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Abstract

The Dirichlet-multinomial mixture model (DMM) and its extensions provide powerful new tools
for understanding the ecological dynamics underlying taxa abundance. However, their capacity
to effectiveness in capturing features of empirical data is not well understood. In this work, we
use posterior predictive distributions (PPDs) to explore the performance of an infinite dimensional
version of the DMM in three case studies, including two amplicon metagenomic time series. We
avoid concentrating on fluctuations within individual taxa and instead focus on consortial-level
dynamics with straight-forward methods for visualizing the output of the model that emphasizes
this perspective. In each study, the DMM appears to perform well in organizing the data as a
framwork for biological interpretation. Using the PPDs,; we also observe several exceptions where
the data appear to significantly depart from the model in ways that give useful ecological insight. We
summarize the conclusions as a set of considerations for field researchers: problems with samples
and taxa; relevant scales of ecological fluctuation; additional niches as outgroups; and possible
violations of niche neutrality.

Introduction

Metagenomic and amplicon sequencing techniques provide an unpredecented vantage to investigate
the dynamics of microbial ecologies, allowing researchers to simultaneously observe counts of thou-
sands of species and will undoubtedly mold advances in human health, environmental science, and
engineering [53), 61, [65]. The ability to observe whole ecosystems in situ has elevated microbiomes
to a central position within ecology [66, 29] (I, 11l [15], These massive data sets present researchers
with a new challenge: how to understand what they communicate about microbial ecological dy-
namics and, in turn, how this might inform ecology more broadly. This new project requires a
dramatic shift in perspective, away from dynamics of small numbers of species to the interactions
of thousands of them.

While metagenomic data adds a new urgency, taxa abundance data or ecological count data —
collections where researchers estimate the number of observed individuals across a set of taxa within
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an ecosystem — is one the oldest forms of ecological measurement. Understanding the underlying
phenomena governing how taxa abundance varies in time, space or along other environmental
gradients is a foundational challenge within ecology [9, 18]. A wide wide number of theoretical
perspectives attempt to understand these variations, such as Lotka-Volterra and its descendants to
models based on maximum entropy, food webs, trait-based dynamics, metacommunities, trophic
cascades, mass and energy balance, and entropy production, among others [71, 37, 26, [3 3], [32], [34]
8, 68, 49, 41, [2, 28, [47], While many have compelling empirical or theoretical features, it is hard to
argue that any have yet risen to provide a unified theoretical /empirical framework after the fashion
of the coalescent model in population genetics [56, [67].

One of the most promising avenues to meet this challenge is the unified theory of neutral
biodiversity (UNTB), pioneered by Hubbell, that builds on the concept of neutral niches — col-
lections of species that are ecologically equivalent — within a metacommunity structure [26], 22].
While frequently controversial, the UNTB has provided a versatile framework for understanding the
structure of species abundance, particularly for species richness, dispersal, and island biogeography
[4, [16], 57). The crucial insight for the analysis of ecological count data is that, under suitable con-
ditions, the Dirichlet-multinomial (DM) distribution is the sampling distribution of a neutral niche
[22]. If the count data for each sample are assumed to arise from a latent niche modeled by a DM
distribution, the full metacommunity structure is given by a DM mixture model (DMM). [25] gave
the first practical inference for the DMM based on a variational Bayesian approach. Recent work
by these authors shows how this framework can be broaded to an infinite-dimensional framework
that can test for metacommunity neutrality [22]. An independent extension uses a similar model
for supervised feature detection [59].

The DMM is only one of many approaches to make sense of ecological count data in microbiome
contexts. Unifrac, a phylogeny-based probability metric and other distance based methods domi-
nanted early approaches and are still widely used [36] [13]. More recently, regression models based
on single component DM and logistic normal distributions have given researchers a framework to
understand how to associate significant shifts at the taxa level with environmental covariates while
effectively accounting for structure of the overall count data [I4], [70]. An entirely distinct avenue
has explored network-based analysis of taxa correlations with increasing levels of statistical rigor
135, [7].

