 D. recens & D. subquinaria Fruit fly Wolbachia in D. recens Asymmetric mating isolation (112) 
 D. melanogaster Fruit fly Wolbachia Increased mate discrimination (45) 
 Nasonia giraulti  Parasitoid wasp Wolbachia Decreased mate discrimination (117) 
 Tetranychus urticae Two-spotted spider mite Wolbachia Uninfected females prefer uninfected males 

 
(113) 

Male killing Armadallidium vulgare Pillbug Wolbachia Reduce sperm count and female fertility (128) 
 D. melanogaster Fruit fly Spiroplasma poulsonii Evolved suppressors to prevent male killing (125) 
 Acraea encedon Common Acraea 

butterfly 
Wolbachia Male mate-choice (127) 

 A.encedon Common Acraea 
butterfly 

Wolbachia Populations with high infection rates are not 
discriminatory 

(123) 

 Hypolimnas bolina Great eggfly butterfly Wolbachia Reduced female fertility (126, 129) 
 H. boling Great eggfly butterfly Wolbachia Evolved suppressor gene to prevent male killing (25) 
      
Feminization A. vulgare Pillbug Wolbachia Males reproductively female but masculine males 

prefer true females 
(133) 

 Eurema hecabe Grass yellow butterfly Wolbachia Males reproductively female (130, 131) 
 Zyginidia pullula Leafhopper Wolbachia Males reproductively female (132) 
      
Parthenogenesis Apoanagyrus diversicornis Mealybug parasite Wolbachia Females less attractive to males (145) 
 Asobara japonica Parasitoid wasp Wolbachia Females less attractive to males (144) 
 Leptopilina clavipes Parasitoid wasp Wolbachia Reduction in male and female sexual traits and fertility (143, 147) 
 Muscidifurax uniraptor Parasitoid wasp Wolbachia Reduction in sexual traits (142) 
 Neochrysocharis Formosa Parasitoid wasp Wolbachia Female biased sex ratio  (139) 
 Galeopsomyia fausta Parasitoid wasp Unknown Females not receptive (150) 
 Franklinothrips vespiformis Thrips Wolbachia Male sperm presumably do not fertilize female eggs (137) 

 970 

.
C

C
-B

Y
 4.0 International license

a
certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade available under 

T
he copyright holder for this preprint (w

hich w
as not

this version posted M
arch 23, 2016. 

; 
https://doi.org/10.1101/045195

doi: 
bioR

xiv preprint 

https://doi.org/10.1101/045195
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 23, 2016. ; https://doi.org/10.1101/045195doi: bioRxiv preprint 

https://doi.org/10.1101/045195
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 23, 2016. ; https://doi.org/10.1101/045195doi: bioRxiv preprint 

https://doi.org/10.1101/045195
http://creativecommons.org/licenses/by/4.0/

