
1

Effective Dynamic Models of Metabolic Networks
Michael Vilkhovoy∗, Mason Minot†, Jeffrey D. Varner∗

∗School of Chemical Engineering, Purdue University, West Lafayette, IN 47907 USA †School of Chemical and
Biomolecular Engineering, Cornell University, Ithaca, NY 14850 USA

Abstract—Mathematical models of biochemical networks are
useful tools to understand and ultimately predict how cells utilize
nutrients to produce valuable products. Hybrid cybernetic models
in combination with elementary modes (HCM-EM) is a tool
to model cellular metabolism. However, HCM-EM is limited to
reduced metabolic networks because of the computational burden
of calculating elementary modes. In this study, we developed
the hybrid cybernetic modeling with flux balance analysis or
HCM-FBA technique which uses flux balance solutions instead
of elementary modes to dynamically model metabolism. We show
HCM-FBA has comparable performance to HCM-EM for a proof
of concept metabolic network and for a reduced anaerobic E.
coli network. Next, HCM-FBA was applied to a larger metabolic
network of aerobic E. coli metabolism which was infeasible for
HCM-EM (29 FBA modes versus more than 153,000 elementary
modes). Global sensitivity analysis further reduced the number
of FBA modes required to describe the aerobic E. coli data,
while maintaining model fit. Thus, HCM-FBA is a promising
alternative to HCM-EM for large networks where the generation
of elementary modes is infeasible.

Index Terms—Metabolic models, flux balance analysis, cyber-
netic models

I. INTRODUCTION

Biotechnology harnesses the power of metabolism to pro-
duce products that benefit society. Constraints based models
are important tools to understand and ultimately to predict
how cells utilize nutrients to produce products. Constraints
based methods such as flux balance analysis (FBA) [1] and
network decomposition approaches such as elementary modes
(EMs) [2] or extreme pathways (EPs) [3] model intracellular
metabolism using the biochemical stoichiometry and other
constraints such as thermodynamical feasibility under pseudo-
steady state conditions. FBA has been used to efficiently
estimate the performance of metabolic networks of arbitrary
complexity, including genome scale networks, using linear
programming [4]. On the other hand, EMs (or EPs) catalog
all possible metabolic behaviors such that any flux distribution
predicted by FBA is a convex combination of the EMs
(or EPs) [5]. However, the calculation of EMs (or EPs) is
computationally expensive and currently infeasible for genome
scale networks [6].

Cybernetic models are an alternative to the constraints
based approach which hypothesize that metabolic control is
the output of an optimal decision. Cybernetic models have
predicted mutant behavior [7, 8], steady-state multiplicity
[9], strain specific metabolism [10], and have been used
in bioprocess control applications [11]. Hybrid cybernetic
models (HCM) have addressed earlier shortcomings of the
approach by integrating cybernetic optimality concepts with
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EMs. HCMs dynamically choose combinations of biochemical
modes (each catalyzed by a pseudo enzyme whose expression
is controlled by an optimal decision) to achieve a physiological
objective (Fig. 1A). HCMs generate intracellular flux distri-
butions consistent with other approaches such as metabolic
flux analysis (MFA), and also describe dynamic extracellular
measurements [12]. However, HCMs are restricted to networks
which can be decomposed into EMs (or EPs).

In this study, we developed the hybrid cybernetic modeling
with flux balance analysis (HCM-FBA) technique. HCM-
FBA is a modification of the hybrid cybernetic approach of
Ramkrishna and coworkers [12] which uses FBA solutions
(instead of EMs) in conjunction with cybernetic control vari-
ables to dynamically simulate metabolism. We compared the
performance of HCM-FBA to HCM-EM for a prototypical
metabolic network along with two E. coli networks. HCM-
FBA performed comparably to HCM-EM for the prototypical
network and a reduced anaerobic E. coli network, despite
having fewer parameters in each case. Next, HCM-FBA was
applied to an aerobic E. coli metabolic network that was in-
feasible for HCM-EM. HCM-FBA described cellmass growth
and the shift from glucose to acetate consumption with only
a few modes. Global sensitivity analysis allowed us to further
reduce the aerobic E. coli HCM-FBA model to the minimal
model required to describe the data. Thus, HCM-FBA is a
promising approach for the development of reduced order
dynamic metabolic models and a viable alternative to HCM-
EM, especially for large networks where the generation of
EMs is infeasible.

