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Abstract

Single-cell analysis techniques are frequently used to characterize and detect cell populations

in biological samples. The latest advances in multicolor flow cytometry and mass cytometry

enable measurement of dozens of parameters per cell in thousands of cells per second. This

has led to bottlenecks in data analysis, since traditional gating techniques are insufficient for

these large, high-dimensional data sets. To address this, major efforts have been made to

develop automated analysis methods. A key step in automated analysis is the use of clustering

methods to detect high-dimensional clusters representing cell populations. Here, we have

performed an up-to-date, comprehensive, extensible comparison of clustering methods for

detecting cell populations in high-dimensional flow and mass cytometry data, including several

new methods that were not yet available during previous comparisons. We evaluated clustering

methods using four publicly available data sets containing major immune cell populations as

well as specific rare populations, with population identities available from manual gating. The

comparisons revealed that FlowSOM (with optional meta-clustering but without automatic

selection of the number of clusters) performed well across all data sets, and had among

the fastest runtimes. We recommend FlowSOM as a first choice for analyzing new data

sets. In particular, the fast runtimes enable interactive, exploratory analyses on a standard

laptop. Several methods were sensitive to random starts when detecting rare cell populations,

indicating that multiple random starts should be used in these cases. Our results provide

a guide for researchers deciding between clustering methods for analyzing data sets from

high-dimensional flow and mass cytometry experiments. R scripts to reproduce all analyses

are available from GitHub (https://github.com/lmweber/cytometry-clustering-comparison),

and preprocessed data files are available from FlowRepository (FR-FCM-ZZPH), allowing our

comparisons to be extended to include new clustering methods and reference data sets.
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Author Summary

Detecting cell types or populations is an important part of many biological experiments and

medical diagnostic procedures. For example, in cancer diagnostics, tumor subtypes may be

identified by the presence of certain cell types, while in vaccine research, the success of a

vaccine may be inferred from the frequency of activated immune cells. Flow cytometry and

mass cytometry are technologies used to identify cell populations by measuring the expression

of characteristic proteins on cell surfaces or within cells. With the latest advances, dozens

of proteins can be measured for each cell, precisely characterizing the diversity of cell types

present. However, this leads to challenges in data analysis. Recently, significant efforts have

been made to develop automated analysis methods, many of which rely on clustering methods

to detect groups of similar cells. Here, we have compared the performance of available

clustering methods, using several publicly available data sets as benchmarks. The results

provide guidance to researchers trying to decide which method to use when analyzing data

sets. By helping researchers choose appropriate data analysis methods, this work will improve

confidence in reported experimental results, and ultimately contribute to broader adoption of

these state-of-the-art technologies for applications in biology and medicine.

Introduction

Single-cell analysis techniques are frequently used to study cell populations, which may

be defined as groups of cells with consistent phenotypic or functional characteristics. The

identification or characterization of cell populations is a key analysis step in a broad range

of studies in biology and biomedicine. Examples of design settings include: identification

of known cell populations of interest in a biological sample, such as disease biomarkers;

characterization of previously unknown cell subpopulations; and differential abundance

analysis of cell populations between samples in different biological conditions, such as

diseased and healthy.

Flow cytometry (fluorescence activated cell sorting, or FACS) is a widely used tech-

nology for measuring expression levels of surface and intracellular proteins at the individual

cell level. In many cases, cell populations can then be defined according to their protein

expression profiles. In the field of immunology, this procedure has seen enormous success over

the past several decades, for example leading to a detailed framework of cellular differentiation

during hematopoiesis [1].

Modern multicolor flow cytometers are capable of measuring up to 10-15 parameters

per cell (in some cases up to 20), at a throughput rate of greater than 10,000 cells per
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second [2]. The resulting multidimensional data sets allow cell populations to be characterized

in great detail. However, the number of parameters (protein expression levels) that can

be measured per cell is ultimately limited by technical characteristics of flow cytometry, in

particular spectral overlap and autofluorescence [2].

Mass cytometry (also known as cytometry by time-of-flight, or CyTOF) allows a

greater number of parameters to be measured per cell [3]. In mass cytometry experiments,

antibodies are labeled with elemental isotopes selected from the transition metals, which are

rare in normal biological systems, instead of the fluorescent molecules used in flow cytometry.

Cells are then atomized and ionized in a high-temperature plasma and passed through a

time-of-flight mass spectrometer, which detects the presence or absence of the metal tags for

each cell. By using rare metal isotopes instead of fluorescent molecules to tag antibodies,

mass cytometry largely eliminates the problems of spectral overlap and autofluorescence.

However, throughput rates are somewhat lower than in flow cytometry, and it is not possible

to collect cells after an experiment, since they are destroyed during ionization. Currently, mass

cytometry systems are capable of measuring around 40 parameters per cell, at throughput

rates of hundreds of cells per second [3].

Using multicolor flow cytometry or mass cytometry systems, experimentalists can

now routinely create large data sets (up to millions of cells) with high dimensionality (dozens

of parameters). This has resulted in bottlenecks during data analysis. Traditionally, flow

cytometry data sets have been analyzed by “manual gating”, consisting of visual examination

of two-dimensional scatterplots to identify defined cell populations. However, manual gating

may be insufficient for high-dimensional data sets for several reasons: there are too many

possible two-dimensional projections to reliably analyze; any multidimensional structure in

the data is ignored; it is difficult to detect previously unknown cell populations; and the

analysis can be highly subjective. Therefore, major efforts have been made to partially or

fully automate the data analysis procedures [4].

A key step in many automated analysis pipelines is the use of clustering tools to

automatically detect or define cell populations. However, due to the “curse of dimensionality”,

standard clustering techniques such as k-means and hierarchical clustering generally do

not perform well in high-dimensional data spaces [5]. In order to address this, several

research groups have developed specialized clustering methods designed specifically for high-

dimensional flow and mass cytometry data sets. These methods take a variety of theoretical

approaches to solve the problems of high dimensionality, with the common aim of detecting

distinct populations of cells corresponding to known biology. Several recent studies have

provided overviews of available clustering methods [6, 7], and performance comparisons using

standardized benchmark data sets [8–10] (including the FlowCAP challenges [10]).

