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Abstract

Recent technological developments in high-dimensional flow cytometry and mass cytometry

(CyTOF) have made it possible to detect expression levels of dozens of protein markers

in thousands of cells per second, allowing cell populations to be characterized in unprece-

dented detail. Traditional data analysis by “manual gating” can be inefficient and unreliable

in these high-dimensional settings, which has led to the development of a large number

of automated analysis methods. Methods designed for unsupervised analysis use special-

ized clustering algorithms to detect and define cell populations for further downstream

analysis. Here, we have performed an up-to-date, extensible performance comparison of

clustering methods for high-dimensional flow and mass cytometry data. We evaluated

methods using several publicly available data sets from experiments in immunology, con-

taining both major and rare cell populations, with cell population identities from expert

manual gating as the reference standard. Several methods performed well, including FlowSOM,

X-shift, PhenoGraph, Rclusterpp, and flowMeans. Among these, FlowSOM had extremely

fast runtimes, making this method well-suited for interactive, exploratory analysis of large,

high-dimensional data sets on a standard laptop or desktop computer. These results extend

previously published comparisons by focusing on high-dimensional data and including new

methods developed for CyTOF data. R scripts to reproduce all analyses are available from

GitHub (https://github.com/lmweber/cytometry-clustering-comparison), and pre-processed

data files are available from FlowRepository (FR-FCM-ZZPH), allowing our comparisons to

be extended to include new clustering methods and reference data sets.
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Introduction

Flow cytometry is a widely used technology for identifying and quantifying cell types

(populations) by measuring expression levels of surface and intracellular proteins in individual

cells. In immunology, experimental settings include: detecting specific cell populations such

as disease biomarkers; characterizing unknown cell populations; and quantifying differences in

population abundance between samples in different conditions, such as diseased and healthy.

Modern flow cytometers can routinely detect 15-20 parameters (protein markers) per cell [1,2],

at throughput rates above 10,000 cells per second. Detecting a large number of parameters per

cell allows populations to be characterized in great detail. However, the number of parameters

is ultimately limited by technical issues such as spectral overlap and autofluorescence [3].

Mass cytometry (also known as CyTOF, for “cytometry by time-of-flight”) is a recent

technological development [4]. Instead of using fluorescent tags, antibodies are labeled with

transition metal isotopes, and antibody-stained cells are passed through a time-of-flight mass

spectrometer. By using metal isotopes instead of fluorescent tags, mass cytometry greatly

reduces the problem of spectral overlap and eliminates autofluorescence, resulting in the

ability to detect a greater number of parameters per cell. Currently, mass cytometry systems

can measure around 40 parameters per cell, and this could theoretically increase to more

than 100 [4]. Throughput rates are on the order of hundreds of cells per second; and unlike

flow cytometry, it is not possible to collect cells after an experiment, as they are destroyed

during the mass spectrometry step.

Data analysis for flow cytometry has traditionally been done by “manual gating”, which

consists of visual inspection of two-dimensional scatterplots to identify known cell populations.

However, this technique suffers from several major limitations, including subjectivity, operator

bias, difficulties in detecting unknown cell populations, and difficulties in reproducibility [2,5].

These problems are especially pronounced in high-dimensional settings (large numbers of

parameters per cell), since there are too many two-dimensional projections to reliably analyze,

and any multidimensional structure not seen in the two-dimensional projections is ignored.
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To address these issues, major efforts have been made to develop partially or fully automated

analysis methods.

Automated analysis methods may be grouped into two main categories: unsupervised

and supervised [2]. Unsupervised approaches use clustering methods to detect cell populations,

defined here as groups of cells with similar protein marker expression profiles. Clustering

analysis may be performed on data from a single biological sample; on data from multiple

samples on a per-sample basis; or on combined data from multiple samples. Detected

clusters (cell populations) can then be analyzed individually or compared across samples, for

example by comparing cluster frequencies between samples in different biological conditions.

Importantly, this procedure allows previously unknown cell populations to be described in an

unbiased, data-driven manner; this type of exploratory analysis is difficult or impossible with

manual gating, especially when using high-dimensional data.

By contrast, supervised approaches rely on an external biological or clinical variable

describing each sample. This could be a simple categorical variable such as disease status or

tissue type, or a more complex clinical outcome such as survival time. Supervised approaches

use this external variable as an input to train a model, which can then be used to predict the

status of new samples. Many supervised approaches will also return an interpretable model;

for example returning a set of cell populations correlated with the external variable, which

may be investigated as possible biomarkers.

During the last 5-10 years, many new automated analysis methods have been proposed,

but guidance for researchers and bioinformaticians interested in applying them has been

difficult to find. To address this, the FlowCAP (“Flow Cytometry: Critical Assessment of

Population Identification Methods”) Consortium organized a series of challenges to objectively

evaluate the performance of the various methods, using standardized benchmark data sets.

