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ABSTRACT

A fundamental challenge in analyzing next-generation sequencing data is to determine an

individual’s genotype correctly as the accuracy of the inferred genotype is essential to down-

stream analyses. Some genotype callers, such as GATK and SAMtools, directly calculate the

base-calling error rates from phred scores or recalibrated base quality scores. Others, such

as SeqEM, estimate error rates from the read data without using any quality scores. It is

also a common quality control procedure to filter out reads with low phred scores. However,

choosing an appropriate phred score threshold is problematic as a too-high threshold may

lose data while a too-low threshold may introduce errors. We propose a new likelihood-

based genotype-calling approach that exploits all reads and estimates the per-base error

rates by incorporating phred scores through a logistic regression model. The algorithm,

which we call PhredEM, uses the Expectation-Maximization (EM) algorithm to obtain con-

sistent estimates of genotype frequencies and logistic regression parameters. We also develop

a simple, computationally efficient screening algorithm to identify loci that are estimated to

be monomorphic, so that only loci estimated to be non-monomorphic require application of

the EM algorithm. We evaluate the performance of PhredEM using both simulated data

and real sequencing data from the UK10K project. The results demonstrate that PhredEM

is an improved, robust and widely applicable genotype-calling approach for next-generation

sequencing studies. The relevant software is freely available.

Key words: common variant; EM algorithm; low depth; rare variant; read data.
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INTRODUCTION

The recent advancement of next-generation sequencing (NGS) technologies and the rapid

reduction of sequencing costs have led to extensive use of sequencing data in disease asso-

ciation studies and population genetic studies [Ng et al., 2010; The 1000 Genomes Project

Consortium, 2010]. However, it is still difficult and costly to perform whole-genome sequenc-

ing (WGS) with high depth in large cohorts [Sims et al., 2014]. Instead, many studies have

adopted whole-exome sequencing (WES) [The 1000 Genomes Project Consortium, 2012;

Muddyman et al., 2013]. Despite the high average depth that is typically attainable in WES

studies, some regions within a gene may still have much lower depth than the average due

to the inefficiency of exome capture technologies [Do et al., 2012]. Other studies have kept

the design of WGS but chosen low or moderate depths. For example, the UK10K project

(www.uk10k.org) sequenced the two population cohorts genome wide at depth of ∼6x. Al-

though sequencing costs are declining, we anticipate that many NGS studies will continue

to employ WES or WGS with low or medium depth for some time to come.

A fundamental challenge in analyzing NGS data is to determine an individual’s genotype

correctly, as the accuracy of the inferred genotype is essential to downstream analyses. It is

difficult to call genotypes for two reasons. First, NGS data can suffer from errors introduced

in the base-calling process. The base-calling error rate ranges from a few tenths of a percent

to several percent [Nielsen et al., 2011]. It can vary from base to base as a result of machine

cycle and sequence context [Kircher et al., 2009]. It also varies dramatically across different

sequencing platforms. For instance, the Illumina MiSeq platform has an error rate of ∼0.8%

[Quail et al., 2012] whereas the Roche 454 System has ∼0.1% [Liu et al., 2012]. Second,

the quality of called genotypes depends heavily on the read depth. Genotypes covered by

many reads can typically be called reliably. However, when a locus is covered by only a few

reads, genotype calling is challenging because minor allele reads are indistinguishable from

sequencing errors.

Phred scores are widely accepted to characterize error rates in the base-calling process.
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All major sequencing platforms assign each called base of a raw sequence a phred score, which

measures the probability that the base is called incorrectly [Ewing et al., 1998; Ewing and

Green, 1998]. Phred scores are determined using various predictors of possible errors such

as peak spacing, uncalled/called peak ratio and peak resolution. Nominally, the phred score

is defined as

Q = −10 log10 Pr(observed allele 6= true allele), (1)

so that, for example, Q = 30 nominally corresponds to a 0.1% error rate. Despite their wide

use, phred scores may not accurately reflect the true error rates in base calling because they

fail to account for some important factors. For instance, the specific error pattern inherent

in each nucleotide base (i.e., A, C, T and G) is not considered in phred scores [Li et al., 2004].

Additionally, phred scores do not account for the position of the base within a read [DePristo

et al., 2011]. Since phred scores might be inaccurate representation of true base-calling error

rates, many methods have been developed to recalibrate base quality scores [DePristo et al.,

2011; Li et al., 2009b]. However, although recalibrated scores could be more accurate than

phred scores, the recalibration process may be too computationally intensive to be of broad

practical use [Nielsen et al., 2011].

A genotype-calling method typically uses a probabilistic framework, combining base-

calling error rates and a prior distribution of genotype frequencies to provide a posterior

probability for each genotype [Mckenna et al., 2010; Li et al., 2009a; Martin et al., 2010].

