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Rare cell populations play a pivotal role in the initiation and progression of diseases like 
cancer. However, the identification of such subpopulations remains a difficult task. This work 
describes CellCnn, a representation learning approach to detect rare cell subsets associated 
with disease using high dimensional single cell measurements. Using CellCnn, we identify 
paracrine signaling and AIDS onset associated cell subsets in peripheral blood, and minimal 
residual disease associated populations in leukemia with frequencies as low as 0.005%. 

Main 
Health and disease status of multicellular organisms pivotally depends on rare cell 
populations, as for instance hematopoietic stem cells or tumor initiating cell subsets 1.  
Advances in single cell-resolved molecular measurement technologies have increasingly 
enabled us to describe cell population heterogeneity and, specifically, rare subpopulations in 
health and disease 2. It is becoming routine to measure thousands of DNA, RNA 3 and 
dozens of protein 4 species in more than thousands of single cells, optionally including their 
spatial context 5–7. 

Such multiparametric single cell snapshots have been used to define heterogeneous cell 
population structure using unsupervised clustering techniques that generate a representation 
of a cell population, defined in terms of cluster-based features such as cluster medians 8. 
While unsupervised machine learning constitutes a powerful exploratory tool, the 
identification of disease-associated cell subsets requires a further supervised learning step 
to associate the clustering derived representation with disease status. Unsupervised 
approaches have been extended to the classification of single cell samples and have been 
successful where disease association manifested itself in condition-specific differences of 
abundant cell subpopulations 8,9. 

Unsupervised approaches describe general population features that are not necessarily 
associated with disease status. Typically a large number of cell population features (i.e. 
thousands 9 or millions 10) are required to detect rare cell subsets from high dimensional 
measurements (i.e. 20+ dimensions). Most such features are not relevant, leading to 
overfitting or even precluding the identification of disease-associated rare cell populations. 
As this study will demonstrate, this situation severely limits the capacity of existing 
approaches to take advantage of novel highly multiparametric single cell measurements to 
yield insights into the disease mechanisms such as minimal residual disease or tumor-
initiating cells 1.  

CellCnn overcomes this critical limitation and facilitates the detection of rare disease-
associated cell subsets. Unlike previous methods, CellCnn does not separate the steps of 
extracting a cell population representation and associating it with disease status. Combining 
these two tasks requires an approach that (1) is capable of operating on the basis of a set of 
unordered single cell measurements, (2) specifically learns representations of single cell 
measurements that are associated with the considered phenotype and (3) takes advantage 
of the possibly large number of such recordings. We bring together concepts from multiple 
instance learning and convolutional neural networks 11 to meet these requirements. CellCnn 
takes as input a set of biological specimens (multi-cell inputs) that are each associated with 
a phenotype. Such biological specimens and phenotypes comprise, for instance, patient 
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blood or tissue samples with their associated disease status or survival information. It is 
difficult to automatically learn the molecular basis of this association since it possibly 
manifests itself by differences of an, a priori unknown, cell subset. To address this difficulty, 
CellCnn associates a multi-cell input with the considered phenotype by means of a 
convolutional neural network. The network automatically learns a concise cell population 
representation in terms of molecular profiles (filters) of individual cells whose presence or 
frequency is associated with a phenotype (Fig. 1a, Methods). We applied CellCnn (1) in a 
classification setting to reconstruct cell type specific signaling responses in samples of 
peripheral blood mononuclear cells, (2) in a regression setting to identify abundant cell 
populations associated with disease onset after HIV infection, and achieved comparable 
prediction accuracy to a state of the art analysis performed recently 9, however with 
computational cost reduced by several orders of magnitude. Finally, we considered the task 
of minimal residual disease detection in leukemia to demonstrate the unique ability of 
CellCnn to identify extremely rare phenotype-associated cell subsets. 