The FlowCAP-I challenges evaluated unsupervised methods, finding that several automated

methods were able to accurately reproduce expert manual gating [6]. Subsequent FlowCAP

challenges focused on supervised approaches. The FlowCAP-IV challenge used a complex

4/31

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 8, 2016. ; https://doi.org/10.1101/047613doi: bioRxiv preprint 

https://doi.org/10.1101/047613
http://creativecommons.org/licenses/by/4.0/


data set containing a clinical survival time variable for samples from a large number of

patients, and found that two methods were able to generate statistically significant predictive

value [7].

In this study, we focus on unsupervised approaches. While supervised approaches

may be superior when external status or outcome variables are available across multiple

biological samples, there are many situations where these variables do not exist. In particular,

unsupervised approaches can be used for exploratory analysis, for example to investigate

the diversity of cell populations within a single sample; this type of exploratory analysis

is not possible in a supervised context. Several recent studies have also used unsupervised

approaches to compare frequencies of detected cell populations between groups of samples

in different biological conditions, using high-dimensional CyTOF data [8,9]. However, the

FlowCAP-I challenges did not include any high-dimensional benchmark data sets, making it

difficult to interpret the FlowCAP-I findings for new studies involving CyTOF data. Due to

the “curse of dimensionality”, the performance of clustering algorithms in low-dimensional

settings is in general not a good guide to performance in higher-dimensional settings [10, 11];

both clustering accuracy and computational efficiency may be severely affected, depending

on the mathematical properties of the algorithm.

In addition, since the publication of the FlowCAP-I results, several new clustering

methods designed specifically for CyTOF data have been published. A number of recent stud-

ies have provided overviews of available clustering methods for high-dimensional cytometry

data [1, 2, 12–14]; performance comparisons against a subset of existing methods while intro-

ducing a new method [15,16]; or performance comparisons using simulated data [17]. However,

a comprehensive, updated benchmarking of methods using high-dimensional experimental

data sets has been lacking.

In this study, we have performed an up-to-date, extensible performance comparison

of clustering methods for high-dimensional flow and mass cytometry data. This includes

several new methods that were not yet available at the time of the FlowCAP-I challenges, and
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which have been developed specifically with high-dimensional CyTOF data in mind. Unlike

FlowCAP-I, which used data sets with low to moderate dimensionality, we have used high-

dimensional data sets, since clustering algorithms may behave very differently in these settings.

We have selected six publicly available data sets, where cell population identities are known

from expert manual gating. The data sets contain major and rare immune cell populations in

well-characterized biological systems, where manual gating is likely to be reliable despite the

high dimensionality. We test two distinct clustering tasks: detection of all major immune cell

populations, and detection of a single rare cell population of interest. The clustering methods

are evaluated by their ability to reproduce the expert manual gating, using an extension of the

original FlowCAP-I methodology. Our aim is to provide guidance to researchers and bioinfor-

maticians interested in applying clustering methods for unsupervised analysis of new data

sets from experiments in high-dimensional cytometry. Code and pre-processed data files are

available from GitHub (https://github.com/lmweber/cytometry-clustering-comparison) and

FlowRepository (repository FR-FCM-ZZPH), allowing our analyses to be easily reproduced

or extended to include new clustering methods and reference data sets.
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Materials and Methods

Clustering methods

We compared a total of 18 clustering methods (Table 1). All of these methods are freely

available; we did not include any methods without freely available software implementa-

tions, since our aim is to provide practical recommendations to researchers performing data

analyses. Our results also do not include methods that we were unable to run successfully

(Supplementary Methods). The methods are based on a wide range of theoretical approaches,

which are briefly described in Table 1. For detailed explanations of the approaches, we refer

to the original references. Software package versions are listed in Supplementary Table S1.

In addition to the individual clustering analysis, we also performed ensemble clustering

(consensus clustering) using the clue R package [18] (Supplementary Methods), as done

previously in the FlowCAP-I challenges.

Data sets

To evaluate the clustering methods, we selected six publicly available data sets from ex-

periments in immunology using CyTOF or high-dimensional flow cytometry (Table 2).

Throughout the comparisons, we use manually gated cell population labels as the reference

populations, or “ground truth”, against which the clustering algorithms are evaluated; the

data sets are from well-characterized biological systems, where manual gating is likely to

be reliable even in high-dimensional settings. For each of these data sets, manually gated

population labels are available either directly within the data files published by the original

authors, or are reproducible from published gating diagrams.

We ran clustering methods on all cells (including unassigned cells, i.e. those not

assigned to any population by manual gating), and evaluated performance on the cells where

manually gated population labels were available (Table 2). The data sets contain both major

and rare cell populations, allowing us to test performance on two distinct clustering tasks:
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detection of all major immune cell populations, and detection of a single rare cell population

of interest.

In order to compare against the previous FlowCAP results, we also included the

two highest-dimensional data sets from FlowCAP-I (Supplementary Table S2). However,

these data sets are still relatively low-dimensional compared to the six main data sets.

