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ABSTRACT

Summary: In this application note we describe fluff, a software package that allows for simple exploration,
clustering and visualization of high-throughput sequencing data mapped to a reference genome. The
package contains three command-line tools to generate publication-quality figures in an uncomplicated
manner using sensible defaults. Genome-wide data can be aggregated, clustered and visualized in
a heatmap, according to different clustering methods. This includes a predefined setting to identify
dynamic clusters between different conditions or developmental stages. Alternatively, clustered data can
be visualized in a bandplot. Finally, fluff includes a tool to generate genomic profiles. As command-line
tools, the fluff programs can easily be integrated into standard analysis pipelines. The installation is
straightforward and documentation is available at http://fluff.readthedocs.org.

Availability: fluff is implemented in Python and runs on Linux. The source code is freely available for
download at https://github.com/simonvh/fluff.
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INTRODUCTION

The advances in sequencing technology and the reduction of costs have led to a rapid increase of High-
Throughput Sequencing (HTS) data. Applications include chromatin immunoprecipitation followed by
high-throughput deep sequencing (ChIP-seq; Robertson et al. (2007)) to determine the genomic location
of DNA-associated proteins, chromatin accessibility assays (Buenrostro et al., 2013; Hesselberth et al.,
2009) and bisulfite sequencing to assay DNA methylation (Lister et al., 2009). The integration of these
diverse data allow identification of the epigenomic state, for instance in different tissues (Martens and
Stunnenberg, 2013; Roadmap Epigenomics Consortium et al., 2015) or during development (Hontelez
et al., 2015). However, the scale and complexity of these datasets call for the use of computational
methods that facilitate data exploration and visualization.

Various options exist to explore and visualize HTS data mapped to a reference genome, for instance
in aggregated form such as heatmaps and average profiles. These include general purpose modules for
specific programming languages (Huber et al., 2015), dedicated HTS modules (Dale et al., 2014; Statham
et al., 2010; Akalin et al., 2015), command-line tools (Shen et al., 2014; Giannopoulou and Elemento,
2011), web tools (Ramirez et al., 2014), stand-alone applications (Ramirez et al., 2014; Ye et al., 2011) and
tools that depend on other software for visualization (Heinz et al., 2010). Here, we present fluff, a Python
package for visual, reference-based HTS data exploration. It includes command-line applications to both
cluster and visualize aggregated signals in genomic regions, as well as to create genome browser-like
profiles. The scripts can be included in analysis pipelines and accept commonly used file formats. The
fluff applications are pitched at the beginner to intermediate user. They have sensible defaults, yet allow
for customizable creation of high-quality, publication-ready figures.
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METHODS

General

Detailed documentation, including tutorials, is available at http://fluff.readthedocs.org. Fluff is imple-
mented in Python and uses several previously published modules (Brewer (2016); Anders et al. (2015);
Dale et al. (2011); Quinlan and Hall (2010); Li et al. (2009); de Hoon et al. (2004), see Supplemental
Information). All fluff tools support indexed BAM, bigWig or (tabix-indexed) BED, WIG or bedGraph
files as input. A large selection of major image formats are supported as output. The fluff tools were
developed to explore ChIP-seq data, however, they will work with any type of data where (spliced) reads
can be mapped to a genomic reference. For instance DNA methylation profiles from bisulfite-sequencing
or RNA-seq data (Supplemental Figure 1) can also be visualized.

Normalization Normalization of sequencing data is critical for downstream analysis and various
methods have been proposed (see for instance Angelini et al. (2015) and Bailey et al. (2013) for an
overview of ChIP-seq normalization methods). For visualization, the most important factor is the
sequencing read depth. Therefore fluff has the option to normalize to the total number of mapped reads.
Alternatively, averaged signal files such as bigWig tracks that are processed or normalized by a different
method can be used as input.

Program descriptions

Heatmaps Visualization of HTS data as heatmaps, where rows represent different genomic regions, can
highlight important aspects of the data, like differential enrichment or positional patterns for specific
groups of features. In addition, it allows for comparison between multiple regions within the same or
between different experiments. The fluff heatmap tool visualizes HT'S data on basis of list of genomic
coordinates. The data can optionally be clustered using either k-means or hierarchical clustering. For
clustering, the read counts in the bins are normalized to the 75 percentile. The distance can be calculated
using either the Euclidean distance or Pearson correlation similarity.