3/28

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 8, 2016. ; https://doi.org/10.1101/047613doi: bioRxiv preprint 

https://doi.org/10.1101/047613
http://creativecommons.org/licenses/by/4.0/


In this study, we carry out an up-to-date, comprehensive, extensible performance

comparison of clustering methods for high-dimensional flow and mass cytometry data,

including several new methods that were not yet available at the time of the FlowCAP

challenges. To evaluate the methods, we have selected four publicly available data sets

with moderate to high dimensionality, where cell population identities are known from

manual gating. The data sets include major immune cell populations as well as specific

rare populations, in well-characterized biological systems where manual gating is likely to

be reliable. Unlike the FlowCAP comparisons, we do not include low-dimensional flow

cytometry data sets, since we are interested in the performance of clustering algorithms

in high-dimensional settings. Our aim is to provide guidance to researchers faced with

decisions about which clustering tools to use when analyzing new data sets from high-

dimensional cytometry experiments. Code and preprocessed data files are available from

GitHub (https://github.com/lmweber/cytometry-clustering-comparison) and FlowRepository

(repository FR-FCM-ZZPH), allowing our analyses to be easily reproduced or extended to

include new clustering methods and reference data sets.

Methods

Clustering methods

We compared a total of 13 clustering methods. The methods are listed in Table 1, along with

key information and references to original publications. Most of the methods are designed

specifically for analyzing high-dimensional cytometry data, however some (FLOCK, flowMeans,

and SamSPECTRAL) were originally developed for lower-dimensional flow cytometry data, but

have been found to still perform well in higher-dimensional settings. Two of the methods

(FlowSOM meta and immunoClust all) are variations of others in the list. We have also

included k-means as a basic benchmark. Additional details including package versions and

parameter settings are included in Supp Table S1.

We included only methods with freely available software implementations, since our

aim is to provide practical recommendations to researchers performing data analyses. The

methods are based on a range of different theoretical approaches, which are briefly described

in Table 1. For comprehensive explanations of the methodological approaches, we refer to

the original references for each method (Table 1).
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Table 1. Overview of clustering methods compared in this study.

Method Environment and
availability

Short description Ref.

ACCENSE Standalone application
with graphical
interface

Nonlinear dimensionality reduction (t-SNE) followed by
density-based peak-finding and clustering in
two-dimensional projected space. Subsampling
recommended for large data sets.

[11]

DensVM R package (cytofkit)
from Bioconductor

Initial steps similar to ACCENSE, followed by support
vector machine to classify remaining uncertain points.
Subsampling recommended for large data sets.

[12]

FLOCK C source code (also
available in ImmPort
online platform)

Partitioning of each dimension into bins, followed by
merging of dense regions, and density-based clustering.

[13]

flowMeans R package from
Bioconductor

Based on k-means, with merging of clusters to allow
non-spherical clusters.

[14]

FlowSOM R package from
Bioconductor

Self-organizing maps (a type of neural network with a
single layer of nodes arranged in a topology-preserving,
two-dimensional lattice structure).

[15]

FlowSOM meta R package from
Bioconductor

Same as FlowSOM, with an additional “meta-clustering”
step using hierarchical clustering to merge clusters.

[15]

immunoClust R package from
Bioconductor

Iterative clustering based on finite mixture models, using
expectation maximization and integrated classification
likelihood. Uncertain cells are removed.

[16]

immunoClust all R package from
Bioconductor

Same as immunoClust, with additional step to classify
uncertain cells.

[16]

k-means R base packages (stats) Standard k-means clustering.

PhenoGraph Application with
graphical interface
(cyt) launched from
MATLAB (Python
implementation also
available)

Construction of nearest-neighbor graph, followed by
partitioning of the graph into sets of highly
interconnected points (“communities”).

[9]

Rclusterpp R package from CRAN Large-scale implementation of standard hierarchical
clustering, with improved memory requirements.

[17]

SamSPECTRAL R package from
Bioconductor

Spectral clustering, with modifications for improved
memory requirements.

[18]

SWIFT Application with
graphical interface
launched from
MATLAB

Iterative fitting of Gaussian mixture models by
expectation maximization, followed by splitting and
merging of clusters using a unimodality criterion.

[19]

Additional details including package versions and parameter settings used for each clustering method are
provided in Supp Table S1.
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Table 2. Summary of data sets used to evaluate clustering performance.

Data set Flow or
mass
cytometry

Clustering
task

No. of
cells

No. of
dimensions

No. of
manually
gated cell
populations
of interest

No. of
manually
gated
cells

Biological sample
description

Ref.

Levine 2015 marrow 32 Mass
cytometry

Detection
of major
immune cell
populations

265,627 32 surface
marker
proteins

14 104,184
(39%)

Healthy human
bone marrow
mononuclear cells
(BMMCs) from 2
individuals

[9]

Levine 2015 marrow 13 Mass
cytometry

Detection
of major
immune cell
populations

167,044 13 surface
marker
proteins

24 81,747
(49%)

Healthy human
BMMCs from 1
individual

[9]

Nilsson 2013 HSC Flow
cytometry

Detection
of a single
rare cell
population

44,140 13 surface
marker
proteins

1 (hemato-
poietic stem
cells, HSCs)

358
(0.8%)

Healthy human
BMMCs from 1
individual

[20]

Mosmann 2014 activ Flow
cytometry

Detection
of a single
rare cell
population

396,460 14 surface
and intra-
cellular
proteins

1 (activated
cytokine-
producing
memory
CD4 T cells)

109
(0.03%)

Healthy human
peripheral blood
mononuclear cells
(PBMCs) from 1
individual,
exposed to
influenza antigens

[19]

Data sets

We evaluated the performance of the clustering methods on four publicly available data sets,

from experiments in immunology using mass cytometry or high-dimensional flow cytometry.