While appreciating the merits of these other approaches, here we concentrate just on how well
the DMM captures the features of empircal data. For field researchers, the statistical truism that
‘all models are wrong, but some are useful,” is naturally followed by the question ‘how useful are
they?’ or, more pointedly, ‘how wrong are they?’ Our aim in this work is to give some answers
to these questions for the DMM. Presented with a taxa abundance dataset, the DMM will always
provide a means of organizing this data into distinct components; how well this organization can
be relied upon is necessary consideration for empirical ecologists. While the work of [22] points to
how the DMM may be re-embedded for general hypothesis testing, the integrated computational
frameworks for statistical exploration common in other biological disciplines appear still far off
[17, 55]. We emphasize that researchers can hold reasonable doubt about the verity of the UNTB,
and still benefit from the DMM as productive means of organizing and interpreting ecological count
data [52, B8]. This requires researchers to exercise due caution about the empirical features that
may have be neglected or distorted by this analysis, such as ecologies dominated by a single species
or bias caused by a small number of samples.

To measure how well the model captures features of the data, we use posterior predictive
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distributions (PPD) to compare between the empirically observed data and that data would be
expected if the DMM were the correct underlying model [19, 39]. PPDs are an important tool in
Bayesian analysis, and provide a crucial means of assessing how adequately complex models are
able to capture features of their underlying data sets. For a model specified by parameters © and
data D, the posterior distrubution is the conditional distribution P(6|D). The posterior predictive
distribution for a new set of data D is generated by integrating the model likelihood of D over the
posterior distribution:

P(D|D) = /@P(ﬁy@) - P(6|D) - dO.

For complex models where this integral cannot be done analytically this distribution can be
approximated by simulating a large number of datasets Dy, - -+ , Dy from P(0|D). We then compare
the observed data to these simulated sets through a test statistic 7. Absent suffiicient statistics, the
appropriate choice of T is critical to reveal the empirical attributes of interest. These comparison
are often summarized in terms of a posterior predictive p-value (PPP), the fraction of simulated
test statistics more extreme than the empirically observed value:

- 1
IP’<T(D¢) > T(D> N z_; Yr@)>ro)

where 1) is an indicator function. Here, we choose a set of test statistics intended to capture
common ecological concerns: within-sample taxa mean; across-sample mean for taxa; across-sample
standard deviation for taxa; number of absent species within samples; and pairwise correlations
among taxa.

Throughout the manuscript, we will refer to the components of the DMM as ecostates. [25] use
the term ‘ecotypes’ for these consortia, which is easily confused with its more common usage for a
geographically-adapted subpopulation within a species. These components have also been labeled
‘metacommunities,” though that term could also stand in for the collection of components [43].
Though ‘ecostates’ already has a referent within ecology (a leaf without midvein), it is sufficiently
distinct from the DMM and other closely-related topics that the meaning is clear from context.
We believe this phrasing also emphasizes a statistically pragmatic perspective about what these
components represent: consistently inferred taxa consortia from a set of ecological samples, rather
than niches or metacommunities per se.

In this investigation, we first outline a new inference scheme the generalizes the DMM to
make use of a Dirichlet process mixture model (DPM). In it’s original form, the DMM provides
a single estimate, K, of the number of ecostates that best explain a set of count data. However,
in considering PPDs, a reasonable concern is that some model discrepancy arises purely from
uncertainty in the choice of K rather than within the model itself. The DPM generalization of
the DMM allows integration over all possible values of K and so directly accounts for this form of
uncertainty. When necessary, we will refer to this generalization as the DPM-DMM. We provide the
scripts for this model under a Creative Commons License, written in the open-source R computing
environment, as part of the online supplementary material.

We then apply the DMM to three diverse time series data sets from across ecology: well-known
microbial abundance data collected from two individuals sampled over nearly 450 days at four
bodily locations; microbial abudance count data collected from the English channel approximately
every two weeks over the year 2009-2010; and copepod abundance count data from continuous
plankton recorders (CPR) collected during transects across the Gulf of Maine over the last fifty
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years. For each of these, we use simple visualizations to emphasize how the DMM reveals many
previously identified features of the data, as well point to some novel insights. The PPD analysis
measures the overall agreement within the datasets, and we highlight problematic features and
possible explanations within each. We conclude with a discussion including guidelines for field
researchers using these methods for analysis.