Therefore, the results from the main data sets should be used for inferring performance on

new high-dimensional data sets.

Pre-processed data files are available for download from FlowRepository (repository

FR-FCM-ZZPH) [19]. Original data files can be obtained through the references in Table 2.

Data pre-processing and parameter settings

Data pre-processing included the application of an arcsinh transformation with a stan-

dard cofactor of 5 (CyTOF data) or 150 (flow cytometry data) [4], i.e. arcsinh(x/5) or

arcsinh(x/150). For the flow cytometry data sets, pre-gating to exclude doublets, debris, and

dead cells was also required (Supplementary Methods and Supplementary Figures S37–S38).

The clustering algorithms were run on all remaining single, live cells; no additional pre-gating

was performed, since our aim is to evaluate performance in maximally automated settings.

In addition, we did not perform any standardization of individual protein marker dimensions.

This was unnecessary since the arcsinh already transforms all dimensions to comparable

scales; and importantly, standardization of dimensions that do not contain a true signal could

amplify the effect of noise and outliers, adversely affecting clustering performance.

For each clustering method, we experimented with input parameters in order to give

the best possible performance. For many methods, the most important input parameters

related to the number of clusters. Some methods provided an option to select the number

of clusters automatically; some methods allowed the user to adjust the number indirectly

through other parameters; and some methods left it as a direct user input (Supplementary

Table S3). We used the automatic option where this was available and gave reasonable results,
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and otherwise selected 40 clusters for each data set, or adjusted indirect parameters to get

close to 40 clusters. The choice of 40 clusters was designed to be conservative, in the sense of

tending to select too many clusters rather than too few, in order to avoid smaller populations

merging into larger ones (see Supplementary Methods and Supplementary Figure S21 for

more details). Supplementary Table S3 summarizes the final number of clusters for each

clustering method and data set. All other parameter settings used in the final results are

recorded in Supplementary Table S1.

Evaluation methodology

Our evaluation strategy was largely based on the FlowCAP-I methodology. As in FlowCAP-I,

we used the F1 score (harmonic mean of precision and recall) as our main evaluation criterion.

The F1 score provides a value between 0 and 1 for each cluster, with 1 indicating a perfect

reproduction of the corresponding manually gated population. High precision implies a low

proportion of false positives, and high recall (sensitivity) implies low false negatives.

However, we made two important changes to the methodology. Firstly, we matched

clusters to reference populations (manually gated populations) using the Hungarian assignment

algorithm, which solves the assignment problem by finding a one-to-one mapping that

maximizes the sum of F1 scores across reference populations. The use of the Hungarian

algorithm in this context was recently introduced by [15]. By contrast, in FlowCAP-I, clusters

were matched to reference populations by maximizing the F1 score individually for each

population, which potentially allows the same cluster to map to multiple reference populations.

For data sets with only a single population of interest (see Table 2), we selected the cluster

maximizing the F1 score for this population, since there is no ambiguity in this case.

Secondly, after mapping clusters to reference populations, we used unweighted averages

to calculate the mean precision, mean recall, and mean F1 score across reference populations.

We used unweighted averages in order to give equal representation to both large and small

populations. By contrast, FlowCAP-I used averages weighted by population size, which gives
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more importance to relatively larger populations. For data sets with only a single population

of interest, we reported the precision, recall, and F1 score for this population.

We also recorded runtimes, since these varied by several orders of magnitude between

the various methods. While the runtimes are not precisely comparable between methods

due to differences in subsampling, number of processor cores, and hardware specifications

(Supplementary Tables S1 and S4), the order-of-magnitude differences provide important

information for users.

To further investigate the quality of the clustering results, we examined the protein

expression profiles of detected clusters, and compared them against reference populations

using heatmaps together with hierarchical clustering. Finally, we investigated stability of

the clustering results by running methods multiple times with different random starts and

bootstrap resamples (Supplementary Methods).
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Table 1. Overview of clustering methods compared in this study.

Method Environment and
availability

Short description Ref.

ACCENSE Standalone application
with graphical interface

Nonlinear dimensionality reduction (t-SNE) followed by
density-based peak-finding and clustering in two-dimensional
projected space.

[20]

ClusterX R package (cytofkit)
from Bioconductor

Density-based clustering on t-SNE projection map; faster than
DensVM.

[21]

DensVM R package (cytofkit)
from Bioconductor

Density-based clustering on t-SNE projection map; similar to
ACCENSE, with additional support vector machine to classify
uncertain points.

[22]

FLOCK C source code (also
available in ImmPort
online platform)

Partitioning of each dimension into bins, followed by merging
of dense regions, and density-based clustering.

[23]

flowClust R package from
Bioconductor

Model-based clustering based on multivariate t mixture models
with Box-Cox transformation.

[24]

flowMeans R package from
Bioconductor

Based on k-means, with merging of clusters to allow
non-spherical clusters.