First, we applied CellCnn to a mass cytometry dataset acquired from samples of peripheral 
blood mononuclear cells 12. These samples were exposed to various paracrine agents and 
their proteomic responses recorded at the single cell level with respect to 14 intracellular 
markers and 11 cell-surface markers characteristic of immune cell type. CellCnn was trained 
for each paracrine agent to classify stimulated and unstimulated samples using only the 14 
intracellular markers. CellCnn learned two filters that were used to compute the weighted 
sum of the abundance profile for each single cell (cell filter responses, Fig. 1a). We 
investigated the cell type-specific filter responses and found very specific and sensitive 
enrichment of the cell types expected to specifically respond to the considered agent, i.e. 
differential response by monocytes and dendritic cells in the case of GM-CSF exposure 13 
(Fig. 1b/d, see Supplementary Fig. 1 for the remaining agents considered in 12). The 
learned filter positively associated with GM-CSF stimulation is, as to be expected, 
predominantly activated by cells with high pStat5 levels (Fig. 1c, see Supplementary Fig. 2 
for filters learned for the remaining agents).  

We used CellCnn to identify T cell subsets associated with increased risk of AIDS onset in a 
383 HIV-infected patient cohort 14. Flow cytometry measurements of 10 T cell related 
molecular markers from peripheral blood, and AIDS-free survival time were available for 
each individual. Trained on a subcohort of 256 individuals, CellCnn identified cell subsets 
with either elevated proliferation marker Ki67, or naive T-cell phenotype, whose frequency 
has been reported to be associated with AIDS-free survival (Fig. 1e) 15. CellCnn was further 
used to categorize the remaining set of 127 test individuals into a low- and high-risk group 
(Methods). Kaplan-Meier curves of these groups are significantly different (p-value = 9.51e-
03, log-rank test, Fig. 1f). Citrus, a state of the art approach to identifying clinically 
prognostic cell subsets 9 achieved a less significant dissection of both groups on the same 
training and test data partition (p-value = 6.8e-02, Fig. 1f).  

We assessed the ability of CellCnn to detect rare cell populations associated with minimal 
residual disease in acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). 
Specifically, we analyzed mass cytometry datasets of healthy bone marrow samples with 
leukemic blast spike-in subpopulations of decreasing frequency to mimic the minimal 
residual disease (MRD) phenotype 16,17. CellCnn correctly identified the ALL and AML MRD 
associated cell subset at a frequency as low as 0.4/0.1 % (500/720 blast cells) respectively. 
We found CD45, CD34, CD10 and respectively CD47, CD7, CD44, CD38 differentially 
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expressed in the predictive subsets, matching the expectations for MRD in ALL (Fig. 2a) and 
AML (Fig. 2d). CellCnn achieved an almost perfectly precise recovery of the MRD 
associated cell subset for a recall of 80% (Fig. 2b/e). We compared CellCnn with (1) a state-
of-the-art distance-based outlier detection algorithm 18, constituting a quantifiable variant of 
visually inspecting condition specific projection map differences (e.g. t-SNE maps 16,19), (2) 
logistic regression classifiers that take as input either single cell profiles or the average multi-
cell input profiles and (3) Citrus 9, all failing to identify the ALL/AML MRD subsets with 
reasonable precision (Fig. 2b/e, Supplementary Fig. 3, details see Methods). We further 
considered more extreme situations with decreasing frequency of the MRD associated cell 
subset down to 0.08/0.005 % (100/38 blast cells) for ALL/AML (Fig. 2c/f). While the task of 
recovering the correct cell subset becomes increasingly difficult (Supplementary Fig. 4), 
cell classification precision of CellCnn stayed considerably high for all considered MRD cell 
subset frequencies. 

CellCnn achieves this unprecedented high precision by overcoming the inherent limitations 
of the unsupervised feature engineering strategies of state of the art approaches. When 
analyzing samples from modern single-cell techniques with increasing multiparametricity, 
such as mass cytometry, these approaches enumerate tens of thousands 9 or an 
exponential number 10 of features, at the cost of accumulating many potentially 
uninformative, confounding features. This situation leads to both computational bottlenecks 
and loss of statistical power (Fig. 1f). CellCnn provides a solution to this limitation by jointly 
and thereby efficiently solving the feature engineering, selection and association tasks in a 
single supervised learning step. Further, CellCnn training is efficient, scaling linearly with the 
number of measured components. Consequently, CellCnn is applicable to a variety of highly 
multiparametric single cell data sources beyond flow and mass cytometry, such as single cell 
RNA sequencing or imaging data. 