Data and Methods

Data

We use three publicly available environmental time series as data sets. Each series was filtered
for quality of metadata and the total number of counts per taxa. For the copepod time series, we
filtered the data into three different sets based on taxa abundance. The other two sets a single set
was used that screened out low abundance taxa. The scripts filtering the original data are available
in the online supplement to the paper.

Human-associated bacterial abundance time series

To our knowledge, the most intensive amplicon-based, publicly available time series comes from 396
time points collected from four locations on two human individuals, frequently known by the title
of the paper that described the data: the ‘Moving Pictures of the Human Microbiome (MPHM)
[10].” This data was collected from the right and left palms, feces and saliva of a male and female
subject over a total of 445 days from October 2008 until January 2010, for a total of 1967 samples.
Illumina GAII sequencing targeted at the 16S rRNA V4 region was applied to each sample and
the resulting reads mapped to the Greengenes reference set, with the full protocol specified in [10].
We downloaded the processed data and associated sample metadata from the Earth Microbiome
Database on July 15, 2015. The data were filtered by species abundance for all taxa with more
than 3100 counts across all samples, yielding 742 taxa in total.

English channel bacterial abundance times series

The L4 station is a sampling location for the Western Observatory of the English Channel and
the site of one of the first longitudinal metagenomic marine sequencing projects [21), 20, [11]. This
collection builds on an extensive record of ecological and environmental sampling at this location
dating back to 1903, with continuous plankton recording since 1998]]. This time series is the publicly
available portion of a larger six-year series, and contains 68 samples gathered approximately 2
weeks apart from April 2009-April 2010. The large majority of samples were collected in pairs.
Amplicon 16S rRNA targeted at the V4 hypervariable region was applied to each sample, as well
as metatranscriptomic sequencing, although we do not consider that data here. We downloaded
the raw data set and metadata including sampling times from the MG-RAST database on March
15, 2013 [40].

We aligned the raw read data and screened for homopolymer artifacts using functions in the
mothur software[58]. Reads were alligned to the SILVA reference alignment of 10,242 prokaryotic
species (Release 102) [50]. These were translated into species counts At this stage, samples con-
tained highly variable numbers of counts, from 2 to 267,529, with most samples near the median
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value of 33,041. We filtered this data into a single set for analysis, removing all taxa with fewer
than 3 counts, leading to 994 taxa in total.

Gulf of Maine time series copepod abundance data

Zooplankton are a crucial link in the ocean food web between the fish populations and microbial-
scale tropic levels. For the past 70 years, continuous plankton recorders (CPR) monitored their
abundance and diversity, most frequently by being added opportunistically to ships transiting a
region of interest. CPRs provide count data for identifiable copepod species at a depth of 5-
10 meters below the ocean’s surface and have been used widely due to their relative absence of
expense and ease of deployment. Here, we consider the copepod data collected via CPRs from 1964
to 2010 during transits across the Gulf of Maine (GoM), running from near Boston, Massachusetts
to Yarmouth, Nova Scotia, available at the COPEPOD database [46]. While CPR data is among the
most extensive marine ecological measurements, comparisons with more metagenomic barcoding
methodologies suggest that their total counts may be somewhat biased [33, 24].

The complete data contain 4799 samples, each enumerating the observed counts for a single
CPR for 51 copepod species or genera. As counts ascertained by morphology, taxa assignments
are not exclusive but not overlapping, so that each count is resolved to the lowest taxonomic level
possible. Each sample posssesses metadata for the time of collection and longitude and latitude, as
well as a record of phytoplankton color index, a proxy measurement for the phytoplankton levels
at the time of sampling. There is wide variablility in the number samples for each year, from ten
in 1977 to 145 in 1989, with most measurements occurring between 1980 and 2000 (2456,/4799).
Each sample is located along an approximate two dimensional transect across the GoM. We filtered
the samples to be located within 150 kilometers of the central line of this transect, excluding 93
samples. An additional six samples were excluded due to ambiguous metadata.