Because the error rate is critical in probabilistic genotype-calling algorithms, it is crucial

that it be correctly specified, especially when sequencing depth is low to moderate. Some

methods such as GATK use error rates that are calculated directly from phred scores by

applying equation (1) if recalibration step is skipped. In contrast, SAMtools obtains an error

rate from the minimum of the phred score and the mapping score [Li, 2011]. In addition,

bases with low phred scores (e.g., Q < 20 or 30) are typically filtered out as part of quality

control (QC) procedures. However, there are some concerns in choosing a threshold for phred

scores. High thresholds may result in loss of useful information by eliminating bases that
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are correctly called. Low thresholds leave a large number of erroneously called bases in the

data, leading to false-positive variant calls.

Instead of relying on phred scores, Martin et al. [2010] proposed SeqEM, a genotype-

calling algorithm that estimates the error rate using the read data itself. However, the

fundamental assumption of SeqEM that at each locus a uniform error rate exists for all

bases across the sample is generally not true, given the considerable variability in error rates

implied by the variability in phred scores. Also, as SeqEM ignores phred scores entirely, the

valuable information about errors encoded in phred scores is lost.

In this paper, we propose a new genotype-calling approach which estimates base-calling

error rates from the read data while incorporating the information in phred scores. We

model an error rate as a logistic function of a phred score; this logistic regression model is

readily integrated into a modification of the SeqEM likelihood which allows for a base-specific

error probability. Like SeqEM, our approach also uses the Expectation-Maximization (EM)

algorithm [Dempster et al., 1977]. Information from all individuals is used to estimate the

unknown genotype frequencies and logistic regression parameters. We compute the posterior

probability of each latent genotype based on parameter estimates and use the empirical Bayes

approach to assign the most likely genotype to each individual. We show that the logistic

model fits real sequencing data well, and that the unknown parameters in our likelihood

are consistently estimated. Moreover, to minimize the effort of calling genotypes for loci

with no variation, we develop a simple, computationally efficient screening algorithm to

identify loci that are estimated to be monomorphic (and therefore do not require parameter

estimation using the EM algorithm). Finally, we demonstrate through simulation studies

that our approach is more accurate than SeqEM. We illustrate our new approach through

an application to real sequencing data from the UK10K project.

METHODS

We consider one biallelic locus at a time. For the i-th individual, let Gi denote the
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underlying true genotype (coded as the number of minor alleles), Ti denote the total number

of alleles that are mapped to the locus, and Ri (Ri ≤ Ti) denote the number of mapped

alleles that are called to be the minor allele. The phred scores are represented by Qi =

(Qi1, . . . , QiTi
)′, where Qik is the phred score associated with the k-th called allele and the

prime (′) indicates the transpose of a vector. At each locus, values of Ti, Ri, and Qi can be

easily extracted from the pileup files produced by SAMtools. Let εik be the true base-calling

error rate of the k-th allele. We relate εik to Qik through the logistic regression model

ln

(
εik

1− εik

)
= β0 + β1Qik, (2)

where β0 and β1 are unknown regression parameters that are locus specific. Let θ = (β0, β1)
′

and εik(θ) = exp(β0 + β1Qik)/{1 + exp(β0 + β1Qik)}. Equation (2) is motivated by the fact

that the phred score is a highly informative predictor of the base-calling error, even though

(1) does not hold in the exact sense. In the Results section, we demonstrated that the logistic

model fits the real sequencing data well.

Without loss of generality, we order the Ti alleles so that the first Ri alleles are called to

be the minor allele and the rest the major allele. Assuming that the errors of the Ti alleles

are independent of each other, the probability of observing Ri copies of the minor allele out

of Ti alleles can be described as a sequence of independent Bernoulli trials. Specifically, given

the true genotype Gi, the total number of alleles Ti, and the phred scores Qi, the probability

of observing Ri is written as

Pθ(Ri|Gi, Ti,Qi) =



∏Ri

k=1 εik(θ)
∏Ti

k=Ri+1

{
1− εik(θ)

}
Gi = 0

(0.5)Ti Gi = 1∏Ri

k=1

{
1− εik(θ)

}∏Ti

k=Ri+1 εik(θ) Gi = 2.

(3)

Suppose that the sample consists of n unrelated individuals. Then the likelihood function

takes the form

Lo(θ,π) =
n∏

i=1

∑
g=0,1,2

Pθ(Ri|g, Ti,Qi)Pπ(g), (4)
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where Pπ(g) is the genotype frequency characterized by π. Under Hardy-Weinberg Equi-

librium (HWE), π consists of a single parameter π for the minor allele frequency (MAF).

Then, Pπ(0) = (1 − π)2, Pπ(1) = 2π(1 − π), and Pπ(2) = π2. Under Hardy-Weinberg

Disequilibrium (HWD), π = (π, f)′ where π and f are the MAF and the fixation index Fst,

respectively. Then, Pπ(0) = (1 − f)(1 − π)2 + f(1 − π), Pπ(1) = 2π(1 − π)(1 − f), and

Pπ(2) = (1− f)π2 + fπ.