[25]

flowMerge R package from
Bioconductor

Extension of flowClust; merges cluster mixture components
from flowClust.

[26]

flowPeaks R package from
Bioconductor

Peak-finding on smoothed density function generated by
k-means; using finite mixture model.

[27]

FlowSOM R package from
Bioconductor

Self-organizing maps, followed by hierarchical consensus
meta-clustering to merge clusters.

[28]

FlowSOM pre R package from
Bioconductor

Same as FlowSOM, but without the final consensus
meta-clustering step.

[28]

immunoClust R package from
Bioconductor

Iterative clustering based on finite mixture models, using
expectation maximization and integrated classification
likelihood.

[29]

k-means R base packages (stats) Standard k-means clustering.

PhenoGraph Graphical interface (cyt)
launched from MATLAB
(Python implementation
also available)

Construction of nearest-neighbor graph, followed by
partitioning of the graph into sets of highly interconnected
points (“communities”).

[16]

Rclusterpp R package from GitHub
(older version on CRAN)

Large-scale implementation of standard hierarchical clustering,
with improved memory requirements.

[30]

SamSPECTRAL R package from
Bioconductor

Spectral clustering, with modifications for improved memory
requirements.

[31]

SPADE R package from GitHub
(older version on
Bioconductor; also
available in Cytobank
online platform)

“Spanning-tree progression analysis of density-normalized
events”; organizes clusters into a branching hierarchy of related
phenotypes.

[32]

SWIFT Graphical interface
launched from MATLAB

Iterative fitting of Gaussian mixture models by expectation
maximization, followed by splitting and merging of clusters
using a unimodality criterion.

[33]

X-shift Standalone application
(VorteX) with graphical
interface

Weighted k-nearest-neighbor density estimation, detection of
local density maxima, connection of points via graph, and
cluster merging.

[15]

Additional details including software package versions and parameter settings used for each clustering method are
included in Supplementary Table S1.
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Table 2. Summary of data sets used to evaluate clustering methods.

Data set CyTOF
or flow
cytometry

Clustering
task

No. of
cells

No. of
dimen-
sions

No. of
manually
gated pop-
ulations of
interest

No. of
manually
gated
cells

Organism No. of
individuals
(patients,
mice)

Sample
description

Ref.

Levine 32dim CyTOF Multiple
populations

265,627 32
(surface
markers)

14 104,184
(39%)

Human 2 Bone marrow cells
from healthy
donors

[16]

Levine 13dim CyTOF Multiple
populations

167,044 13
(surface
markers)

24 81,747
(49%)

Human 1 Bone marrow cells
from healthy
donor

[16]

Samusik 01 CyTOF Multiple
populations

86,864 39
(surface
markers)

24 53,173
(61%)

Mouse 1 Replicate bone
marrow samples
from C57BL/6J
mice (sample 01
only)

[15]

Samusik all CyTOF Multiple
populations

841,644 39
(surface
markers)

24 514,386
(61%)

Mouse 10 Replicate bone
marrow samples
from C57BL/6J
mice (all samples)

[15]

Nilsson rare Flow
cytometry

Rare
population

44,140 13
(surface
markers)

1
(hemato-
poietic
stem cells)

358
(0.8%)

Human 1 Bone marrow cells
from healthy
donor

[34]

Mosmann rare Flow
cytometry

Rare
population

396,460 14
(surface
and
intracel-
lular)

1
(activated
memory
CD4 T
cells)

109
(0.03%)

Human 1 Peripheral blood
cells from healthy
donor, stimulated
with influenza
antigens

[33]
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Results

Detection of multiple cell populations

The results of the performance comparison are summarized in Table 3. The first four data

sets (Levine 32dim, Levine 13dim, Samusik 01, and Samusik all) contain multiple cell

populations of interest (see Table 2). For these data sets, the mean F1 score across reference

populations is shown; the best-performing methods are FlowSOM (data sets Levine 32dim,

Samusik 01, and Samusik all) and flowMeans (data set Levine 13dim). Several other

methods also consistently perform well, including PhenoGraph, X-shift, ClusterX, FLOCK,

and Rclusterpp.

Among these high-performing methods, FlowSOM has by far the fastest runtimes,

followed by FLOCK. For example, for the largest data set, Samusik all (841,644 cells and 39

dimensions; Table 2), FlowSOM ran in less than 3 minutes, without any subsampling required.

By contrast, PhenoGraph took more than 5 hours, and X-shift took more than 4 hours with

subsampling to 250,000 cells (Table 3; Supplementary Tables S1 and S4).

Figure 1 provides more detailed results for the first data set, Levine 32dim. Clustering

performance varies widely between methods in terms of mean F1 score, mean precision,

and mean recall (panels A–C). Performance also varies between the individual reference

populations; most methods show poor performance for at least one individual population

(panel B). These tend to be the relatively smaller populations (panel D and Supplementary

Figures S7–S10). Runtimes vary across several orders of magnitude (panel E). However, the

best-performing method in terms of mean F1 score for this data set (FlowSOM) is also one of

the fastest (panel F); this observation represents one of the key results from this study.