Methods
Model

We employ an infinite dimensional generalizations of the multinomial-Dirichlet mixture model of
Holmes et al. [25]. This allows us to infer a posterior distribution that integrates over values of
K, the number of components, removing this as a factor the analysis. As in Holmes et al. we
assume that each sample’s count data arises from a DM distribution. This distribution allows for
additional dispersion relative to a strict multinomial distribution. The model assumes that there
are an unknown number of DM components (ecostates) underlying the data and that each sample
comes from one of these components. Presuming the samples are otherwise exchangeable, a latent
variable ¢; augments each sample to assign it one of the ecostates. Supposing the DM paramers for
an ecostate k are given by Ax = (ag, -+, aprk), then, conditional upon ¢; = k, the likelihood for
a sample is given by

o
Pl = g L (o) ()

= DM(Ag)

r=1

where T' is the gamma function, A; = Zf}i Larp and D; = Ei\i 1 dir.  As the samples are
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assumed to be exchangeable, the full likelihood is then the product over all P(D;|c;, Ag):
N
P(D|A,c) = [ [DM(A,,)
i=1

where ¢ = (c1,--+ ,cn). Like [25], we adopt a Bayesian perspective on the problem. However, to
remove K from consideration, we use a Dirichlet process mixture model (DPM), a nonparametric
approach to specify the prior distribution on the parameters [42] [64]. Following [44], the DPM can
be formulated in this context as:

Di\ci =k ~ DM(Ak)
AlG ~ @
G ~ DP(G0777)

where ~ denotes‘distributed as’, G is the base measure, > 0 is a concentration parameter, and
DP is a Dirichlet process. The base measure here is the Cartesian product of two independent
distributions, with the first component an exponential distribution with mean one and the second
a uniform Dirichlet distribution of length M.

Inference

We use a Markov chain Monte Carlo (MCMC) methodology to approximate the posterior distri-
bution of model, following the methods described in [44, 62]. We use two sets of Gibbs updates,
one for the DPM parameters and one for the DM parameters. The DPM parameters (the latent
variables) are drawn using a a collapsed Gibbs sampler. At each iteration, the collapsed Gibbs
update successively moves the sample’s latent variables to possibly new states, as specificed in
Neal’s Algorithm 8 [44]. For each sample i, we let | be the number of distinct culture labels ¢
for s # i and h = [ + m where m is a parameter that allows for the assignment of a sample to a
number of new components. We fix m = 3. If ¢; = c¢5 for some ¢ = s, then we sample values for
that component. If ¢ # s for any s, then we set ¢; =+ 1 and draw m new components from the
base measure. Finally, we draw a new value for ¢; according to:

Poic . DM(A,) forl1<e<l,
P(e; = cle—i, A1, -+, Ap) {Nn/lr?f” (2)
N—1+7¢ -DM(A.), forl<c<h,

where c_; denotes all values of ¢ except ¢; and n_; . is the number of values equal to c for i # s. At
each iteration, the set of A.’s is renumbered so all components have at least one associated sample.

The Gibbs steps to update the DM parameters come from recent work on how to generate
efficient sampling from this distribution [62]. The method relies on a data augmentation that
separates the DM distribution into a Dirichlet distribution and a log-concave single parameter
distribution. Since the Dirichlet is conjugage to the prior, it can be directly sampled. The last
parameter, the dispersion parameters for the DM distribution, is sampled using a Griddy Gibbs
sampler with 1000 draws at each iteration [54].

For each dataset we ran three MCMC chains for 20,000 iterations. In each MCMC run, we
applied several diagnostics to ensure convergence, including autocorrelation plots, Geweke’s di-
agnostic test, and estimating the effective sample size. We take a 10% of the chain as burn-in.
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As an example, for one run of the full copepod data set, we realized minimal autocorrelation by
thinning by 10. The Geweke statistic on the thinned chain was 2.047, consistent with reasonable
convergence. The effective sample size was 423.78.