We selected these data sets to allow testing of two distinct clustering tasks: detection of all ma-

jor immune cell populations (data sets Levine 2015 marrow 32 and Levine 2015 marrow 13);

and detection of a single rare cell population of interest (data sets Nilsson 2013 HSC and

Mosmann 2014 activ). Key characteristics of the data sets are summarized in Table 2.

For each of these data sets, manually gated cell population identities are available,

either directly within the original data files or easily reproducible from gating diagrams

published in the original papers. We have used these manually gated cell population

labels as the “truth” against which the automated clustering methods can be evaluated.

All of the data sets are from well-characterized biological systems, where manual gating

is likely to be reliable despite the high dimensionality. However, due to the limitations

of manual gating, labels are only available for a subset of cells in each data set. For

Levine 2015 marrow 32 and Levine 2015 marrow 13, the authors note that 61% and 51%

of cells remain unassigned [9]. For Nilsson 2013 HSC and Mosmann 2014 activ, we use only

labels for the rare cell population of interest. In each case, we run the clustering algorithms
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on all cells (i.e. including unassigned cells), and subsequently evaluate performance on the

cells with manually gated population labels.

The data sets were distributed by the original authors through FlowRepository [21] and

Cytobank [22]. Repository identifiers and links to experiment data pages can be found in the

original publications referenced in Table 2. Note that the data sets Levine 2015 marrow 32

and Levine 2015 marrow 13 are referred to as “benchmark data set 2” and “benchmark data

set 1” in the respective publication [9].

Data preprocessing and availability

For the mass cytometry data sets (Levine 2015 marrow 32 and Levine 2015 marrow 13), we

first combined the original FCS files into one file per data set and added the manually gated

population labels. Next, we applied an arcsinh transformation with a standard cofactor of 5

for mass cytometry (i.e. arcsinh(x/5)) [3]. We did not include any additional standardization

or normalization of dimensions. This was unnecessary since the arcsinh calculation already

transforms all dimensions to comparable scales; and in addition, since we perform clustering

using all dimensions, unnecessary standardization of dimensions that do not contain a strong

signal could amplify the effect of noise, adversely affecting clustering performance. We also

did not include any additional normalization between samples, since the authors of the data

sets already performed sample normalization (and the second data set contains only a single

sample) [9].

For the flow cytometry data sets (Nilsson 2013 HSC and Mosmann 2014 activ), addi-

tional preprocessing was required. We performed pre-gating in Cytobank to exclude doublets,

debris, and dead cells, following the published gating hierarchies displayed in Figure 2 in [20]

and Figure 4A in [19]. The remaining single, live cells were kept for further analysis. Compen-

sation was performed automatically in Cytobank using the spillover matrices provided with

the original FCS files. Next, we generated cell population labels for the rare populations of

interest by reproducing the remainder of the published gating hierarchies (Figure 2 in [20] and

Figure 4A in [19]). Finally, we applied an arcsinh transformation with a standard cofactor

of 150 for flow cytometry (i.e. arcsinh(x/150)) [3], and exported a new FCS file for each

data set. As previously, we did not include any additional standardization or normalization

of dimensions. Additional normalization between samples was also not required, since each

data set contains only a single sample.

Our preprocessed data files are available from FlowRepository (repository identifier

FR-FCM-ZZPH). Manually gated cell population labels are included within the FCS files.

For each data set, we provide files with and without the arcsinh transformation, since some
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Table 3. Number of clusters selected for each method.

Method Data set Selection options

Levine 32 Levine 13 Nilsson Mosmann Automatic
Indirect

parameters
Manual

ACCENSE 38 41 52 47 4 4*

DensVM 13 10 13 10 4

FLOCK 32 20 22 9 4

flowMeans 40 40 40 40 4 4*

FlowSOM 100 100 100 400 4

FlowSOM meta 40 40 40 40 4 4*

immunoClust 174 136 49 91 4 4*

immunoClust all 174 136 49 100 4 4*

k-means 40 40 40 40 4

PhenoGraph 32 26 29 26 4* 4

Rclusterpp 40 40 40 40 4

SamSPECTRAL 22 14 20 14 4 4*

SWIFT 1553 347 95 144 4

Options available to select the number of clusters for each method are indicated with check marks (4). Stars
indicate the option used if more than one option is available (4*). Additional details including the number of
clusters for all available options are provided in Supp Table S1.

clustering algorithms apply automatic transformations. The gating hierarchies used to select

the rare cell populations in the Nilsson 2013 HSC and Mosmann 2014 activ data sets are

reproduced in Supp Figs S1–S2.

Number of clusters and other parameter settings

The number of clusters is a key parameter for many clustering methods. Some methods

provide an option to select this number automatically, while others leave it as an input for

the user. Many methods with an automatic option also allow the user to adjust the number

indirectly by changing related parameters.

We used the automatic choice for methods where this was available and gave reasonable

results, and 40 clusters for each data set if a manual input was required. For methods where

an automatic choice was available but did not perform well, we adjusted parameters to give a

number close to 40. However, since several methods only allowed the number to be adjusted

through indirect parameters, it was not always possible to obtain exactly 40 clusters. For

some methods, it was not possible to adjust the automatic number at all. The choice of 40

clusters was designed to be conservative, in the sense of selecting too many clusters rather

than too few. All four data sets contain fewer than 40 true (manually gated) populations
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(Table 2); selecting fewer clusters tended to merge important clusters, especially for the data

sets containing rare cell populations.

Table 3 summarizes the number of clusters used for each method, and the options

available to select the number. For methods where more than one option is available, the

option we used for the main results is indicated. For three methods (DensVM, FLOCK, SWIFT), it

was not possible to adjust the automatic number of clusters, even if it was sub-optimal. Some

methods are designed to return large numbers of clusters (immunoClust, immunoClust all,

SWIFT); so we did not attempt to reduce these (see Discussion). Similarly, the large number

of clusters from FlowSOM are intended to be merged in a separate “meta-clustering” step,

which we have labeled as the method FlowSOM meta (see Table 1).