The proposed likelihood is closely related to several existing methods. When β1 = 0, the

error rate is independent of the phred score, and expression (4) reduces to the likelihood of

SeqEM. When β0 = 0, β1 = − ln(10)/10, and π is known, the right hand side of equation

(2) becomes −Q ln(10)/10. When all error rates are small, which is expected, expression (4)

is approximately the likelihood of the Bayesian genotyper implemented in GATK. However,

our likelihood fully exploits the read data and the phred scores, both of which could improve

genotype-calling accuracy. Note that it is not necessary to filter out low-quality alleles,

which still provide some information about θ. Like other multi-sample calling methods,

our method also estimates the genotype frequencies and regression parameters by utilizing

information across all individuals in the sample.

We obtain estimates of θ and π by maximizing the likelihood (4) via the EM algorithm

described in the Appendix. To ensure that increasing phred scores correspond to decreasing

error rates, we maximize the likelihood subject to the constraint β1 ≤ 0. Denote the MLEs

by π̂ and θ̂. We can estimate the posterior probability distribution of the true genotype Gi

from the read count data Ti and Ri and the phred scores Qi for each study subject according

to the formula

Pr(Gi = g|Ri, Ti,Qi; θ̂, π̂) =
Pθ̂(Ri|g, Ti,Qi)Pπ̂(g)∑2

g′=0 Pθ̂(Ri|g′, Ti,Qi)Pπ̂(g′)
, (5)

for g = 0, 1 and 2. Genotype calls can be made by assigning each individual the genotype

with the highest estimated posterior probability. Individuals with no read covering the locus

are not assigned any genotype. Because the proposed method incorporates the phred scores
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and uses the EM algorithm, we refer to it as PhredEM.

The majority of loci in the human genome are monomorphic [The International SNP

Map Working Group, 2011], and are generally of little interest in downstream analyses.

Because it is a waste of time to run PhredEM at such loci, we propose the following simple

and computationally efficient algorithm to screen them out without applying PhredEM. We

assume HWE holds, because loci that might be called monomorphic must have either zero

or extremely low MAFs. We see that formula (5) assigns all mass to Gi = 0 when π̂ = 0;

thus loci with π̂ = 0 would be called monomorphic if PhredEM was applied to obtain π̂. We

now give a simple way to determine whether π̂ = 0. Let pl(π) denote the profile likelihood

for π, namely,

pl(π) = max
θ

logLo(θ, π).

We show in the Appendix that pl(π) is a concave function of π, so that a negative value

for the derivative of pl(π) at π = 0 implies π̂ = 0; in other words, we should screen out

loci at which the derivative of pl(π) at π = 0 is negative. At π = 0, we can easily evaluate

this derivative, because the likelihood Lo(θ, π) reduces to that of a logistic regression model

in which we assign an outcome variable Yik = 1 to a minor allele read and Yik = 0 to a

major allele read and regress Yik on Qik. Since our screening algorithm only involves fitting

a standard logistic regression model to solve for θ and calculating a derivative function, it

can significantly reduce the computing time that is needed by the full PhredEM algorithm.

RESULTS

SIMULATION STUDIES

We conducted simulation studies to assess the performance of PhredEM relative to Se-

qEM. We considered a sample size of 1,000 (results based on the sample size of 200 are

reported in Supplemental Tables S1 and S2) and three average depths, 6x, 10x, and 30x.

For common alleles, we generated loci with a specified allele frequencies, while for rare al-

leles we generated loci with a fixed number of minor alleles. Based on our analysis of the
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UK10K data, we generated the depth Ti for the i-th individual from the negative-binomial

distribution with the given average depth and dispersion parameter 0.35. We then generated

the ‘true’ allele corresponding to each read; for heterozygotes the true allele for each read

was assigned randomly. Next, for each read, we simulated a phred score from the empirical

distribution observed in the UK10K data (Figure 1[a]), calculated the error rate according

to (2), and generated a called allele using this error rate. The parameters β0 and β1 in (2)

were set to be −0.838 and −0.240, respectively, which are median values of their estimates

obtained from loci that were determined to be monomorphic by our screening algorithm (so

that we could treat all minor allele reads as errors) in analysis of the UK10K data.

We first evaluated the performance of PhredEM and SeqEM on rare variants. We gen-

erated the true genotypes by fixing the minor allele count (MAC) in each replicate. We

considered MACs of 1, 5, 10 and 20, where MAC = 1 corresponds to a singleton. In ap-

plying PhredEM and SeqEM, we assumed HWE in both methods, which assumption has a

minimal constraint for rare variants because homozygotes of minor alleles are not expected.