Similar figures of results for the other data sets (Levine 13dim, Samusik 01, and

Samusik all) are included in Supplementary Figures S2–S4. While the ranking of methods

changes somewhat between data sets (see also Table 3), the observation that FlowSOM

combines best or near-best mean F1 scores with extremely fast runtimes remains consistent.
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To investigate the interpretability of the clustering results, we also compared the

protein expression profiles of detected clusters against reference populations. Figure 2 shows

an example of these results, for FlowSOM with data set Levine 32dim. The heatmap displays

median expression intensities for each protein marker, with hierarchical clustering to group

rows and columns. For most of the reference populations (red rows), at least one detected

cluster (blue rows) matches closely, indicating that the clusters correctly correspond to the

reference populations. However, the expression profiles do not match perfectly, and some

additional splitting of clusters is apparent. Additional figures for all clustering methods

for this data set are included in Supplementary Figures S22–S36. Among several of the

lower-ranked methods, a significant number of mismatches (red rows grouping together before

matching to any blue rows) occur. This demonstrates that the high-performing methods in

terms of mean F1 score also generate relatively interpretable clusters.

Detection of rare cell populations

The last two data sets in Table 3 (Nilsson rare and Mosmann rare) each contain a single

rare cell population of interest. Nilsson rare contains a population of hematopoietic stem

cells (HSCs), representing 0.8% of total cells; and Mosmann rare contains a population of

activated (cytokine-producing) influenza-specific memory CD4 T cells, representing 0.03% of

total cells (Table 2).

For these data sets, Table 3 displays the F1 score for the rare population of interest.

The best-performing method is X-shift, for both data sets. This is followed by flowMeans

(Nilsson rare) and Rclusterpp (Mosmann rare). FlowSOM and FlowSOM pre are within the

top five methods for both data sets; as previously, these have by far the fastest runtimes

among the top methods. For Mosmann rare (the larger of the two data sets), FlowSOM ran in

less than 3 minutes, while X-shift required more than 4 hours.

Between these two data sets, the rare population in Mosmann rare represents a much

smaller fraction of total cells, suggesting that the clustering task is likely to be more difficult
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for this data set. Figure 3 provides more detailed results for Mosmann rare. While several

methods achieve good results (panel A), more than half of the methods perform poorly (very

low F1 scores). For most of the methods with low F1 scores, recall remains high, while

precision is low (panel A), implying that these methods were not able to successfully separate

the rare population from other, larger populations. SWIFT achieved the highest precision,

but at the expense of low recall. As previously, runtimes varied widely between methods

(panel B). While X-shift and Rclusterpp achieved the highest F1 scores, FlowSOM again

combines high F1 scores with extremely fast runtimes (panel C).

Supplementary Figure S6 displays a similar figure of results for data set Nilsson rare.

In addition to X-shift, FlowSOM, and FlowSOM pre, which again performed well, several

other methods that performed poorly for Mosmann rare performed well for Nilsson rare

(in particular, flowMeans, flowClust, and ACCENSE). Most methods were also significantly

faster, since this is a smaller data set (Tables 2 and 3). Comparing the two data sets, we also

observe that immunoClust, SWIFT, and PhenoGraph performed reasonably well across both

data sets, although they were not ranked within either set of top five methods (Table 3).
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Table 3. Results of comparison of clustering methods.

Multiple populations of interest Single rare population of interest

Levine 32dim Levine 13dim Samusik 01 Samusik all Nilsson rare Mosmann rare

mean F1
runtime
hh:mm:ss mean F1

runtime
hh:mm:ss mean F1

runtime
hh:mm:ss mean F1

runtime
hh:mm:ss F1

runtime
hh:mm:ss F1

runtime
hh:mm:ss

ACCENSE 0.494 00:05:32 0.358 00:04:48 0.517 00:06:21 0.502 00:05:32 0.445 00:06:11 0.021 00:04:37

ClusterX 0.682 01:57:02 0.474 03:50:51 0.571 01:52:09 0.603 02:02:08 0.132 00:29:00 0.004 01:56:13

DensVM 0.660 08:30:13 0.448 08:11:09 0.239 07:34:49 0.496 07:55:14 0.153 03:19:36 0.004 07:55:34

FLOCK 0.727 00:03:43 0.379 00:00:29 0.608 00:00:35 0.631 00:14:28 0.089 00:00:08 0.102 00:01:06

flowClust NA NA 0.416 02:59:27 0.612 06:04:13 0.610 11:56:58 0.461 04:20:24 0.080 03:32:41

flowMeans 0.769 02:34:01 0.518* 00:04:09 0.625 04:13:12 0.653 02:03:17 0.488 00:01:06 0.104 00:03:57

flowMerge NA NA 0.247 07:45:41 0.452 09:56:25 0.341 03:21:40 0.111 09:41:02 0.159 11:06:45

flowPeaks 0.237 00:05:19 0.215 00:00:21 0.058 00:07:05 0.323 00:16:39 0.016 00:00:08 0.001 00:02:18