If the regions in the input file are not strand-specific, different clusters might represent the same
strand-specific profile in two different orientations. Clusters that are mirrored relative to the center can
optionally be merged. Here, the similarity is based on the chi-squared p-value of the mean profile per
cluster.

One important use case for clustering is the ability to identify dynamic patterns, for instance during
different time points or conditions. For this purpose, clustering on the binned signal is not ideal. Therefore,
fluff heatmap provides the option to cluster genomic regions based on a single value derived from the
number of reads in the feature centers (+/- 1kb). In combination with the Pearson correlation metric, this
allows for efficient retrieval of dynamic clusters. The difference is illustrated in Figure 2.

Bandplots In heatmaps, more subtle patterns can be difficult to detect, as the dynamic range of signal
intensities is not well-reflected in the color scale. Therefore, as an alternative to a heatmap, fluff bandplot
plots the average profiles in small multiples (Shoresh and Wong, 2012). Here, the spatial encoding of the
signal allows for more accurate comparison of values (Gehlenborg et al., 2012). The median enrichment
is visualized as a black line with the 50th and 90th percentile as a dark and light colour respectively.

Profiles. Genome browsers are unrivaled for data exploration and visualization in a genomic context.
However, it can be useful to create profiles of HTS data in genomic intervals using a consistent command-
line tool, that can optionally be automated. The fluff profile tool can plot summarized profiles from one or
more profiles, together with (gene) annotation from a BED 12-formatted file.

Analysis

In short, FASTQ files were downloaded from NCBI GEO (Edgar et al., 2002) and mapped to the
human genome (hg19) using bwa (Li and Durbin, 2009). Duplicate reads were marked using bamUtil
(http://genome.sph.umich.edu/wiki/BamUtil). All BAM files from replicate experiments were merged.
Peaks were called using MACS?2 (Zhang et al., 2008) with default settings. See Supplemental Information
for specific details and accession numbers.

RESULTS

Demonstrating fluff: dynamic enhancers during macrophage differentiation
To illustrate the functionality of fluff we visualized previously published ChIP-seq data (Saeed et al.,
2014). Here, the epigenomes of human monocytes and in vitro-differentiated naive, tolerized, and
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Figure 1. An example of the fluff output. All panels were generated by the fluff command-line tools and
were not post-processed or edited. (A) Heatmap showing the results of k-means clustering (k=5,
metric=Pearson) of dynamic H3K27ac regions in monocytes (Mo), naive macrophages (Mf), tolerized
(LPS-M¥) and trained cells (BG-Mf) (Saeed et al., 2014). ChIP-seq read counts are visualized in 100-bp
bins in 24-kb regions. (B) Bandplot showing the average profile (median: black, 50 percent: dark color,
90 percent: light color) of the clusters as identified in Fig. 1A. (C) The H3K27ac ChIP-seq profiles at the
CNRIP1 gene locus, which shows a gain of H3K27ac in Mf, LPS-Mf and BG-Mf relative to Mo.

trained macrophages were analyzed, with the aim to understand the epigenetic basis of innate immunity.
Circulating monocytes (Mo) were differentiated into three macrophages states: to macrophages (Mf),
to long-term tolerant cells (LPS-Mf) by exposition to lipopolysaccharide and to trained immune cells
(BG-MY) by priming with $-glucan. We used fluff heatmap to cluster and visualize the signal of histone 3
lysine 27 acetylation (H3K27ac), which is located at active enhancers and promoters (Fig. 1A). The input
consisted of a BED file with 7,611 differentially regulated enhancers (Supplemental Table 1) and four
BAM files, for each of the monocytes and three types of macrophages. Using k-means clustering (k =
5) with the Pearson correlation metric, the heatmap recapitulates the H3K27ac dynamics as described
(Saeed et al., 2014).