II. RESULTS

HCM-FBA was equivalent to HCM-EM for a prototypical
metabolic network (Fig. 1). The proof of concept network,
consisting of 6 metabolites and 7 reactions (Fig. 1B), generated
3 FBA modes and 6 EMs. Using the EMs and synthetic pa-
rameters, we generated test data from which we estimated the
HCM-FBA model parameters. The best fit HCM-FBA model
replicated the synthetic data (Fig. 1C). The HCM-EM and
HCM-FBA kinetic parameters were not quantitatively identi-
cal, but had similar orders of magnitude; the FBA approach
had 3 fewer modes, thus identical parameter values were not
expected. Taken together, the HCM-FBA approach replicated
synthetic data generated by HCM-EM, despite having 3 fewer
modes. Next, we tested the ability of HCM-FBA to replicate
experimental data.

The performance of HCM-FBA was equivalent to HCM-EM
for anaerobic E. coli metabolism (Fig. 2A). We constructed
an anaerobic E. coli network [12], consisting of 12 reactions
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Fig. 1. HCM proof of concept metabolic study. A: HCMs distribute uptake
and secretion fluxes amongst different pathways. For HCM-EM, these path-
ways are elementary modes; for HCM-FBA these are flux balance analysis
solutions. HCM-EM combines all possible modes within a network; whereas
HCM-FBA combines only steady-state paths estimated by flux balance
analysis. B: Prototypical network with six metabolites and seven reactions.
Intracellular cellmass precursors A,B, and C are balanced (no accumulation)
while the extracellular metabolites (Ae, Be, and Ce) are not balanced (can
accumulate). The oval denotes the cell boundary, qj is the jth flux across
the boundary, and vk denotes the kth intracellular flux. C: Simulation of
extracellular metabolite trajectories using HCM-FBA (solid line) versus HCM-
EM (points) for the prototypical network.

and 19 metabolites, which generated 7 FBA modes and 9
EMs. HCM-EM reproduced cellmass, glucose, and byproduct
trajectories using the kinetic parameters reported by Kim et
al. [12] (Fig. 2A, points versus dashed). HCM-FBA model
parameters were estimated in this study from the Kim et
al. data set using simulated annealing. Overall, HCM-FBA
performed within 5% of HCM-EM (on a residual standard
error basis) for the anaerobic E. coli data (Fig. 2A, solid),
despite having 2 fewer modes and 4 fewer parameters (17
versus 21 parameters). Thus, while both HCM-EM and HCM-
FBA described the experimental data, HCM-FBA did so with
fewer modes and parameters.

HCM-FBA captured the shift from glucose to acetate con-
sumption for a model of aerobic E. coli metabolism that
was infeasible for HCM-EM (Fig. 2B). An E. coli metabolic
network (60 metabolites and 105 reactions) was constructed
from literature [14, 15]. Elementary mode decomposition of
this network (and thus HCM-EM) was not feasible; 153,000 el-
ementary modes were generated before the calculation became
infeasible. Conversely, flux balance analysis generated only 29
modes for the same network. HCM-FBA model parameters
were estimated from cellmass, glucose, and acetate measure-
ments [13] using simulated annealing (Fig. 2B, solid). HCM-
FBA captured glucose consumption, cellmass formation, and
the switch to acetate consumption following glucose exhaus-
tion. HCM-FBA described the dynamics of a network that
was infeasible for HCM-EM, thereby demonstrating the power
of the approach for large networks. Next, we demonstrated a
systematic strategy to identify the critical subset of FBA modes
required for model performance.
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Fig. 2. HCM-FBA versus HCM-EM performance for small and large
metabolic networks. A: Batch anaerobic E. coli fermentation data versus
HCM-FBA (solid) and HCM-EM (dashed). The experimental data was
reproduced from Kim et al. [12]. Error bars represent the 90% confidence
interval. B: Batch aerobic E. coli fermentation data versus HCM-FBA (solid).
Model performance is also shown when minor modes (dashed) and major
modes (dotted) were removed from the HCM-FBA model. The experimental
data was reproduced from Varma & Palsson [13]. Error bars denote a 10%
coefficient of variation.