FlowSOM 0.780* 00:00:41 0.495 00:00:15 0.707* 00:00:19 0.702* 00:02:13 0.447 00:00:08 0.665 00:02:14

FlowSOM pre 0.502 00:00:35 0.422 00:00:10 0.583 00:00:14 0.528 00:02:08 0.447 00:00:03 0.665 00:01:32

immunoClust 0.413 03:20:51 0.308 02:57:27 0.552 01:35:10 0.523 02:06:40 0.371 00:06:57 0.563 01:51:23

k-means 0.420 00:00:13 0.435 00:00:02 0.650 00:00:05 0.590 00:00:26 0.243 00:00:01 0.103 00:00:11

PhenoGraph 0.563 00:37:00 0.468 00:12:09 0.671 00:05:55 0.653 05:30:35 0.229 00:01:58 0.498 00:43:43

Rclusterpp 0.605 01:13:04 0.465 00:17:54 0.637 00:08:32 0.613 00:14:05 0.360 00:00:17 0.737 02:12:32

SamSPECTRAL 0.512 04:24:05 0.253 00:24:01 0.263 00:34:42 0.138 00:39:26 0.088 00:01:52 0.618 03:42:28

SPADE NA NA 0.127 00:04:46 0.169 00:03:02 0.130 00:53:39 0.180 00:00:52 0.027 00:12:12

SWIFT 0.177 02:27:39 0.179 01:07:03 0.202 02:19:30 0.208 02:50:08 0.390 00:11:26 0.484 00:34:34

X-shift 0.702 04:43:50 0.444 00:58:27 0.618 00:28:16 0.651 04:24:52 0.534* 00:04:47 0.793* 04:11:15

Results show the mean F1 score for data sets with multiple cell populations of interest, and F1 score for data sets with a
single rare cell population of interest; as well as runtimes. For each data set, the best-performing method is indicated with a
star (*), and the top five methods are displayed in bold. Runtimes are not precisely comparable between methods due to
differences in subsampling, number of processor cores, and hardware specifications (Supplementary Tables S1 and S4);
however they are included in order to provide users with information about order-of-magnitude differences. NA = not
available, due to errors or non-completion (Supplementary Table S1).
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Figure 1. Results of comparison of clustering methods for data set Levine 32dim. (A) Mean F1 score
across cell populations. (B) Distributions of F1 scores across cell populations. The box plots show medians,
upper and lower quartiles, whiskers extending to 1.5 times the interquartile range, and outliers, with means shown
additionally in red. (C) Mean F1 scores, mean precision, and mean recall. (D) Number of cells per reference
population. (E) Runtimes. (F) Runtime vs. mean F1 score; methods combining high mean F1 scores with fast
runtimes are seen toward the bottom-right. Similar figures of results for all data sets are included in Supplementary
Figures S1–S6.
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Figure 2. Expression profiles of detected clusters and reference populations, FlowSOM, data
set Levine 32dim. Heatmap shows median expression intensities of each protein marker (columns), for
each detected cluster or reference population (rows). Values are arcsinh-transformed, and scaled between 0
and 1 for each protein marker. Rows and columns are sorted by hierarchical clustering (Euclidean distance,
average linkage). Cluster and population indices are included in row headings. Red labels indicate rows
representing reference populations, and blue labels indicate clusters detected by FlowSOM. For most reference
populations (red rows), the expression profile of at least one detected cluster (blue rows) matches closely.
Additional figures for all clustering methods are included in Supplementary Figures S22–S36.
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Figure 3. Results of comparison of clustering methods for data set Mosmann rare. (A) F1 score,
precision, and recall for the rare cell population of interest. The rare population contains approximately 0.03%
of total cells (Table 2). (B) Runtimes. (C) Runtime vs. F1 score; methods combining high F1 scores with fast
runtimes are seen toward the bottom-right. Similar figures of results for all data sets are included in Supplementary
Figures S1–S6.

19/31

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 8, 2016. ; https://doi.org/10.1101/047613doi: bioRxiv preprint 

https://doi.org/10.1101/047613
http://creativecommons.org/licenses/by/4.0/


FlowCAP data sets

Results for the two highest-dimensional data sets from FlowCAP-I (labeled FlowCAP ND

and FlowCAP WNV; see Supplementary Table S2 for details) are displayed in Supplementary

Table S5. Two sets of results are presented, using alternative evaluation methodologies. The

first set (first two columns) uses the same methodology as we used for the other data sets

in this study, i.e. the Hungarian algorithm to match clusters to reference populations, and

unweighted averages to calculate mean F1 scores. The second set (last two columns) uses

the original evaluation methodology from FlowCAP-I, i.e. matching clusters by individually

maximizing the F1 score for each reference population, and calculating mean F1 scores with

weighting by reference population size (see Materials and Methods).