Additional details including the number of clusters for all available options, as well as

all other parameter settings for each method, are provided in Supp Table S1.

Evaluation criteria

We evaluated the clustering methods using F1 scores, precision, and recall. For a given true

(manually gated) cell population and a corresponding detected cluster from an algorithm, the

precision measures the proportion of cells in the detected cluster that are from the correct true

population (i.e. avoiding false positives); the recall (or sensitivity) measures the proportion

of cells from the true population that are assigned to the detected cluster (i.e. avoiding false

negatives); and the F1 score is the harmonic mean of precision and recall.

For the data sets with multiple cell populations of interest (Levine 2015 marrow 32

and Levine 2015 marrow 13), we calculated unweighted means of the F1 score, precision,

and recall across true populations. The use of unweighted means ensures that large and small

populations are represented equally. (Additional results with weighting by true population

size are included in Supp Figs S3–S4.) For the data sets with a single rare population of

interest (Nilsson 2013 HSC and Mosmann 2014 activ), we used the F1 score, precision, and

recall for the rare population. In all evaluations, we used the manually gated population labels

as the “truth” against which the F1 scores, precision, and recall were calculated. Clusters

were matched to true populations by maximizing the F1 score; in other words, for each true

population, we assigned the cluster giving the highest F1 score.

We investigated the protein expression profiles of detected clusters by comparing them

against the true (manually gated) populations using hierarchical clustering. In addition, we

recorded runtimes for each method, and evaluated the stability of the clustering algorithms

by running them multiple times with different random starts.
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Ensemble clustering

We performed ensemble clustering (consensus clustering) to test whether performance may

be improved by aggregating results from multiple clustering algorithms, as in previous

comparisons (for example, the FlowCAP challenges [10]). We used the clue R package [23]

to combine clustering results from the top five methods for each data set, according to mean

F1 score or F1 score in the main results. However, the following methods were excluded:

methods that required subsampled data (ACCENSE, DensVM, Rclusterpp) or removed outliers

(ACCENSE, immunoClust, SamSPECTRAL), since consensus clustering requires the same data for

each method; and methods that returned large numbers of clusters (FlowSOM, immunoClust,

immunoClust all, SWIFT), since this greatly increased runtime. For the Nilsson 2013 HSC

data set, the small size of the data set (see Table 2) meant that runtime remained fast even

with large numbers of clusters, so these methods were not removed. Methods that were

excluded were replaced with the next lower-ranked methods, so that five methods were still

included for each data set.

Stability across random starts

To evaluate the stability of the clustering algorithms across random starts, we ran methods

30 times with different random seeds, generating empirical distributions of the main evaluation

criteria (F1 score, precision, and recall) as well as runtime. Where possible, we ran the methods

in parallel on our multi-core server. We restricted the stability analysis to methods that were

available as R packages or command-line programs to allow scripting; this excluded ACCENSE

and SWIFT, which could only be accessed through graphical interfaces. For PhenoGraph,

we used the alternative Python command-line implementation (with multiple processor

cores) instead of the graphical interface (see Table 1). We also excluded DensVM, which was

difficult to parallelize since results are written to output files that may be overwritten; and

Rclusterpp, which required too many processor cores for each instance.

Results

Detection of major cell populations

Fig 1 summarizes the results of the comparison of clustering methods for data set

Levine 2015 marrow 32. This is a 32-dimensional mass cytometry data set, where we

are interested in the ability to detect 14 major immune cell populations (see Methods and

Table 2). Panel A shows the mean F1 score across the 14 populations, which we use as
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our main evaluation criterion. The best-performing method in terms of mean F1 score is

FlowSOM meta, followed by flowMeans, FLOCK, and PhenoGraph. Panel B provides additional

detail on the distribution of F1 scores across populations; further results according to popula-

tion size are provided in Supp Fig S5, revealing that among the top-performing methods,

the lowest F1 scores tend to occur for the smallest populations. Panel C displays the mean

precision and mean recall, showing that the relatively poor performance of immunoClust and

SWIFT is due to low recall, while Rclusterpp suffers from low precision. Panel D displays the

true (manually gated) population sizes, which range from 304 to 26,366 of the 265,627 total

cells. Panel E summarizes the runtimes, which vary over several orders of magnitude between

methods. Apart from k-means, FlowSOM and FlowSOM meta have the fastest runtimes, fol-

lowed by FLOCK. Two methods (Rclusterpp and SWIFT) make use of multiple processor cores

(the number of cores for each method is included in Supp Table S1). Panel F plots runtime

against mean F1 score, where the best-performing methods can be seen in the bottom-right

corner, combining fast runtimes with high mean F1 scores.

Fig 2 displays the same results for data set Levine 2015 marrow 13, which is a

13-dimensional mass cytometry data set (see Methods and Table 2). Compared to the first

data set, this data set is lower-dimensional, and cells are divided into a greater number of

major immune cell populations (24 instead of 14). The populations also span a larger range

of relative population sizes (Panel D). We are interested in the ability of clustering algorithms

to detect all 24 major immune cell populations. The top method in terms of mean F1

score (Panel A) is again FlowSOM meta, followed by PhenoGraph, flowMeans, and k-means.

However, for all methods, there are some populations with very low F1 scores (Panel B);

among the top-performing methods, the lowest F1 scores tend to occur for the smallest

populations (Supp Fig S6). As previously, the poor performance of immunoClust and SWIFT

is due to low recall, while Rclusterpp has low precision (Panel C). The fastest runtimes

are observed for k-means, FlowSOM, FlowSOM meta, and FLOCK (Panel E). In Panel F, the

best-performing methods can again be seen toward the bottom-right, combining fast runtimes

with high mean F1 scores.