Global sensitivity analysis identified the FBA modes es-
sential to model performance (Fig. 3). Total order sensitivity
coefficients were calculated for all kinetic parameters and
enzyme initial conditions in the aerobic E. coli model. Five of
the 29 FBA modes were significant; removal of the most sig-
nificant of these modes (encoding aerobic growth on glucose)
destroyed model performance (Fig. 2B, dotted). Conversely,
removing the remaining 24 modes had a negligible effect upon
model performance (Fig. 2B, dashed). The sensitivity analysis
identified the minimal model structure required to explain the
experimental data.

III. DISCUSSION

In this study, we developed HCM-FBA, an effective mod-
eling technique to simulate metabolic dynamics. HCM-FBA
uses flux balance analysis solutions (instead of elementary
modes) in conjunction with cybernetic control variables to
dynamically simulate metabolism. We studied the performance
of HCM-FBA on a prototypical metabolic network, along with
two E. coli networks. First, we showed that the performance
of HCM-FBA and HCM-EM were comparable for the pro-
totypical network and a small model of anaerobic E. coli
metabolism. For the anaerobic case, both approaches described
the experimental data. However, HCM-FBA (which was within
5% of HCM-EM and slightly better than HCM-EM for lactate
secretion) had fewer modes and parameters. Next, HCM-FBA
was applied to an aerobic E. coli metabolic network that was
not feasible for HCM-EM. Elementary mode decomposition
of the aerobic network generated over 153,000 elementary
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Fig. 3. Global sensitivity analysis of the aerobic E. coli model. Total order variance based sensitivity coefficients were calculated for the biomass yield on
glucose and acetate. Sensitivity coefficients were computed for kinetic parameters and enzyme initial conditions (N = 183,000). Error bars represent the 95%
confidence intervals of the sensitivity coefficients.

modes. Conversely, the HCM-FBA approach described cell-
mass growth and the shift from glucose to acetate consumption
with only 29 FBA modes. Global sensitivity analysis further
showed that only 5 of the 29 FBA modes were critical to
model performance. Removal of these modes crippled the
model, but removal of the remaining 24 modes had a negligible
impact. Thus, HCM-FBA is an alternative approach to HCM-
EM, especially for large networks where the generation of
elementary modes is infeasible.

HCM-FBA is a promising approach to model large
metabolic networks where elementary modes calculations are
infeasible. However, there are additional studies that should
be performed. First, the intracellular flux distribution predicted
by HCM-FBA should be compared to HCM-EM and to flux
measurements calculated using MFA or FBA in combination
with carbon labeling. HCM-EM predicted intracellular fluxes
that were similar to MFA results [12]; however, the fluxes
predicted by HCM-FBA have not yet been validated. Next,
the performance of HCM-FBA should be compared to lumped
hybrid cybernetic models (L-HCM). L-HCMs, which combine
elementary modes into mode families based upon metabolic
function [10, 16], have been applied to an E. coli network with
67 reactions and a Saccharomyces cerevisiae network with
70 reactions; both cases had satisfactory fits to extracellular
experimental data. However, while L-HCM reduces the dimen-
sion of possible alternative modes that must be considered,
it still requires the calculation of an initial set of modes.
For metabolic networks of even moderate size, EM (or EP)
decomposition may not be possible. On the other hand, the
generation of flux balance solutions (convex combinations of
the elementary modes or extreme pathways) is trivial, even for
genome scale metabolic networks. Thus, HCM-FBA opens up
the possibility for dynamic genome scale models of bacterial
and perhaps even of mammalian metabolism.