As shown in Table I, the overall number of mis-called genotypes obtained by PhredEM was

less than that by SeqEM in all scenarios. In particular, PhredEM reduced by almost one

half the number of mis-called genotypes compared with SeqEM. For instance, when MAC

was 10 and depth was 6x, SeqEM mis-called an average of 2.27 genotypes among 1,000

individuals whereas PhredEM mis-called 1.31. As expected, both methods became more

accurate as the average read depth increased. Nevertheless, the performance of PhredEM

was noticeably better than SeqEM even at a depth as high as 30x. We further examined the

mis-called genotypes stratified by the true genotype. In both strata of homozygote (G = 0)

and heterozygote (G = 1), PhredEM mis-called fewer genotypes than SeqEM. At depth of

30x, PhredEM almost detected all rare alleles whereas SeqEM missed one copy of rare allele

for every 100 singletons.

For common variants, we varied MAFs from 0.05 to 0.45 and assumed HWE in both

data generation and model fitting. The results in Table II show that PhredEM outperformed
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SeqEM in the overall mis-called number as well as the stratified numbers. Overall, PhredEM

correctly called 1–2 more genotypes at depth ≤ 10x and ∼0.4 more at depth of 30x, with

most of the improvement in major allele homozygotes which is the largest category. For both

methods, the mis-called number declined substantially as the depth increased. The number

mis-called increases as the MAF increases because the contribution to the likelihood (4) when

Gi = 1 is independent of the phred score, which can easily be seen from (3). Furthermore,

true minor allele homozygotes are more likely to be mis-called than major allele homozygotes

due to the smaller prior probability of minor allele homozygotes.

We further examined the phred scores at loci having genotypes that are called differently

by PhredEM and SeqEM. In Table III, we displayed the average phred score associated with

major and minor alleles at such loci, stratified by the true genotype (G) and genotypes called

by PhredEM (GP) and SeqEM (GS). At loci with (GP, GS) = (0, 1), regardless of the value

of G, the major alleles tend to have high phred scores whereas the minor alleles tend to have

low scores, explaining why PhredEM called these loci major allele homozygotes. The average

phred scores for minor alleles are consistently lower under G = 0 than that under G = 1,

because in the former case the minor alleles are all errors and in the latter case the minor

alleles are a mixture of errors and true alleles. Similarly, for loci with (GP, GS) = (2, 1),

the major alleles tend to have low scores, which are lower under G = 2 than those under

G = 1. In other cases when PhredEM called heterozygous genotypes, we observe high average

phred scores for both major and minor alleles. These patterns of phred scores confirm that

PhredEM worked as expected. While the results in Table III pertain to common variants,

those for rare variants are similar and shown in Supplemental Table S3.

UK10K SCOOP DATA

We analyzed sequencing data from the Severe Childhood Onset Obesity Project (SCOOP)

cohort, which was sequenced as part of the UK10K project. The sequenced SCOOP cohort
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consists of 784 UK Caucasian patients with severe, early onset obesity, and they were whole-

exome sequenced by Illumina HiSeq 2000 with an average depth of ∼60x. We first used

SAMtools to generate pileup files from BAM files, filtering out reads that are PCR dupli-

cates, with mapping score ≤ 30, or with improperly mapped mates. From the pileup files,

we extracted read count data and phred scores. The distribution of the phred scores is shown

in Figure 1(a).

Using the SCOOP sequencing data, we checked the fit of the logistic regression model

in (2). First, we applied our screening algorithm to identify loci that were monomorphic

(i.e., π̂ = 0). At such loci, we could reliably treat all minor allele reads as errors. Assigning

Y = 1 and 0 for minor allele reads and major allele reads, respectively, we can determine the

relationship between Pr(Y = 1) and the corresponding phred scores Q. To create a subset

of such data that is computationally manageable, we randomly selected 1,000 monomorphic

loci from each of the 22 chromosomes and randomly picked one individual from each locus,

forming a dataset of 22,000 (Y,Q) pairs. Then, we fit the linear function of phred scores to

ln{Pr(Y = 1)/Pr(Y = 0)} (i.e., the logistic regression model in [2]) and, as a gold standard,

we also fit a smooth spline function of phred scores using the generalized additive model

(GAM) [Wood, 2006]. Figure 1(b) shows the fitted curves and pointwise 95% confidence

intervals from the two models. The two confidence regions overlap substantially for phred

scores greater than 8, and the logistic regression fit fell within the 95% confidence region of

the GAM for phred scores as low as 5. When phred scores were extremely low, the logistic

regression model appeared to yield smaller base-calling error rates than the GAM, although

it should be noted that only a very few phred scores this low were found in these data (see

Figure 1[a]). Thus, we conclude that over the range of phred scores found in real data, the

logistic model describes the relationship between phred scores and base-calling error rates

well.