To further investigate the quality of the clustering results, we used heatmaps to

compare the protein expression profiles of detected clusters and true (manually gated)

populations. Fig 3 displays an example of these results, for method FlowSOM meta with data

set Levine 2015 marrow 32. The heatmap shows the median expression intensities of each

protein marker (in columns), for each detected cluster or true population (in rows). Values are

arcsinh-transformed, and scaled between 0 and 1 for each protein marker. Rows and columns

are sorted by hierarchical clustering (Euclidean distance, average linkage), and rows are

labeled to indicate whether they represent true populations or detected clusters. We observe
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Figure 1. Results of comparison of clustering methods for data set Levine 2015 marrow 32.
(A) Mean F1 score across cell populations. (B) Distributions of F1 scores across cell populations. The box
plots show medians, upper and lower quartiles, whiskers extending to 1.5 times the interquartile range, and
outliers, with means shown additionally in red. (C) Mean precision and mean recall, together with mean F1
scores. (D) Number of cells per true population. (E) Runtimes, with methods that make use of multiple
processor cores indicated in gray. (F) Runtime vs. mean F1 score, where the best-performing methods
combining fast runtimes with high mean F1 scores are seen toward the bottom-right.
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Figure 2. Results of comparison of clustering methods for data set Levine 2015 marrow 13.
(A) Mean F1 score across cell populations. (B) Distributions of F1 scores across cell populations. The box
plots show medians, upper and lower quartiles, whiskers extending to 1.5 times the interquartile range, and
outliers, with means shown additionally in red. (C) Mean precision and mean recall, together with mean F1
scores. (D) Number of cells per true population. (E) Runtimes, with methods that make use of multiple
processor cores indicated in gray. (F) Runtime vs. mean F1 score, where the best-performing methods
combining fast runtimes with high mean F1 scores are seen toward the bottom-right.
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Figure 3. Median expression intensities of clusters detected by FlowSOM meta and true
(manually gated) populations, data set Levine 2015 marrow 32. Heatmap shows median expression
intensities of each protein marker (columns), for each detected cluster or true population (rows). Values are
arcsinh-transformed, and scaled between 0 and 1 for each protein marker. Rows and columns are sorted by
hierarchical clustering (Euclidean distance, average linkage). Cluster and population indices are included in
the row headings. Red labels indicate rows representing true (manually gated) populations, and blue labels
indicate rows representing clusters detected by FlowSOM meta. Additional figures for all other clustering
methods as well as the second data set are provided in Supp Figs S15–S42.
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Figure 4. Results of comparison
of clustering methods for data set
Nilsson 2013 HSC. (A) F1 score, pre-
cision, and recall for the rare cell popula-
tion of interest. Clustering methods are
ordered by decreasing F1 score. The rare
cell population consists of hematopoi-
etic stem cells (HSCs), and contains 358
manually gated cells, or around 0.8%
of total cells in the data set. (B) Run-
times, with methods that make use of
multiple processor cores indicated in gray.
(C) Runtime vs. F1 score, where the
best-performing methods combining fast
runtimes with high F1 scores are seen
toward the bottom-right.
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Figure 5. Results of comparison
of clustering methods for data set
Mosmann 2014 activ. (A) F1 score,
precision, and recall for the rare cell
population of interest. Clustering meth-
ods are ordered by decreasing F1 score.
The rare cell population consists of acti-
vated (cytokine-producing) memory CD4
T cells, from a sample of healthy hu-
man peripheral blood mononuclear cells
(PBMCs) exposed to influenza antigens.
The rare population contains manually
gated 109 cells, or around 0.03% of to-
tal cells in the data set. (B) Runtimes,
with methods that make use of mul-
tiple processor cores indicated in gray.
(C) Runtime vs. F1 score, where the
best-performing methods combining fast
runtimes with high F1 scores are seen
toward the bottom-right.
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that for most of the true populations (red rows), at least one cluster detected by FlowSOM meta

(blue rows) matches closely to the expression profile of the true population. This indicates

that FlowSOM meta has correctly detected clusters corresponding to these populations, with

some additional splitting of populations. However, the separation and matching is not perfect;

some true populations (red rows) group together before matching to any detected clusters.

For this data set, FLOCK, immunoClust, and immunoClust all achieve the smallest number

of mismatches (Supp Figs S18 and S22–S23). For data set Levine 2015 marrow 13, which

contains a greater number of true populations, FlowSOM achieves the smallest number of

mismatches (Supp Fig S34). Additional figures for all clustering methods and both data sets

are provided in Supp Figs S15–S42.

Detection of a single rare cell population

In Fig 4, we present results for data set Nilsson 2013 HSC. This is a 13-dimensional flow

cytometry data set, where we are interested in the ability to detect a single rare cell population.

The rare population consists of hematopoietic stem cells (HSCs), and contains 358 manually

gated cells, or around 0.8% of total cells in the data set (see Methods and Table 2). Our

main evaluation criteria are the F1 score, precision, and recall for the rare cell population.

These results are displayed in Panel A, with clustering methods ordered by decreasing F1

score. The best-performing methods in terms of F1 score are ACCENSE and k-means, followed

by FlowSOM meta and FlowSOM. Several of the lower-ranked methods achieve high recall

(sensitivity) but low precision. Runtimes are summarized in Panel B; for this data set, DensVM

is considerably slower than all other methods. Panel C plots runtime against F1 score, with

methods that achieve both high F1 scores and fast runtimes shown toward the bottom-right.

Fig 5 displays the results for data set Mosmann 2014 activ. This is a 14-dimensional

flow cytometry data set, where the interest is again in detecting a single rare cell population.

Here, the rare population consists of activated (cytokine-producing) memory CD4 T cells,

from a sample of healthy human peripheral blood mononuclear cells (PBMCs) exposed to

influenza antigens. Compared to the previous data set, the rare population represents a much

smaller proportion (109 manually gated cells, or around 0.03%), and the data set contains

a greater total number of cells (see Methods and Table 2). Panel A displays the F1 score,

precision, and recall for the rare population, with methods ordered by decreasing F1 score.

For this data set, the best-performing methods in terms of F1 score are SamSPECTRAL and

Rclusterpp, followed by FlowSOM meta and FlowSOM. PhenoGraph and SWIFT also perform

well; after these, there is a distinct drop-off in performance for the remaining methods.