The two sets of results differ significantly. Using the FlowCAP-I methodology, most

methods give very high mean F1 scores, consistent with the previously published results

from FlowCAP-I [6]. Note that there are some small differences (for those methods available

at the time of FlowCAP-I), due to several factors including differences in manually tuned

parameters, subsampling, and updated software versions.

By contrast, the mean F1 scores from our updated methodology are lower for most

methods. This demonstrates the importance and impact of the choice of evaluation method-

ology. In our view, the updated methodology is more reliable, since clusters are not allowed

to map to multiple reference populations (Hungarian algorithm), and both large and small

populations are represented equally (unweighted averages). This avoids the possibility that

the mean F1 scores are dominated by one or two large clusters with high individual scores.

However, despite the lower scores, several methods still perform well, confirming the main

conclusion that automated methods can accurately reproduce expert manual gating for these

data sets.
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Ensemble clustering

Results of the ensemble clustering (consensus clustering) are displayed in Supplementary

Figures S11–S16. Unlike FlowCAP-I, we found that ensemble clustering did not give any

improvements in performance compared to the best-performing individual methods. For

the data sets with multiple populations of interest, ensemble clustering gave results similar

to the best individual methods. For the data sets with a single rare population of interest,

performance was significantly worse; which is surprising. A possible explanation may be

that the ensemble clustering performed well for larger populations, but poorly for smaller

or rare populations. Due to the change in evaluation methodology (Hungarian algorithm

and unweighted averages; see Materials and Methods), the influence of smaller populations

has been amplified, hence reducing the overall scores. Further work is warranted in order to

investigate these results in more detail.

Stability of clustering results

The stability analysis (Supplementary Figures S17–S20) revealed that several methods were

sensitive to random starts and bootstrap resampling, especially when detecting a single rare

cell population. For some methods (such as FlowSOM), this included a number of outlier runs,

where performance was significantly worse than usual. By contrast, variability was smaller for

the data sets with multiple populations of interest (except for FLOCK). In each case, the figures

display the range of scores recorded over 30 replicate runs per method, with varying random

starts or bootstrap resamples. For some methods (FLOCK, flowMeans, and flowPeaks), the

bootstrap results are more informative, due to difficulties in accessing internal random seeds

for the random starts during parallelized operation (Supplementary Methods).
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Discussion

Several clustering methods accurately reproduce expert manual gating in high-

dimensional cytometry data sets. The results showed that several clustering methods

were able to accurately detect clusters representing manually gated cell populations in these

high-dimensional CyTOF and flow cytometry data sets. In particular, FlowSOM, flowMeans,

PhenoGraph, X-shift, ClusterX, FLOCK, and Rclusterpp performed well for the data sets

with multiple cell populations of interest; and X-shift, FlowSOM, FlowSOM pre, Rclusterpp,

immunoClust, SWIFT, and PhenoGraph performed well for the data sets with a single rare

cell population of interest (see Table 3 for full results).

Due to the curse of dimensionality, standard clustering algorithms for low-dimensional

data are generally not expected to perform well in high-dimensional settings. Most of the

methods tested in this study are specialized clustering algorithms designed for cytometry

data. Many of these were published during the last 2–3 years, and are intended for analysis

of high-dimensional CyTOF data. The FlowCAP-I comparisons [6] included only lower-

dimensional flow cytometry data sets, and many of the methods included here were not

yet available at that time; including the two best-performing methods overall, FlowSOM and

X-shift. This study provides an up-to-date comparison, focusing on high-dimensional data

sets and including the latest methods for CyTOF data. Our analysis scripts are publicly

available, and designed to be extensible in order to accommodate new methods and data sets.

Runtimes vary widely between methods. Due to the different mathematical and

computational approaches taken by the various methods, runtimes varied across several

orders of magnitude. An unexpected result from this study was that FlowSOM, which gave

best or near-best clustering performance for all data sets, also had among the fastest runtimes

(Table 3). This demonstrates the importance of choices made during method design with

regard to the underlying theoretical clustering approaches; high-performing methods do not

necessarily need to be those with the greatest computational requirements.
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Number of clusters. Many methods included options to automatically select the number

of clusters, while others left this parameter as a user input or controlled it via indirect

parameters (see Materials and Methods, and Supplementary Table S3). An important

observation from this study was that the automatic options performed poorly for several

methods, and indirect parameters were often difficult to tune. To improve performance, we

attempted to select around 40 clusters per data set in these cases (Supplementary Table S3).

For example, the automatic option in FlowSOM returned too few clusters (less than 10 clusters

for each data set; Supplementary Table S1), while FlowSOM gave excellent results using 40

clusters per data set (Table 3 and Supplementary Figure S21).