Posterior predictive distribution

To simulate the PPD, we used simulation routines in the R computing environment developed for
the Human Microbiome Project [66]. For each MCMC run, we simulated data in the following
fashion. We thinned the Markov chain by 10 and trimmed it with a burn in of 2,000 iterations. For
each posterior sample and each data sample, we generated counts according to the corresponding
DM distribution with the total number of counts equal to that observed in the data sample. We
repeated this procedure 1,000 times, generating 50,000 simulated data sets per sample. We then
calculated the PPP summaries for each taxa within each sample, the overal mean, overall standard
deviation, number of zeros within a sample, and the pairwise correlations for the 15 most abundant
and least abundant species using these simulated data sets. The PPP for each taxa within each
sample was calculated by observing the fraction of simulated samples with more counts than the
observed value. The mean, standard deviation, and pairwise correlation calculation were taken
over all samples, providing metrics for each species. The zero calculation is taken over all species,
provides a metric for each sample. All PPPs were then transformed by p = 0.5 — p|/0.5 so that
values of either type of extremity yielded similar values.

Visualizing the posterior distribution

Visualizing complex data is a crucial means to harness understanding from scientific inquiries.
The DPM-DMM effectively clusters the samples into a finite but variable number of components
that reflect similarities in the count distributions across the samples. Most presentations using
the DMM show taxa counts organized by these clusters to emphasize the specific shifts apparent
across components [73] 12]. This is a natural approach particularly in a case-control study, where
the researchers often seek to find taxa that separate treatments. However, in the time series here,
we prefer a presentation to highlight the ecostates’ relationship to each other and to time. This
visualization is a simple organization of the posterior samples in a vein similar to the results of
chromosome painting, so we term it ‘ecological painting’ [23].

An ecological painting is simply a plot that colors samples according to their ecostate and orders
the samples in time and space. In principle, other covariates in principle may be used but these are
natural first points of utilization. In the case of a finite mixture model, the number of components is
fixed and so, up to label switching, the colors are assigned proportional to the fraction of posterior
samples in that state. In the case, we need to identify a homology of the ecostates across the
posterior samples.

Unfortunately, there is no intrinsic aspect of the ecostates that render them identifiable across
iterations. We deal with this problem by rendering the posterior into a finite mixture in the following
way. To this, we first generate a coherence plot of the MCMC chain, showing the frequency of how
often different samples fall within the same component. We also histogram the distribution of the
number of components across the chain. From these we then determine a minimum number of
components, K’, that reasonably capture the posterior sample. This value may not be the smallest
number that the chain takes, and samples with components fewer that K’ are excluded from the
visualization. In our empirical examples, these iterations formed at most 2% of the chain. With
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K’ in hand, for each iteration we find the largest K’ components, and then enumerate all other
components as K’ + 1. This effectively reduces the chain to the finite case and so we apply the
scheme propopsed by Stephens to minimize the Kullback-Leibler divergence between components
across iterations [63].

Researchers may also be interested in the how the ecostates relate to each other. To summarize
this information, we present the expected frequency for the twenty most frequent taxa for each
component, along with a hierarchical clustering constructed on the matrix of Canberra pairwise
distance among the model components. We note that the hierarchical clustering can be sensitive
to the metric used, although we find that the Canberra distance provides a reasonable measure to
capture the relationships among expected frequencies.

Results

We present the results for each data set, beginning with the biological interpretation of the ecological
painting, followed by the indications the PPD gives about the model fit, and the correlation in
ecostates between different level of taxa filtering. For each data set, we produce two figures — the
painting and a summary of the PPD — but only show those with novel results. For the remaining
figures, we refer to the Supplementary Information.

Human-associated habitat bacterial time series

Figure [1| shows the ecological painting of the DPM-DMM applied to the most heavily filtered set
of the MPHM data. This presentation distills a number of key results from the original paper,
rendering complex data amenable to visual analysis [I0]. Most salient is that the three niches
(hand, feces, and tongue/saliva) are clearly separated by their inferred ecostates. Interestingly, the
states assigned to tongue/saliva and hand habitats are shared across the two individuals, while, the
feces habitat marks strong separation between them, consistent with the enterotypes hypothesis
[69, 5]. For each habitat within each individual, the inferred ecostate exhibits strong temporal
consistency. In particular, the female subject’s fecal samples exhibit near perfect consistency in
ecostate across all time points. The ecostate painting shows the two hand pairs for both individuals
exhibit strong correlation in their ecostates (p = 0.72, for maximum likelihood of the male subject’s
samples), as observed in the original report.