SWIFT achieves the highest precision, but relatively low recall. Panel B reveals that the
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two top-performing methods (SamSPECTRAL and Rclusterpp) have very slow runtimes, with

Rclusterpp also requiring multiple processor cores; by contrast, FlowSOM meta and FlowSOM

have among the fastest runtimes. In Panel C, methods that combine high F1 scores with fast

runtimes can again be seen toward the bottom-right.

Optimal number of clusters

For methods where a manual selection of the number of clusters was required, we used

40 clusters for each data set (see Methods and Table 3). To confirm that this was an

appropriate choice, we performed additional analysis to calculate results over a range of

values for the number of clusters, using FlowSOM meta. Figure 6 displays the mean F1 score

(data sets with multiple populations) or F1 score (data sets with a single rare population),

across a range of values for the number of clusters. The results confirm that 40 clusters

(marked in red) is an optimal choice for this method across all data sets.

Ensemble clustering

Results of the ensemble (consensus) clustering are displayed in Supp Figs S7–S10. Unlike

previous studies (for example, the FlowCAP challenges [10]), ensemble clustering did not give

any improvements in performance compared to the best-performing individual methods. For

each data set, the top individual method achieves a higher mean F1 score across populations

(Levine 2015 marrow 32 and Levine 2015 marrow 13) or F1 score for the rare population

(Nilsson 2013 HSC and Mosmann 2014 activ) than the ensemble clustering.

Stability across random starts

Results of the stability analysis are displayed in Fig 7 (Mosmann 2014 activ) and Supp Figs

S11–S14 (all data sets; including runtimes). Each clustering method was run 30 times with dif-

ferent random starts to generate distributions of the evaluation criteria (see Methods). For the

data sets with multiple populations (Levine 2015 marrow 32 and Levine 2015 marrow 13;

Supp Figs S11–S12), the variation in mean F1 scores, mean precision, and mean recall is

relatively small for all methods. Several methods show zero variation, which in some cases is

due to the methods automatically assigning fixed random seeds. The variation in runtimes is

small for all methods.

However, for the data sets with a single rare population (Nilsson 2013 HSC and

Mosmann 2014 activ; Fig 7 and Supp Figs S13–S14), we observe significant variation in

F1 scores, precision, and recall. This includes several of the top-performing methods for
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Figure 6. Optimal choice of number of clusters for FlowSOM meta. Mean F1 scores (data sets
with multiple populations; Levine 2015 marrow 32 and Levine 2015 marrow 13) and F1 scores (data sets
with a single rare population; Nilsson 2013 HSC and Mosmann 2014 activ) across a range of values for the
number of clusters k. The number of clusters was varied between 5 and 80, in steps of 5. The optimal choice
of 40 clusters for this method is indicated with a red vertical line.

Figure 7. Stability of clustering results across random starts for data set Mosmann 2014 activ.
Distributions of F1 scores, precision, and recall for the rare cell population in data set Mosmann 2014 activ,
generated by running each clustering method 30 times with different random starts. The box plots show
medians, upper and lower quartiles, whiskers extending to 1.5 times the interquartile range, and outliers.
Additional results for all data sets (including runtimes) are provided in Supp Figs S11–S14.
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these data sets, including SamSPECTRAL, FlowSOM meta, FlowSOM, PhenoGraph, and k-means.

In particular, there are a number of outlier runs for these methods, where performance is

considerably better or worse than average. Some methods again show zero variation. The

variation in runtimes is highest for PhenoGraph and SamSPECTRAL (for the Nilsson 2013 HSC

data set), and small for all other methods.

Discussion

The automated detection of clusters representing cell populations in high-dimensional flow

and mass cytometry data sets is a difficult computational task, since standard clustering

techniques generally do not perform well in high-dimensional data spaces. In this study, we

have compared the performance of a range of leading clustering methods for high-dimensional

cytometry data (Table 1). We evaluated the methods using four publicly available data sets

from experiments in immunology (Table 2). The data sets were selected to test two distinct

clustering tasks: detection of all major cell populations, and detection of individual rare

populations. The clustering methods include several new methods that were not yet available

at the time of earlier comparisons, such as the FlowCAP challenges [10].

FlowSOM (with meta-clustering but without automatic number of clusters) gives

superior performance and fast runtimes. Our comparisons showed that FlowSOM meta

was the best-performing method in terms of mean F1 score for the data sets with mul-

tiple cell populations (Levine 2015 marrow 32 and Levine 2015 marrow 13; Figs 1–2).

FlowSOM meta also achieved a good separation and matching between detected clusters

and true populations (Fig 3). For the data sets with a single rare cell population of interest

(Nilsson 2013 HSC and Mosmann 2014 activ), FlowSOM meta was the third-best performing

method in terms of F1 score for both data sets (Figs 4–5).

In addition, FlowSOM meta had extremely fast runtimes, running in less than one

minute for each of the first three data sets and less than four minutes for Mosmann 2014 activ;

and required only a single processor core (Figs 1–2 and 4–5). This placed FlowSOM meta

among the fastest methods overall. By contrast, the slowest methods for each data set

took several hours to complete. In particular, for Mosmann 2014 activ, the two methods

that outperformed FlowSOM meta in terms of F1 score (SamSPECTRAL and Rclusterpp) were

extremely slow; Rclusterpp also required multiple processor cores and subsampling (see

below) to complete in a reasonable amount of time.

The modeling approach taken by FlowSOM and FlowSOM meta is based on self-

organizing maps, followed by an optional “meta-clustering” step using hierarchical clustering
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to merge clusters. In this study, we have used the name FlowSOM meta to indicate that

the meta-clustering step is included (Table 1). The implementation of the meta-clustering

includes an option to select the final number of clusters automatically; however, we found

that this performed relatively poorly. Since it was also possible to select the number manually,

we instead used 40 clusters for each data set, the same number as for the methods where no

automatic option was available (Table 3). We confirmed that the default choice of 40 clusters

was appropriate by calculating additional results over a range of alternative values (Fig 6).