While heatmaps are often used for visualization of signals over genomic features, either clustered or
ordered by signal intensity, it can be difficult to distinguish relative levels of individual clusters. Figure
1B shows an alternative visualization of average enrichment profiles in small multiples. The same clusters
as in Fig. 1A are plotted using fluff bandplot. Shown are the median (black line), along with the 50th
(darker color) and 90th percentile (lighter color) of the data. This allows for more detailed comparisons.

Finally, we illustrate fluff profile, which can visualize one or more genomic regions (Fig. 1C). This
figure highlights the CNRIP1 gene from cluster 2, which shows a consistent increase of H3K27ac from
Mo to Mf, LPS-Mf and BG-Mf. The signal profiles are directly generated from the BAM files.

317


https://doi.org/10.1101/045526
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/045526; this version posted June 6, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Identification and visualization of dynamic patterns

Most applications that cluster HTS data for heatmap visualization use a binning approach, followed by
clustering using the Euclidean distance. The implicit effect is that the bins are clustered on basis of
the spatial patterns relative to the region of interest. Often, this is the desired result, for instance when
clustering the ChIP-seq enrichment patterns of different histone modifications at the transcription start
sites of genes. However, for other analyses this clustering approach does not suffice. An example could be
the ChIP-seq profiles of specific histone modifications correlated to the activity of a regulatory element,
such as H3K4me3 at promoters or H3K27ac at enhancers. In this case, a relevant objective is to identify
the clusters associated with differential activation dynamics. As illustration, we visualized the H3K27ac
enrichment profile at DNasel hypersensitive sites in human embryonic stem (ES) cells differentiated into
different lineages (Xie et al., 2013). Here, H1 ES cells were differentiated into mesendoderm, neural
progenitor cells, trophoblast-like cells, and mesenchymal stem cells. We first clustered the H3K27ac
profiles at regulatory elements on chromosome 1 using the standard approach, based on comparing all the
bins using the Euclidean distance metric (Fig. 2A).

H1 mesenchymal mesendoderm  neuronal_progenitor  trophoblast H1 mesenchymal mesendoderm  neuronal_progenitor  trophoblast

LA

Figure 2. Example of the output of fluff heatmap using standard clustering compared to using the
dynamics option. Shown are the H3K27ac ChIP-seq read counts in 100bp bins in 20kb around the
DNasel peak summit in human H1 ES cell-derived cells. (A) Heatmap showing the results of k-means
clustering of all bins (k=7, metric=Euclidean) (B) Heatmap showing the results of k-means clustering in
2kb regions centered at the peak summit (k=7, metric=Pearson).

Here, we identify two clusters with high enrichment (cluster 3 and cluster 5), a cluster with relatively
low, narrow enrichment (cluster 1), and two clusters with broad enhancer domains (cluster 4 and 6).
However, only two strong dynamic clusters are identified, cluster 2, which shows enhancers specifically
activated in mesenchymal stem cells and cluster 7 which shows enhancers specifically activated in
trophoblast-like stem cells. Figure 2B shows an alternative clustering approach implemented in fluff
heatmap. Here the regions were clustered on basis of the Pearson correlation of read counts in the center
of the region (extended to 2kb). This shows a completely different picture and we now can identify
enhancers specific to H1 ES cells (cluster 5), mesenchymal (cluster 4), mesendoderm (cluster 7), neuronal
progenitor (cluster 3) and trophoblast cells (cluster 6). These lineage-specific enhancer dynamics were
not visible in the clustering in Figure 2A.

CONCLUSION

The analysis of multi-dimensional genomic data requires methods for data exploration and visualization.
We provide fluff, a Python package that contains several command-line tools to generate figures for use
in high-throughput sequencing analysis workflows. We aim to fill the gap between powerful, flexible
libraries that require programming skills on the one hand, and intuitive, graphical programs with limited
customization possibilities on the other hand. These tools were developed based on a need for straight-
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forward analysis and visualization of ChIP-seq data and have been successfully applied in a variety of
projects (Menafra et al., 2014; van den Boom et al., 2016; Kouwenhoven et al., 2015). In conclusion, fluff
helps to interpret genome-wide experiments by efficient visualization of sequencing data.
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