The DPM-DMM model also supports a more refined analysis than a species-by-species com-
parison. The strong temporal consistency in ecostate assignment across all habitats is modulated
by regular oscillation within some of them. Within both individuals, the tongue/saliva habitat os-
cillates between two ecostates, with the duration of the oscillations lasting approximately 1 month
for the male subject, and less than a week for the female subject. The painting also identifies a
number of unusual samples, most obviously those colored green in the male hand and fecal sam-
ples. These may be mislabeled samples, or show unexpected associations in human microbiomes
(between saliva and hand, for instance).

Figure [2| summarizes the posterior predictive analysis for the data set. This indicates that the
model effectively captures the mean and standard deviation in species counts and the frequency of
zero counts in samples. The individual p-vales for each species across each sample (upper left panel)
appear problematic but largely recapitulate the habitat structure, with reasonable p-values where
particular species are common. The model struggles to capture correlations across species, both at
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high and low levels of association. Due to habitat structuring, the MPHM shows strong pairwise
structure in correlation, with each pair of species showing high positive correlation (p > 0.5), low
correlation (—0.5 < p < 0.5), or high negative correlation (p < —0.5). In nearly all cases, the
model correctly estimates the category where a pair of species falls. However, the empirical fit
provides reasonable p-values for the low-correlation cases. Even controlling for habitat structure
(only considering pairwise correlation among species prevelant in the same habitat) this pattern
persists. This indicates that the DPM-DMM is useful for qualitatively capturing species correlations
but does not provide precise quantitative estimates across disparate niches.

English channel bacterial time series

Supplementary Figure 1 shows the ecological painting for the moderately filtered L4 time series data.
This indicates moderate successional patterns over the year, beginning with two closely related
ecostates in April, transitioning to two other states for the summer and finally transitioning back
to the original states in the late autumn, consistent with the broader seasonality observed in this
time series. This pattern is not a strongly defined seasonal transitions and possess multiple closely
related states, as suggested in the original paper presenting the entire six-year time series from which
the data were excerpted. Without additional context — more intensive temporal sampling, another
spatial location, or envionmental covariates — it is uncertain if the painting reveals inconsistency
in the model performance or genuine heterogeneity within the data, although reports on the larger
data set indicate the latter.

Figure (3| summarizes the PPD analysis for L4 time series. The p-value for each species within
each sample shows no systematic issues, except for poor performance across six low count samples
(horizontal bands). The model appears to capture mean frequency for nearly all species, while
systematically overestimating the amount of variation in counts across samples. The number of
zeros within a sample are generally well-modeled, though a significant fraction of samples have
overestimates of these numbers. As to the pairwise correlations across species, the model performs
generally well for most pairs, although the model overestimates the correlation for a distinct fraction
of most frequent species. For moderately frequent and infrequent species, the model shows excellent
agreement with the data.

Gulf of Maine copepod time series

Figure [4] gives the ecological painting for the GoM copepod time series, with each panel organized
from left to right by month and bottom to top by distance from New Bedford, Massachusetts.
The painting shows strong seasonal and spatial trends, as frequently noted in the literature [48],
51, 60]. Both the mid-summer months (Jun.-Aug.) and mid-winter months (Nov.-Feb.) exhibit
substantially less spatial variation than other months. The ecostates associated with these relatively
quiescent periods show a single or small number of dominant species, with relatively high variation.
The transitional ecostates between these periods exhibit more complex taxon composition.

The painting also highlights the dramatic shift in species that occurred from 1990-2001 relative
to the years before and after [51l 27]. In the years outside the shift, the winter-summer cycle is
fairly stable, with only a short transition period associated with other ecostates. This transition
is largely dominated by changes in the frequency of Calanus finmarchicus, a crucial species in the
north Atlantic food web. During this shift, this stability diminishes, with long transitions associated
with higher entropy ecostates. During this period, neighboring samples in time and space are less
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likely to share an ecostate and novel, highly complex ecostates are more common, suggest ecological
distress. These patterns are consistent with a major ecological disturbance, such as global warming
or nutrient forcing.