Based on these results, we recommend the use of FlowSOM with meta-clustering (but

without automatic selection of the number of clusters) as a first choice for analyzing data sets

from high-dimensional flow and mass cytometry experiments. In particular, the fast runtimes

and minimal computational requirements make this method well-suited for analyzing large

data sets, and make it possible to perform interactive, exploratory analyses on a standard

laptop. The availability as an R/Bioconductor package (Table 1) also enables easy integration

into analysis pipelines, including downstream statistical analysis and plotting.

Other high-performing methods. Several other clustering methods also performed well

for these data sets. For the data sets with multiple cell populations, flowMeans, FLOCK, and

PhenoGraph consistently performed well. However, runtimes for flowMeans and PhenoGraph

were significantly slower than FlowSOM meta. Among these, flowMeans is available as an

R/Bioconductor package, while PhenoGraph includes a graphical user interface and convenient

visualization tools within its associated MATLAB tool cyt, making it accessible for users

without command-line or programming expertise. A Python command-line implementation

of PhenoGraph is also available. FLOCK requires compilation from C source code, which is a

difficult procedure for most users; however, an online implementation is also available in the

ImmPort analysis platform (Table 1).

For the data sets with a single rare cell population, the sets of top methods differed

between the two data sets. For Nilsson 2013 HSC, the two best-performing methods were

ACCENSE and k-means; but these methods performed poorly for Mosmann 2014 activ. The

two top methods for Mosmann 2014 activ were SamSPECTRAL and Rclusterpp, but these

suffered from slow runtimes and heavy computational requirements, as mentioned above.

FlowSOM meta and FlowSOM were the third and fourth-ranked methods for both data sets.

PhenoGraph and SWIFT also performed well for Mosmann 2014 activ; in particular, SWIFT

achieved the highest precision for this data set. This may be an important consideration for

some applications if precision (avoiding false positives) is judged to be more important than

recall (sensitivity, or avoiding false negatives). The difference in rankings between these two

data sets may be related to the relative sizes of the rare populations. For Nilsson 2013 HSC,
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the rare population of hematopoietic stem cells accounted for 0.8% of total cells, while for

Mosmann 2014 activ, the activated memory CD4 T cells represented only 0.03% (Table 2).

In many cases, detecting a smaller proportion is a more difficult computational task, making

the rankings for Mosmann 2014 activ more informative in practice.

Unlike previous comparisons (for example, the FlowCAP challenges [10]), ensemble

clustering did not give any improvements in performance compared to the best-performing

individual methods for each data set (Supp Figs S7–S10).

Parameter inputs to manually select the number of clusters are more important

than automatic options. In many applications of clustering, the expected number of

clusters is unknown in advance. Several clustering methods in this study included options to

determine the number of clusters automatically, while others left it as an input for the user.

We used the automatic numbers where available, and a consistent choice of 40 clusters for

each data set if a manual selection was required. If the automatic choice did not perform

well, we also attempted to use 40 clusters; however, for some methods, it was not possible to

change the number, while for others it was only possible to adjust an indirect parameter (see

Methods and Table 3).

We found that the automatic options frequently performed poorly. Several methods

selected too few clusters, tending to merge important clusters, which negatively affected

performance as well as the interpretability of the results. Overall, considerable fine-tuning

was required to ensure that each method selected an adequate number of clusters. In general,

while the ability to select the number of clusters automatically is an appealing theoretical

feature of clustering algorithms, our experiences indicate that its absence is not a severe

limitation for studies of this type. On the contrary, an inability to easily adjust the number

of clusters was a significant limitation for several methods where the automatic options

performed poorly (for example, DensVM and FLOCK; see Table 3).

In practice, it is often straightforward for experienced immunological researchers to

make a reasonable initial choice for the number of clusters, and to merge multiple clusters

from a known cell population during later computational analysis. An optimal strategy may

be to generate somewhat too many clusters, to ensure that small populations are not merged

into larger clusters; and subsequently merge some of the excess clusters manually. However,

this strategy is only feasible if it is possible to manually specify the desired number of clusters.

For studies of this type, a simple, direct parameter input to manually select the number of

clusters is a highly desirable feature of clustering algorithms.
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Unweighted averages ensure equal representation of large and small populations.

For the data sets with multiple cell populations, we used unweighted means of the F1 score,

precision, and recall across populations as our evaluation criteria. The use of unweighted

averages ensures that large and small populations are represented equally. The relative

population sizes in these data sets span several orders of magnitude (Figs 1D and 2D), so

calculating averages weighted by population size would largely ignore the contribution of

the smaller populations. This was especially a concern since we observed that, for many

clustering methods, the F1 scores for individual populations were considerably worse for

smaller populations than larger ones (Supp Figs S5–S6). Additional results with averages

weighted by population size showed that, for many methods, the weighted mean F1 scores

were higher than the unweighted ones, as expected due to the better performance among

larger populations; this also influenced the final rankings of the methods (Supp Figs S3–S4).

Several clustering methods are sensitive to random starts when detecting rare

cell populations. To investigate the stability of the clustering algorithms across random

starts, we ran methods multiple times with different random seeds. For the data sets with

a single rare population of interest, this revealed significant variability for several methods.

In particular, we observed a number of outlier runs, where performance was considerably

better or worse than average. The variability was large enough that the rankings of the

top methods for these data sets would change significantly for certain random seeds. The

strongly affected methods included several of the best-performing methods for these data sets,

including FlowSOM meta, PhenoGraph, and SamSPECTRAL (Fig 7 and Supp Figs S13–S14). By

contrast, for the data sets with multiple populations of interest, variability was relatively

minor (Supp Figs S11–S12). These results indicate that the sensitivity of clustering algorithms

to random starts can be an important consideration, especially when the aim is to detect

rare cell populations. In these cases, we recommend running clustering methods multiple

times with different random starts.