To facilitate the evaluation of PhredEM and especially the comparison with SeqEM,

we first selected a set of genotypes that can serve as the gold standard. Specifically, we
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downloaded from the UK10K website the VCF files for the SCOOP cohort, which contained

genotypes called by SAMtools and filtered by GATK. In addition, we excluded a variant if

its average depth across samples is less than 20. We excluded a genotype whose genotype

likelihood (on the phred scale) was ≤ 20 (i.e., genotyping error rate ≥ 0.01) and excluded a

variant completely if it has more than 20% of genotypes with likelihood≤ 20. These exclusion

criteria ensured that all selected genotypes were called with particularly high quality. We

thus refer to these genotypes as “true” genotypes. Since the loci with true genotypes were

selected towards having high read depth, both PhredEM and SeqEM would perform well

if applied to the original data. To create sequencing data with low or median depth, we

adopted a subsampling scheme that sampled each read with equal probability. Finally, we

applied PhredEM and SeqEM to call genotypes, assuming HWE for variants with MAF

(calculated from true genotypes) ≤ 5% and allowing HWD for others. The computation

time depends on the average depth. For example, it took approximately 30 hours and 128

MB memory on a single thread of an Intel Xeon X5650 machine with 2.67GHz for PhredEM

to call the whole-exome genotypes in the 6x dataset.

The results of mis-called genotypes, averaged over all variants on chromosomes 1–22 and

stratified by MAF ranges, are displayed in Table IV. For rare variants, the pattern in the

number of mis-called genotypes by PhredEM and SeqEM agreed well with the results in

the simulation section, with PhredEM generally producing more accurate genotype calls

throughout the range of MAFs. The biggest difference occurred when the variants were

relatively rare, i.e., MAF ∈ (0.001, 0.01]; when the average read depth was ∼6x, PhredEM

generated 1.8 more correct genotypes out of 758 individuals than SeqEM for loci with MAFs

in this range. For more common variants, the differences between the two methods were

smaller, possibly because phred scores at heterozygous loci are not informative; this also

explains the increase in genotype-calling error rates with increasing MAF found throughout

Table IV. The phred scores at loci with differently called genotypes by the two methods are

summarized in Supplemental Table S4. These results exhibited the same patterns seen in
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the simulated data. In summary, all results show that PhredEM can improve the genotype-

calling accuracy over SeqEM for real sequencing data in NGS studies.

To gain more insights into the mechanisms of PhredEM and SeqEM, we listed in Table

V the raw data at eight loci (from the subsampled dataset at 6x) that were called differently

by PhredEM and SeqEM. Generally, base calls with low phred score are error-prone, and

PhredEM treats these unreliable calls as likely errors when calling the genotype. By contrast,

SeqEM depends heavily on the proportion of minor allele reads among the total reads and

ignores the quality measure of each allele. For example, at Locus 1, the six major alleles were

of high quality while the two minor alleles were likely to be errors. In this case, PhredEM

distinguishes between alleles of different qualities and produced the correct genotype but

SeqEM, which cannot account for low quality alleles, calls the incorrect genotype.

DISCUSSION

We have developed a phred-score-informed genotype-calling approach for NGS studies,

called PhredEM. We also proposed a simple and computationally efficient screening algo-

rithm to identify monomorphic loci. The PhredEM approach improves the accuracy of

genotype-calling by estimating base-calling errors from both read data and phred scores, and

by using all sequencing reads available without setting a phred-score-based quality threshold.

PhredEM is closely related to the SeqEM approach, which can be viewed as a special case of

PhredEM. We showed that the logistic model relating phred score to base-calling error rate

used in PhredEM fits real sequencing data well.

In our logistic regression model (2), the phred score is the only predictor for the base-

calling error. Other important predictors of base-calling quality could also be included.

Because we estimate separate logistic regression parameters at each locus, covariates that

are the same for each read (e.g., the particular nucleotides that constitute the minor and

major alleles) are largely accounted for. One interesting covariate we have not considered is

the position in the read [Brockman et al., 2008], although it is unclear whether this has an
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independent effect once the phred score is accounted for. We did not consider the mapping

score as a possible covariate because there is not much variability in mapping scores [Li et

al., 2008] (see Supplemental Figure S1). However, we recommend that PhredEM should be

applied after excluding alignments with mapping scores less than 30.

We recommend using PhredEM with the HWD assumption as a default, because the

model with HWD is more robust. After examining genotype frequencies obtained assuming

HWD, a second pass of PhredEM could easily be made using the model assuming HWE.

Our numerical studies (not shown) suggest that at medium or high read depth (≥10x), the

estimated genotype frequencies based on the calls from PhredEM converged rapidly to their

true values with increasing sample size even when assuming HWD.