Figure |5 shows inferred PPD for the dataset. Considering the species/samples values, the
performance for highly abundant species is generally good, with poor performance for all other taxa
(note the correspondence between p-value and mean; upper right and center panels). However, we
see strong performance for the mean, standard deviation, zeros, and pairwise correlation. This is
consistent with an ecosystem largely determined by a small number of highly abundant species that
are likely not exchangeable (in an ecological sense) with other taxa, contrary to the the UNTB.
Consequently, the model fits those species well but poorly captures the remaining species.

Discussion

This work investigates the performance of an infinite dimensional version of the DMM for the
ecological count data. It shows how this approach — like other implementations of the DMM — can
be used to organize and interpret underlying sample dyanmics with a straight-forward visualization
while guarding against overinterpretation by examining the posterior predictive fit. While the model
effectively distills many of the important patterns within the data inferred via other non-model-
based approaches, such as PCA or MDS, it also shows that some caution should be exercised in
these analyses and suggests certain practices may improve the reliability of field investigations.

Posterior checks, especially PPDs, can be an important bulwark in ensuring that these models
are treated with appropriate skepticism [6]. For the DMMs, this requirement is not particularly
burdensome as PPDs are easy to simulate and can be interpreted using familar p-values as a metric.
Appropriately used, these measures give researchers and their readers increased assurance in the
reported conclusions. We encounter several issues in the analysis of the datasets above that suggest
useful guidance for field researchers. We organize these suggestions below under the following
headings: identifying problems with samples; relevant scales of ecological fluctuation; niches as
ecological outgroups; and departures from niche neutrality.

Identifying problems with samples

In our examples, PPDs consistently demonstrate identify problematic samples from the DMM’s
perspective that may suggest of experimental issues. In the cases we present, sample-specific devia-
tions from model expectations may be due to low sample counts, mislabeled samples, unusual taxa
present, or departures from the DMM'’s assumptions. PPDs for the DMM provide a convenient
tool for identifying these samples, showing low p-value‘bands’ that are indicative of poor perfor-
mance for a sample across a subset of species. In the L4 example, bands across all species indicated
insufficient counts for reliable inference within certain samples. In the MPHM painting, the tongue
ecostate is found in the feces habitat, a likely mislabeling. The ecological painting provides an easy
means to identify these questionable samples.

Relevant scales of ecological fluctuation

By ecological fluctuation, we mean the changes in environmental conditions that precipitate shifts in
species composition and consequently ecostate. The easiest scale of ecological fluctution to analyze
is the case-control study. As highlighted in their analysis of twin obsesity [25], the association
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between DMM components and case/control status yields a straight-forward statistical approach.
A similar approach was recently used to analyze the microbiomes of human cancers [43]. However,
ecologists are often interested in more sampling across more heterogeneous patterns of spatial,
temporal or environmental change. While there is some guidance about the level of read-depth
required for DM inference [30], there is little guidance available for dealing with ecostate variation.

The analysis of time series datasets here makes clear that ecologists should prepare a sampling
design sufficient resolution to capture ecostate transitions. In practice, this means sampling at
a temporal resolution substantially higher than the expected scale of the transition itself. For
instance, the MPHM data is compelling in large part because it shows the relative constancy of
species abundance in time and space. However, this consistency is revealed precisely because the
sampling occurs at a time interval substantially more frequent than the scale of ecostate variation.
Similarly, the absence of intensive sampling renders the conclusion of seasonality in the L4 time
series uncertain. A seasonal transition that would be anticipated for a temperate marine microbiome
is on the order of 90 days (a single season). A minimum sampling regime should then be an order
of magnitude less than that, or less than 9 days, about 60% of the two week average interval for
the L4 study. In other cases, such as spatial or environmental gradients, a similar rule of thumb
can be employed.