CellCnn is expected to enable the discovery of new disease-associated cell populations 
such as tumor initiating cells from patient cohorts of suitable size or longitudinal studies. 
These results lend themselves to the design of personalized diagnosis and treatment 
modalities. Given the expected increase in patient cohort sizes in concerted initiatives as the 
The Cancer Genome Atlas (TCGA) and concomitant rise in their analysis with single cell 
technologies 20, we expect scalable representation learning approaches such as CellCnn to 
uniquely take advantage of the resulting data by enabling the discovery of disease 
mechanisms mediated by rare cell populations, in both basic research and personalized 
medicine. 
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Figure 1: CellCnn overview and demonstration. (a) CellCnn convolutional neural network 
architecture. CellCnn takes as input the single cell measurements (multi-cell input), each of 
which is  annotated with a phenotype. Node activities in the convolutional layer are defined 
as weighted sums over single cell molecular profiles. Nodes in the pooling layer evaluate the 
presence (max pooling) or frequency (mean pooling) of specific cell subsets. The output of 
the network estimates the sample-associated phenotype (e.g. disease condition, expected 
survival). Network training optimizes weights to match training dataset phenotype. Trained 
filter weights correspond to molecular profiles of relevant cell subsets and allow for 
assignment of the cell subset membership of individual cells (cell filter response). (b) 
CellCnn classification of GM-CSF (un-) stimulated peripheral blood mononuclear cell 
populations monitored with mass cytometry. Response of individual cells (grouped by 
manually gated cell types) is shown for both conditions. Significantly higher cell filter 
response for monocytes and dendritic cells in the stimulated sample. (c) Filter weights 
learned for GM-CSF stimulus. (d) t-SNE projection using all cell type-defining surface 
markers not used by CellCnn, coloured by cell filter response. High cell filter response 
regions (Supplementary Fig. 7) map to monocytes (CD33+) and dendritic cells (CD123+). 
(e) Reconstruction of cell subsets predicting AIDS-free survival in HIV-infected patients. (f) 
Kaplan-Meier plots for high and low risk patient cohort according to CellCnn survival 
prediction (p=9.51e-03, log-rank test, computation time: 5min, single laptop core) and state 
of the art: Citrus (p=6.8e-02, 3 days, 24 Intel Xeon cores).  
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Figure 2: Identification of rare cell populations associated with minimal residual disease in 
acute lymphoblastic (ALL) and acute myeloid leukemia (AML). (a) Marker histograms of 
healthy and ALL populations (ground truth) and ALL-specific filter weights learned by 
CellCnn. (b) Comparison to baseline methods (outlier: distance-based outlier detection 18, 
mean: logistic regression on multi-cell input summary profiles, sc: logistic regression on 
single cell profiles, Citrus 9) for ALL MRD population at 0.4%. For the first four methods, we 
report the disease condition of top-scoring cells for a recall of 0.8. Citrus does not provide a 
precision-recall series, therefore cells assigned to clusters with differentially abundant 
markers are reported. (c) Precision-recall of CellCnn for various ALL MRD cell population 
frequencies. Solid lines indicate that an automated procedure (described in Methods) was 
used for selecting the reported filter. Dashed lines indicate that the filter achieving the 
highest area under the precision recall curve (AUPRC) score is reported (details in 
Methods). (d) Marker histograms of healthy and AML populations (ground truth) and AML-
specific filter weights learned by CellCnn. (e) Comparison to baseline methods for AML MRD 
population at 0.1%. (f) Precision-recall of CellCnn for various AML MRD cell population 
frequencies. Solid and dashed lines are interpreted as in (c). 
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METHODS 
Datasets 

The mass cytometry data set of peripheral blood mononuclear cells (PBMC) and the flow 
cytometry dataset of HIV infected patients were adopted respectively from Bodenmiller et al. 
12 and the U.S. Military HIV Natural History Study 14. 

The mass cytometry datasets for the MRD study were based on the ALL samples from Amir 
et al. 16 and the AML samples from Levine et al. 17. Specifically, in the study from Amir et al. 
metal-barcoded cells from an ALL patient sample were spiked into a healthy bone marrow 
sample. The abundance of the leukemic population was 0.4% of the total cell counts in the 
mixed sample. We created additional datasets with decreasing frequencies by selecting 
random subsets of the leukemic population with frequencies 0.3%, 0.2%, 0.1% and 0.08%. In 
each case, the mixed sample is compared with a control sample from healthy bone marrow 
of a different patient.  