We made some simplifying assumptions for PhredEM. First of all, the sample should

consist of independent, unrelated individuals, which is essential to the likelihood in expres-

sion (4). A version of PhredEM could be constructed for trio data by modeling the joint

genotypes of parents and offspring, for example, using the conditional-on-parental genotypes

(CPG) approach of Schaid and Sommer [1993]. We also assume that base-calling errors are

independent; in reality, the base-calling errors might be correlated due to factors such as li-

brary preparation and sequence context. We also assume that errors are symmetric, i.e. that

the probability of a read for the major allele being mis-called as the minor allele is the same

as the probability of the minor allele being mis-called as the major allele. Further, PhredEM

assumes that all variants are biallelic. The biallelic assumption is reasonable because only

a small fraction of SNPs have been verified to carry three or more alleles [Hodgkinson and

Eyre-Walker, 2010]. In analyzing the SCOOP data, we deleted in advance all calls for bases

that differed from the two most frequent bases at every locus. Finally, PhredEM makes

no use of linkage disequilibrium information, and calls genotypes at each locus using only

data from that particular locus. A haplotype-based version of PhredEM could easily be

constructed, and may result in improved genotype-calling performance for common variants

in very low-coverage data.
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In summary, we developed PhredEM, an improved genotype caller which reduces the

genotype-calling errors for NGS data. We also proposed a simple and computationally

inexpensive algorithm for screening out loci that are estimated to be monomorphic. We

showed that the proposed approach generates fewer incorrect calls than SeqEM regardless of

the average read depth and sample size. Using the SCOOP data from the UK10K project,

we demonstrated the capability of PhredEM to improve the genotype-calling accuracy in

real sequencing data.

APPENDIX

EM ALGORITHM

In the EM algorithm, Gi (i = 1, . . . , n) is treated as missing. The complete-data log-

likelihood has the form

lc(θ,π) =
n∑

i=1

2∑
g=0

I(Gi = g)
{

logPθ(Ri|g, Ti,Qi) + logPπ(g)
}
.

Let θ(k) and π(k) be the parameter values after the kth iteration. In the E-step of the

(k + 1)th iteration, we evaluate E{I(Gi = g)|Ri, Ti,Qi} for g = 0, 1, 2, which can be shown

to be

ω
(k)
ig ≡

Pθ(k)(Ri|g, Ti,Qi)Pπ(k)(g)∑2
g′=0 Pθ(k)(Ri|g′, Ti,Qi)Pπ(k)(g′)

.

In the M-step, we maximize lc(θ,π) with I(Gi = g) replaced by ω
(k)
ig . Specifically, under

HWE we update π by a closed form π(k+1) = (2n)−1
∑n

i=1(2ω
(k)
i2 + ω

(k)
i1 ), or under HWD we

update π by the same π(k+1) and update f by f (k+1) = 1−
∑n

i=1 ω
(k)
i1 /
{

2nπ(k+1)(1−π(k+1))
}

.

We use the one-step Newton-Raphson iteration to update θ. We iterate between the E-step

and M-step until the changes in the parameter estimates are negligible.

PROOF FOR CONCAVITY OF pl(π)
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First, we prove that, for fixed θ, the function h(π) = log
{∑

g=0,1,2 Pθ(R|g, T,Q)Pπ(g)
}

is concave. Under HWE, we write h(π) = log
{
aπ2 + b(1 − π)2 + 2cπ(1 − π)

}
, where

a = Pθ(R|G = 2, T,Q), b = Pθ(R|G = 0, T,Q), and c = (0.5)T . The second derivative of

h(π) is

h′′(π) = −
2
{

(a+ b− 2c)π + (c− b)
}2

+ 2(c2 − ab){
aπ2 + b(1− π)2 + 2cπ(1− π)

}2 .

Because ab =
∏T

k=1 εk(θ)
{

1 − εk(θ)
}
≤ (0.25)T = c2, we obtain h′′(π) ≤ 0 and thus h(π) is

a concave function of π.

Because the sum of concave functions is still concave, logLo(θ, π) is concave in π for fixed

θ. Because the pointwise supremum over θ preserves the concavity [Boyd and Vandenberghe,

2004], pl(π) is also concave.
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Table I: Number of mis-called genotypes for rare variants in
the simulation studies.

Overall Stratified
G = 0 G = 1

MAC Depth P S P S P S

1 6x 0.08 0.21 0.05 0.07 0.03 0.14
10x 0.04 0.11 0.02 0.03 0.02 0.08
30x 0.01 0.02 0.01 0.01 0 0.01

5 6x 0.74 1.38 0.10 0.35 0.64 1.03
10x 0.39 0.71 0.07 0.15 0.32 0.56
30x 0.05 0.10 0.01 0.02 0.04 0.08

10 6x 1.31 2.27 0.15 0.63 1.16 1.64
10x 0.67 1.20 0.10 0.31 0.57 0.89
30x 0.08 0.16 0.02 0.04 0.06 0.12

20 6x 2.31 3.62 0.20 1.00 2.11 2.62
10x 1.17 1.95 0.14 0.54 1.03 1.41
30x 0.15 0.26 0.03 0.06 0.12 0.20

P and S represent PhredEM and SeqEM, respectively. G is
the true genotype; the case G = 2 is omitted as it is barely
seen for rare variants. MACs of 1, 5, 10, and 20 correspond
to MAFs of 0.0005, 0.0025, 0.005, and 0.01, respectively,
given the sample size of 1,000. All results are based on
5,000 replicates.
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Table II: Number of mis-called genotypes for common variants in the
simulation studies.