Niches as ecological outgroups

The specific examples we consider here strongly suggest that researchers consider using ‘outgroup’
sampling as important tool for contextualizing their analyses. The term outgroup in phylogenetic
analysis refers to a species included in the collection for the purpose of parsing the relatedness
among the study population [45]. In the context of ecological data, we mean a sample that has
some related properties to the main study target but is sufficiently dissimilar to provide a backdrop
for understanding the degree of variation in the study population. An outgroup does not need to fall
entirely outside the study domain. For instance, in the MPHM, the separate niches (feces, saliva,
skin) provide simultaneous outgroups for each other, allowing more confident interpretation. In
the copepod data set, the extensive temporal and spatial sampling provides is akin to an outgroup,
though a set of open ocean samples would be closer to ideal. The analysis of the L4 time series
suffers from the lack of an outgroup, leaving the apparent seasonality in doubt (though reports
from the complete, six year dataset indicate the robustness of this observation).

Departures from the niche neutrality

To some researchers, departures from the DMM model assumptions mean that the UNTB and
analysis based on the DMM can be abandoned immediately. For researchers content to still use
this analysis, these departures are still useful: as the data depart from model expectations, the
structure of these deviations can reveal important aspects of the ecology. In the GoM copepod data
set, the domination by C. finmarchicus represents a departure from underlying model assumptions
as it cannot be ‘swapped out’ for any other copepod species (ie it is not ecologically equivalent.
This is clearly shown in the PPDs for each species: the model performs well for highly abundant C.
finmarchicus and closely engaged taxa, but poorly for all other taxa. In the well-studied copepod
context, this does not provide new information. However, in a novel contexts this departure would
be a useful insight into underlying ecological dynamics.

We note that these departures are qualitative (‘bad’ fit with the PPDs) rather than quantitative.
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An important avenue for future research with the DMM is to develop precise statistical tests for
departures from model expectations with ecological understandings of their consequence, as shown
in [22].

Conclusions

The DMM and its variants give powerful tools for understanding ecological count data. However,
these models possess a number of weaknesses that could be addressed in the next generation of
models. Most obviously, these approaches do not consider the total number of model counts within
a sample, a critical indicator of ecosystem function. Researchers might naturally account for this
by excluding exceptionally high- or low-count samples, though this would be better addressed by
including this variation at the level of the model, as is possible with a negative binomial process [72].
The DMM also does not account for correlation across samples, as could be done using Gaussian
process priors or hidden Markov models to ‘borrow strength’ across samples.

Finally, we do not believe that using the DMM requires one to take a strong position on
the UNTB: the underlying ecostates can be treated as phenomenological clusters, rather than
theoretically precise metacommunity structures, and still provide analytic utility. As the use of the
coalescent model in phylogenetics is not substantially diminished by the frequent observation of
violations of its assumptions, the approach of the DMM and similar models promise the possibility
of a connection to the broader UNTB framework while often giving a practical means of interpreting
datasets independent of its operation.

Figures
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Figure 1: The ecological painting for the MPHM showing the ecostate for samples clocted across two individuals
(female above, male below) and the four collection sites over approximately 450 days.
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simulated values; blue dots show observed values

13


https://doi.org/10.1101/045468
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/045468; this version posted March 24, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

|
@
T g
@~
~ o Q
@
i o 24
[}
) g <
a S =
° @ 5§ =
=8 D -~ o = -
£ 8 8
I = > o
c 3 <
n § 3 3
°
= T w©
o 8 2
=4
8
[ZB=
Species 1 6 11 17 23 29 35 41 47 53 59 65 71 77 83 89 95 1 6 11 17 23 29 35 41 47 53 59 65 71 77 83 89 95
Species Species
15 most common speices 15 least common species
8 9 Q
27 - b a7 9 PR , . < 7
. L A N T BN TS
H ) !
ol ey 9
g4
n |
c ° =4
" S S
S 84 ] ]
s [ [
N S S
O o o
s 3
8
g
s
& ]
: L. . 34
TP T TT I T A TT P T A T T P TATTTT rT T T T T T T
14 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 0 20 40 60 80 100
Samples Pairwise species Pairwise species
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