IV. MATERIALS AND METHODS

The HCM-FBA approach is a modification of HCM-EM,
where elementary modes are replaced with flux balance anal-
ysis solutions. Thus, extracellular variables are dynamic while
intracellular metabolites are at a pseudo steady state. The
abundance of extracellular species i (xi), the pseudo enzyme
el (catalyzes flux through mode l), and cellmass are governed
by:

dxi
dt

=
R∑
j=1

L∑
l=1

σijzjlql (e,k,x) c i = 1, . . . ,M

del
dt

= αl + rEl (k,x)ul − (βl + rG) el l = 1, . . . ,L
dc

dt
= rGc

where R and M denote the number of reactions and ex-
tracellular species in the model and L denotes the number
of FBA modes. The quantity σij denotes the stoichiometric
coefficient for species i in reaction j and zjl denotes the
normalized flux for reaction j in mode l. If σij > 0, species
i is produced by reaction j; if σij < 0, species i is consumed
by reaction j; if σij = 0, species i is not connected with
reaction j. Extracellular species balances were subject to the
initial conditions x (to) = xo determined from experimental
data. The term ql (e,k,x) denotes the specific uptake/secretion
rate for mode l where e denotes the pseudo enzyme vec-
tor, k denotes the unknown kinetic parameter vector, and
x denotes the extracellular species vector; ql (e,k,x) is the
product of a kinetic term (q̄l) and a control variable governing
enzyme activity. Flux through each mode was catalyzed by
a pseudo enzyme el, synthesized at the regulated specific
rate rE,l (k,x), and constitutively at the rate αl. The term
ul denotes the cybernetic variable controlling the synthesis of
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enzyme l. The term βl denotes the rate constant governing
non-specific enzyme degradation, and rG denotes the specific
growth rate through all modes. The specific uptake/secretion
rates and the specific rate of enzyme synthesis were modeled
using saturation kinetics. The specific growth rate was given
by:

rG =
L∑
l=1

zµlql (e,k,x)

where zµl denotes the growth flux µ through mode l. The
control variables ul and vl, which control the synthesis and
activity of each enzyme respectively, were given by:

ul =
zslq̄l

L∑
l=1

zslq̄l

vl =
zslq̄l

max
l=1,...,L

zslq̄l

where zsl denotes the uptake flux of substrate s through
mode l. The model equations were implemented in Ju-
lia (v.0.4.2) [17] and solved using SUNDIALS [18].
The model code for each case study is available at
http://www.varnerlab.org.

Elementary mode and flux balance analysis: Elementary
modes were calculated using METATOOL 5.1 [19]. FBA
modes were defined as the solution flux vector through the
network connecting substrate uptake to cellmass and extra-
cellular product formation. The FBA problem was formulated
as:

max
w

(
wobj = θTw

)
Subject to : Sw = 0

αi ≤ wi ≤ βi i = 1, 2, . . . ,R

where S denotes the stoichiometric matrix, w denotes the
unknown flux vector, θ denotes the objective selection vector
and αi and βi denote the lower and upper bounds on flux wi,
respectively. The flux balance analysis problem was solved
using the GNU Linear Programming Kit (v4.52) [20]. For
each FBA mode, the objective wobj was to maximize either
the specific growth rate or the specific rate of byproduct
formation. Multiple FBA modes were calculated for each
objective by allowing the oxygen and nitrate uptake rates to
vary. For aerobic metabolism, the specific oxygen and nitrate
uptake rates were constrained to allow a maximum flux of 10
mM/gDW·hr and 0.05 mM/gDW·hr, respectively. Each FBA
mode was normalized by the specified objective flux.

Global sensitivity analysis: Variance based sensitivity anal-
ysis was used to estimate which FBA modes were critical
to model performance. The performance function used in this
study was the biomass yield on substrate. Candidate parameter
sets (N = 182,000) were generated using Sobol sampling
by perturbing the best fit parameter set ±50% [21]. Model
performance, calculated for each of these parameter sets, was
then used to estimate the total-order sensitivity coefficient for
each model parameter.

Estimation of model parameters: Model parameters were
estimated by minimizing the difference between simulations
and experimental measurements (squared residual):

min
k

T∑
τ=1

S∑
j=1

(
x̂j (τ)− xj (τ,k)

ωj (τ)

)2

where x̂j (τ) denotes the measured value of species j at time
τ , xj (τ,k) denotes the simulated value for species j at time
τ , and ωj (τ) denotes the experimental measurement variance
for species j at time τ . The outer summation is with respect
to time, while the inner summation is with respect to state.
The model residual was minimized using simulated annealing
implemented in the Julia programming language.
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