Also, we have created synthetic AML MRD samples by computationally combining AML 
CD34+ gated blast cells (Supplementary Fig. 8) and cells from a healthy bone marrow into 
mixed synthetic samples on the basis of the data provided by Levine et al.. Different mixed 
samples have been created by introducing different numbers of blast cells from different 
AML patients 17. The considered frequencies of AML blasts are 0.5%, 0.1%, 0.05%, 0.02%, 
0.01%, 0.008% and 0.005%. In each case, the mixed sample is compared with a pool of 
control samples from four different healthy bone marrows. 

CellCnn network architecture and training 

CellCnn aims at identification of disease-associated cell subpopulations, which is an 
example of a multiple instance learning task 21. Such learning tasks consist of learning the 
relation between labels (e.g. disease status) and data items that manifest themselves as 
bags (multi-cell inputs) of instances (cell molecular profiles). We address this multiple 
instance learning task with a convolutional neural network approach. CellCnn implements a 
variant of a convolutional neural network. Such networks are artificial neural networks 
originally designed to process the two-dimensional structure of images and typically consist 
of one or more sets of convolutional and pooling layers 11. Briefly, the convolutional layer 
comprises filters that evaluate the occurrence of specific patterns in image patches and the 
pooling layer computes summaries of these occurrences. We adapted the convolutional 
neural network architecture to process unordered multi-cell inputs. Image patches 
correspond to individual cell measurements. Each cell measurement was evaluated with 
respect to every convolutional filter, i.e. to its fit to respective molecular profile (cell filter 
response) in the convolutional layer. The computation at the pooling layer consisted of either 
selecting the maximum (max-pooling) or mean (mean-pooling) response within the multi-cell 
inout 11. Pooling was performed separately for each convolutional filter. Max-pooling 
computes the maximum response over all members of a multi-cell input for a particular filter, 
and thereby measures the presence of cells yielding high cell filter response. Max-pooling 
was performed for the analysis of the peripheral blood, ALL and AML datasets, where cell 
presence appeared to be most informative. Mean-pooling evaluates the average cell filter 
response of a multi-cell input, and thereby serves as an approximation of the frequency of 
the cell subset strongly responding to a specific filter. Cell subset frequencies turned out to 
be most informative for the analysis of the HIV dataset and therefore mean-pooling was 
performed. Finally, the pooling layer was connected to the output layer. For regression 
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problems the output layer contains a single node, whereas for classification problems it 
contains one node per class. Nodes in the output layer compute a weighted sum over the 
pooling layer nodes, followed by a nonlinear operation (hyperbolic tangent for regression and 
softmax for classification, further details in Supplementary Notes).  

The convolutional filter weights and output layer weights were optimized for optimal 
association of multi-cell inputs with their phenotype labels using mini-batch stochastic 
gradient descent with Nesterov momentum 22. We adopted a set of commonly used 
hyperparameter settings (learning   rate   =   0.03,   momentum   =   0.9,   mini-­‐batch   size   =   128,  
maximum  number  of  training  epochs  =  20) and kept them fixed in all our experiments. Two or 
three convolutional filters were used to encourage model simplicity and avoid overfitting. 
Network weights were initialized randomly from a uniform distribution. We minimized the 
multinomial logistic regression objective for classification and mean squared error for 
regression, both augmented with small L2 weight decay in the order of 10-­‐8 (more details on 
the CellCnn methodology in Supplementary Notes). 

Cell subsets as multi-cell inputs 

To take advantage of high content single cell techniques like flow or mass cytometry, 
CellCnn optionally takes multiple random cell subsets of a specific cytometry sample as 
input to increase the effective number of data points for association. 

In all our experiments, random cell subsets, drawn with replacement from the original 
cytometry samples, were used as multi-cell input training examples of CellCnn. Multi-cell 
inputs were chosen sufficiently large, to ensure that these contain cells with the molecular 
profile of interest according to the expected frequency. From our experiments on mass 
cytometry data, we found that generating 4096 multi-cell inputs per class, with each multi-
cell input comprising 1000 cells, performed well (Supplementary Fig. 5). If we are interested 
in extremely rare populations (abundance < 1%) then we use a modified procedure for 
creating multi-cell inputs. 50% of a multi-cell input is sampled uniformly at random from the 
whole cell population whereas the other 50% is sampled from cells with high outlierness 
score. We define the outlierness score of each cell based on the distances between this cell 
and its closest neighbors from the control samples 18 (details in Supplementary Notes). 