Overall Stratified
G = 0 G = 1 G = 2

MAF Depth P S P S P S P S

0.05 6x 11.24 13.03 0.40 1.92 9.57 9.84 1.27 1.27
10x 5.51 6.84 0.28 1.24 4.57 4.93 0.66 0.67
30x 0.68 0.94 0.06 0.20 0.54 0.66 0.09 0.09

0.15 6x 34.87 36.42 0.62 2.16 27.49 27.50 6.76 6.79
10x 16.85 18.31 0.41 1.61 13.38 13.59 3.05 3.11
30x 1.91 2.29 0.08 0.31 1.53 1.66 0.30 0.33

0.25 6x 57.91 59.16 0.61 1.85 45.67 45.68 11.62 11.74
10x 27.66 29.04 0.44 1.50 22.32 22.45 4.90 5.05
30x 3.04 3.41 0.09 0.31 2.51 2.62 0.44 0.49

0.35 6x 77.56 78.58 0.56 1.51 65.99 65.90 11.02 11.23
10x 36.41 37.61 0.41 1.26 31.67 31.76 4.33 4.59
30x 3.97 4.38 0.08 0.29 3.52 3.63 0.37 0.46

0.45 6x 89.76 90.73 0.50 1.18 72.79 72.61 16.47 16.94
10x 41.77 42.91 0.35 1.01 34.91 34.93 6.50 6.97
30x 4.47 4.84 0.08 0.23 3.87 3.96 0.53 0.65

P and S represent PhredEM and SeqEM, respectively. G is the true
genotype. All results are based on 5,000 replicates.
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Table III: Average phred scores associated with called major (M) and minor (m) alleles at loci that are called differently by
PhredEM and SeqEM in the simulation studies for common variants.

G = 0 G = 1 G = 2
(0, 1) (1, 0) (0, 1) (1, 0) (1, 2) (2, 1) (1, 2) (2, 1)

MAF Depth M m M m M m M m M m M m M m M m

0.05 6x 37.1 9.0 37.2 36.0 37.1 12.7 37.2 38.7 38.5 35.8 33.1 37.3 38.5 34.2 26.0 37.4
10x 37.1 9.1 37.0 36.3 37.1 12.8 37.1 38.7 39.0 37.2 22.6 38.2 38.4 33.1 13.8 36.7
30x 36.9 9.4 37.0 36.2 37.0 15.1 37.3 38.6 37.8 36.4 26.4 36.9 38.7 34.0 9.9 37.2

0.15 6x 37.1 8.7 37.0 35.9 37.0 11.9 37.1 38.8 38.5 36.4 8.7 37.4 36.8 33.2 7.5 37.1
10x 37.1 8.8 37.1 36.0 37.1 11.7 37.1 38.7 38.6 37.0 9.7 36.9 35.2 37.0 8.5 37.2
30x 37.1 9.1 37.1 36.5 37.0 11.9 37.1 38.7 38.7 37.0 10.4 37.5 36.5 36.4 8.2 37.2

0.25 6x 37.1 8.6 37.5 36.2 37.2 11.3 37.1 39.0 38.9 36.2 9.7 37.1 38.2 32.1 8.2 37.2
10x 37.2 8.8 37.1 36.1 37.1 11.0 37.1 38.8 38.6 36.9 10.3 37.4 36.9 36.1 8.4 37.0
30x 37.1 8.8 37.2 37.0 37.0 12.3 37.0 38.6 38.2 37.1 11.8 37.4 36.8 37.3 9.3 37.1

0.35 6x 37.1 8.5 36.6 37.5 37.1 11.0 37.1 39.0 38.6 33.9 25.6 37.1 38.5 28.2 18.3 37.2
10x 37.1 8.6 37.1 35.3 37.2 10.7 37.1 38.7 38.5 36.0 22.0 37.2 38.4 31.9 13.2 37.1
30x 37.1 9.2 37.3 35.9 37.1 11.4 37.1 38.7 38.3 36.8 14.7 37.4 36.8 35.6 9.1 37.0

0.45 6x 37.1 8.3 31.7 38.0 37.2 11.1 36.6 38.9 39.0 37.0 10.8 37.1 37.3 35.9 8.4 37.2
10x 37.1 8.6 36.6 37.1 37.3 11.1 37.1 38.5 38.9 37.0 10.4 37.1 36.5 37.0 8.5 37.1
30x 37.1 8.8 37.1 36.6 36.9 11.8 37.2 38.6 38.3 37.1 9.7 37.4 37.3 37.7 9.0 37.1

G is the true genotype. (GP, GS) = (0, 1), (1, 0), et al. represent loci that are called to be GP and GS by PhredEM and
SeqEM, respectively. The results are based on 5,000 replicates.
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Table IV: Number of mis-called genotypes in analysis of the UK10K SCOOP data (subsampled to achieve
different depths).