Results depend on the choice of benchmark data sets. Throughout this study, we

have used manually gated cell population labels as the “truth” against which the clustering

methods were evaluated. All of the data sets we used are from well-understood biological

systems, where manual gating is likely to be reliable despite the high dimensionality. However,

the effectiveness of this evaluation strategy clearly depends on the accuracy and completeness

of the manual gating. If the manually gated populations are poorly defined, it will be

difficult to accurately determine clustering performance. In fact, the authors of the data sets

Levine 2015 marrow 32 and Levine 2015 marrow 13 noted that 61% and 51% of cells in
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these data sets were not assigned to any of the manually gated populations (see Methods and

Table 2); [9]. For each data set, we ran clustering methods on all cells (including unassigned

cells), to approximate typical analysis settings where prior knowledge about cell population

identities is unavailable. Subsequently, we evaluated performance using the subset of cells

with manually gated population labels. Potentially, inaccuracies in these labels, such as

missing or incomplete populations or incorrectly labeled cells, could significantly affect the

results. Despite this, the analysis for these data sets seems reliable, since the biological

samples were sourced from healthy individuals and all major immune cell populations were

present.

All four data sets used in this study were derived from real, experimental data sets. We

did not include any synthetic data sets, due to the difficulty of designing accurate simulations

in high-dimensional settings. Accurate synthetic data sets can be highly informative since

the exact “truth” is known for every data point, allowing precise calculations of evaluation

criteria such as the F1 score. Conversely, the advantage of real data sets is that they fully

reflect the high-dimensional complexity of actual experimental settings. Since manually gated

cell population labels are an accurate proxy for true labels in well-understood biological

systems such as those considered here, we have chosen to focus on real data sets only. These

four benchmark data sets cover a range of possible study designs in high-dimensional flow

and mass cytometry, making our results generalizable for future experiments.

Some methods are designed for different or complementary analysis tasks.

Throughout this study, we have compared methods by evaluating their performance on

the task of fully automated detection of high-dimensional clusters representing cell popu-

lations. However, some methods are not strictly intended for performing fully automated

analysis in this manner, or include additional or complementary analysis capabilities that

we have not tested. For example, the authors of SWIFT describe a semi-automated analysis

pipeline, where SWIFT is initially used to group cells into a large number of small clusters, and

these clusters are then further analyzed by gating. This strategy is intended to be particularly

effective for detecting rare populations [19], which is consistent with our results (Fig 5).

Similarly, immunoClust is designed to return a relatively large number of clusters [16]. In

our evaluations, immunoClust and immunoClust all split large populations into multiple

clusters, which negatively affects performance for these populations (Supp Figs S5–S6) as

well as overall performance (Figs 1–2; see Supp Figs S22–S23 and S36–S37 for illustrations

of the cluster splitting). In addition, immunoClust includes further analysis capabilities to

compare cell populations between different biological samples, which is a central task in many

experimental settings [16].
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Three methods (ACCENSE, DensVM, and Rclusterpp) required the use of subsampling.

For ACCENSE and DensVM, this is recommended by the authors [11, 12]; for Rclusterpp, it is

not recommended directly but was required due to the heavy computational requirements

(Figs 1–2 and 4–5). The numbers of subsampled cells we used for each data set are indicated

in Supp Table S1. Although subsampling can be performed in a density-dependent manner

to preserve smaller populations (as in ACCENSE, [11]), there remains a risk that for extremely

rare populations, a significant proportion of cells may be discarded. Therefore, we do not

recommend using these methods for detecting rare cell populations.

Similarly, several methods removed outliers or cells with uncertain cluster assignments

(ACCENSE, immunoClust, and SamSPECTRAL). In the case of immunoClust, uncertain cells

are removed by default, but can be classified in an additional step, which we have labeled

as the separate method immunoClust all (Table 1). This behavior explains why the F1

score for immunoClust is zero for the data sets with rare cell populations (Figs 4–5); the

rare populations of interest are completely removed as uncertain cells. The additional

classification step in immunoClust all then assigns them to other populations. In general, as

for subsampling, we do not recommend using these methods to detect rare cell populations.

Despite this, we observed that ACCENSE performed very well for the Nilsson 2013 HSC data

set (Fig 4), and SamSPECTRAL for the Mosmann 2014 activ data set (Fig 5), so there may be

some cases where the removal of outliers does not significantly harm performance.

We also note that ACCENSE and DensVM rely on an initial nonlinear dimensionality

reduction to two dimensions (using the t-SNE algorithm [24]), followed by the use of a

density-based peak-finding algorithm to detect clusters in the projected space. Since the

clustering effectively occurs in the two-dimensional projected space, this methodology may

discard a significant amount of information, which could explain why these methods generally

did not perform as well as some of the other approaches.

Recommendations. We have performed an up-to-date, comprehensive, extensible com-

parison of clustering methods for automated detection of cell populations in high-dimensional

flow and mass cytometry data. We compared 13 clustering methods (11 distinct methods

and two variations), using four publicly available data sets from experiments in immunology.

Based on our results, we recommend the use of FlowSOM (with the optional meta-clustering

step but without automatic selection of the number of clusters) as a first choice for ana-

lyzing data sets from mass cytometry and high-dimensional flow cytometry experiments.

This method gave the best performance for the data sets with multiple cell populations,

and was ranked third for the data sets with a single rare cell population of interest. In

addition, runtimes were extremely fast and computational requirements minimal, making
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FlowSOM well-suited for analyzing large data sets and performing interactive, exploratory

analyses on a standard laptop. Other methods that performed well across several data

sets, with reasonable runtimes, included PhenoGraph, flowMeans, and FLOCK. We also found

that several clustering methods were sensitive to random starts when detecting rare cell

populations, so for these data sets we recommend the use of multiple random starts to

investigate variability. R scripts and preprocessed data files to reproduce our analyses are

available from GitHub (https://github.com/lmweber/cytometry-clustering-comparison) and

FlowRepository (repository FR-FCM-ZZPH), allowing our comparisons to be extended to

include new clustering methods and reference data sets.

Supporting Information

S1 Supplementary Information

Supplementary Figures S1–S42. Document containing all supplementary figures refer-

enced in the text.

S1 Table

Supplementary Table S1. Spreadsheet containing additional details on clustering methods.
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