Model selection and interpretation 

PBMC and ALL/AML datasets: Each sample was initially split into a training (80%) and a 
validation (20%) set of cells.  We trained 20 models with uniformly random initial weights and 
pre-selected the models with predictive accuracy higher than 99% on the validation set. 
Then we performed a type of stability selection procedure to prioritize frequently occurring 
filters. Hierarchical clustering with cosine similarity as metric was performed on the matrix of 
filter weights and flat clusters were formed by cutting the dendrogram at a cosine similarity of 
0.7. From each cluster, the filter with minimum sum of distances to all other members of the 
cluster was chosen as representative. Finally, the filter representative of the biggest cluster 
with positive weight connection to the output node corresponding to stimulation/leukemia 
was chosen for the detection of stimulated/diseased cells. 

The automated filter selection procedure described above was not performed when the 
leukemic blast population comprised less than 200 cells. In those cases it was likely that 
leukemic cells might not be included in the validation set and thus the purpose of validation 
would be lost. In the absence of a trustworthy validation set, we were not able to prioritize 
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specific filters. Therefore, we examined if at least one trained filter was able to detect the 
rare leukemic population.  

HIV-cohort dataset: The full patient cohort was randomly split into a training (2/3) and a test 
(1/3) cohort. We used 10-fold cross validation on the training cohort resulting in 10 models, 
each trained on a different subset of the training cohort. Information from all cross validation 
runs was used to select frequently occurring filters. We compiled a matrix of all filter weights 
from the 10 networks and performed hierarchical clustering using cosine similarity as metric. 
Clusters were determined by cutting the dendrogram at a cosine similarity of 0.7. From each 
cluster with at least 5 members, the cluster centroid was chosen as representative. 
Representative filters are depicted in Figure 1e. Finally, an ensemble model, consisting of 
the top 5 networks with best validation predictive performance from the 10 cross validation 
runs, was used to predict survival times for the individuals in the test cohort. For the test 
phase, one subset of 3000 cells was used per individual. The output of CellCnn 
corresponded to predicted disease-free survival time for each patient and was used to split 
the test cohort into low- and high-risk groups. The threshold used for defining the two risk 
groups was the median predicted survival time. 

Baseline cell population models 

The following models were used for comparison with CellCnn. 

Outlier detection: We used a state of the art distance-based outlier detection method 18. A 
set S of s  observations (single cell profiles) is randomly sampled from the inlier class (i.e. the 
healthy control samples) and then used to evaluate the outlierness of single cell profiles in 
the test samples. The outlierness of an observation is defined as the L1 distance between 
this observation and its closest neighbour in S. Results for different values of s are given in 
Supplementary Figure 6. We finally used s  =  200,000.  

Single-cell input logistic regression: a logistic regression classifier that takes as input single 
cell profiles. Each single cell profile is labeled with the label (e.g. disease condition, survival 
time) of its corresponding cytometry sample. 

Multi-cell input logistic regression: a logistic regression classifier that operates on the same 
multi-cell inputs as CellCnn. Mean abundances of multi-cell input serve as features for the 
classifier. Each multi-cell input is labeled with the label of its corresponding cytometry 
sample. 

Citrus: a state-of-the-art approach for detecting phenotype-associated cell subpopulations 9. 
Citrus initially performs hierarchical clustering of single cell profiles from all considered 
cytometry samples, selects the clusters that contain at least a minimum number of cell 
events (according to the minimum cluster size threshold that is defined by the user) and 
computes cluster-based features (e.g. population medians or abundances) individually for 
each cytometry sample. The computed cluster-based features are used as input to a L1 -
regularized predictor that detects phenotype-associated differentially abundant features. See 
Supplementary Notes for a detailed description of the parameters used in individual Citrus 
runs. 

Code availability 

CellCnn is implemented in Python 2.7 and uses the neural network libraries Theano 23 and 
Lasagne/Nolearn 24. It is available for download at https://github.com/eiriniar/CellCnn.  
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