Overall Stratified
G = 0 G = 1 G = 2

MAF Depth N P S N0 P S N1 P S N2 P S

(0, 0.001] 6x 756.4 0.36 1.00 755.6 0.17 0.78 0.9 0.19 0.22 0 0 0
10x 776.4 0.34 1.02 775.5 0.24 0.89 0.9 0.10 0.13 0 0 0
30x 782.9 0.22 0.83 782.0 0.19 0.79 0.9 0.03 0.04 0 0 0

(0.001, 0.01] 6x 757.7 1.99 3.80 753.1 0.57 2.30 4.5 1.33 1.41 0.1 0.09 0.09
10x 776.1 1.78 3.43 771.4 0.50 2.06 4.6 1.19 1.28 0.1 0.09 0.09
30x 782.3 1.52 2.23 777.6 0.37 1.05 4.6 1.09 1.12 0.1 0.06 0.06

(0.01, 0.05] 6x 752.4 10.87 11.70 714.8 1.40 3.28 36.9 8.93 7.88 0.7 0.54 0.54
10x 773.6 8.19 9.26 734.9 2.17 3.95 37.9 5.62 4.90 0.7 0.40 0.41
30x 780.3 5.38 6.43 741.3 1.93 3.16 38.2 3.26 3.07 0.8 0.19 0.20

(0.05, 0.1] 6x 750.5 20.10 20.34 647.1 1.31 1.85 98.9 16.34 15.94 4.5 2.45 2.55
10x 773.4 11.73 12.15 666.9 1.23 1.65 101.8 9.00 8.95 4.6 1.50 1.55
30x 781.0 2.28 2.42 673.6 0.59 0.63 102.7 1.32 1.40 4.7 0.37 0.39

(0.1, 0.2] 6x 749.6 38.28 38.60 547.2 2.09 2.51 184.9 28.88 28.70 17.5 7.31 7.39
10x 773.3 21.36 21.78 564.7 1.92 2.32 190.5 15.46 15.47 18.0 3.98 3.99
30x 780.4 3.54 3.66 570.2 0.90 0.94 191.9 1.91 1.98 18.3 0.73 0.74

(0.2, 0.3] 6x 748.3 62.59 62.88 424.6 2.76 3.09 276.2 46.23 46.10 47.5 13.60 13.69
10x 772.7 33.93 34.32 438.5 2.66 2.96 285.2 24.68 24.72 49.1 6.59 6.64
30x 780.3 4.80 4.92 443.0 1.15 1.22 287.6 2.60 2.63 49.7 1.05 1.07

(0.3, 0.4] 6x 749.5 80.98 81.22 319.1 2.97 3.22 337.6 62.42 62.40 92.8 15.59 15.60
10x 773.1 42.16 42.51 329.3 2.91 3.18 348.1 32.20 32.21 95.8 7.05 7.12
30x 780.4 5.42 5.57 332.4 1.29 1.35 351.3 2.94 2.99 96.7 1.19 1.23

(0.4, 0.5] 6x 748.6 96.08 96.21 229.5 4.39 4.60 368.7 75.70 75.60 150.3 15.99 16.01
10x 773.3 49.95 50.08 237.0 3.34 3.50 380.8 39.45 39.30 155.5 7.16 7.28
30x 780.6 6.99 7.12 239.5 1.34 1.39 383.9 4.38 4.41 157.2 1.27 1.32

G is the true genotype. N , N0, N1, and N2 are the average numbers of individuals covered by at least one read. P and S represent
PhredEM and SeqEM, respectively.
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Table V: Eight example loci in the SCOOP data (subsampled to 6x).
Reads Phred scores Genotype

Locus M m M m True P S

1 6 2 21 36 37 38 39 42 9 16 0 0 1
2 6 1 18 18 27 36 39 40 33 0 1 0
3 4 1 20 34 34 36 15 1 0 1
4 5 1 25 32 32 34 39 37 1 1 0
5 1 5 35 20 25 38 40 40 1 1 2
6 1 5 14 33 37 38 38 40 1 2 1
7 1 4 32 30 34 37 39 2 1 2
8 2 5 11 17 30 34 35 36 39 2 2 1

M and m represent major and minor alleles, respectively. True is the
true genotype. P and S represent the called genotypes by PhredEM and
SeqEM, respectively.
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Figure 1: UK10K SCOOP data. (a) Distribution of phred scores. (b) Logistic regression
model and generalized additive model (GAM) fit to the sequencing data at loci that were
identified to be monomorphic.
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