In general, we found that methods providing a simple, direct parameter input to

manually adjust the number of clusters were easiest to work with. Among the high-performing

methods, this included FlowSOM, flowMeans, and Rclusterpp. Although the number of

relevant clusters in an experimental data set may not be known in advance, a direct parameter

input allows users to explore the data interactively, for example to find a threshold resolution

where a rare population splits from a larger population. This is difficult when the number of

clusters is controlled indirectly, and may even be impossible if only an automatic option is

presented.

In addition, from a biological point of view, it may be argued that automatically

determining the number of clusters is not a particularly meaningful problem for cytometry data.

This is because cell populations effectively form a near-continuous progression of phenotypes;

depending on the desired resolution, an arbitrary number of clusters (cell populations) may

be defined. Therefore, clustering methods should leave the choice of resolution to the user,

so that it may be explored directly.

For many applications, it is generally also “safer” to select slightly too many clusters,

rather than too few. During downstream statistical analysis, it is a relatively simple matter

to manually merge clusters with similar phenotypes. This conservative strategy helps ensure
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that smaller or rare populations are adequately separated from larger populations. Providing

a simple parameter input for the final number of clusters facilitates this procedure.

Stability of clustering results. Several methods were sensitive to random starts and

bootstrap resampling, especially when detecting a single rare cell population. In particular, we

observed a number of outlier runs, where performance was significantly worse than usual (this

included FlowSOM, the best-performing method overall). By contrast, for the data sets with

multiple cell populations of interest, variability was relatively small for most methods. Based

on these results, we recommend running clustering methods multiple times with different

random starts when the aim is to detect rare cell populations.

Clustering approaches and alternative analysis procedures. Throughout this study,

we have evaluated clustering methods according to their ability to reproduce manual gating in

a fully automated manner, with minimal parameter inputs other than the desired number of

clusters. However, some of the methods we included are not strictly intended for performing

fully automated clustering in this way. For example, the authors of SWIFT describe a semi-

automated analysis pipeline, where SWIFT is initially used to generate a large number of small

clusters, and these clusters are then further analyzed by gating (i.e. gating on the clusters).

This strategy enables efficient analysis of rare cell populations [33]. Similarly, immunoClust

is designed to return a relatively large number of clusters [29], some of which may split larger

populations. In our evaluations, this negatively affected the reported clustering performance,

since our evaluation methodology only allows a single cluster to map to each reference

population. We have not attempted to correct for this effect by manually merging clusters, as

this would introduce additional subjectivity into the evaluations. Instead, we have compared

the ability to perform fully automated clustering, while recognizing that some methods may

be more suited for slightly different analysis procedures.

The methods compared in this study are based on a wide variety of theoretical

approaches to the clustering problem (Table 1). We have not attempted to judge the relative
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merits of the theoretical approaches, instead preferring an unbiased empirical evaluation of

performance on the chosen experimental data sets. The best-performing method for data

sets with multiple cell populations of interest (FlowSOM) is based on self-organizing maps

and hierarchical consensus meta-clustering, while the top method for detecting a single rare

cell population (X-shift) employs a completely different strategy based on nearest-neighbor

density estimation and graphs (Table 1). Future work could investigate underlying reasons

why these approaches perform well.

We also note that many methods required subsampling due to excessive runtimes

(Supplementary Tables S1 and S4). This likely had a negative effect on the performance

of these methods, especially for the data sets containing rare populations. Depending on

the amount of subsampling, rare populations may become difficult to detect if too few cells

remain; some algorithms may even exclude them as outliers. In our view, methods that

require subsampling for large or high-dimensional data sets are not well-suited for the task of

detecting rare populations. In fact, the two best-performing methods (FlowSOM and X-shift)

did not require any subsampling for the data sets where they achieved the best performance

respectively (Table 3 and Supplementary Table S4).

Computational environments and accessibility. The majority of the clustering meth-

ods in this study were available as R packages, most of which were distributed through the

Bioconductor project [35]. The remaining methods were available as standalone applica-

tions with graphical interfaces, graphical interfaces launched from MATLAB, through online

analysis platforms, or as source code (Table 1). The graphical interfaces were designed to

be user-friendly and accessible for users without programming experience. However, we

found that overall, the methods distributed as R/Bioconductor packages were the easiest to

work with. This was due to two main reasons. The first reason related to reproducibility:

R packages allow users to write scripts, which can be re-run to generate the same results

multiple times (as long as a random seed is specified). This facilitates interactive, exploratory
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analysis, where users attempt various analyses in an iterative process, with parameter set-

tings recorded in the script. In addition, the reproducibility of final, published results is

improved. The second reason related to analysis pipelines and downstream statistical analysis:

methods implemented as R packages can be incorporated into full analysis pipelines, from

pre-processing to downstream statistical analysis and plotting. The commands for the analysis

pipeline are saved in an R script, again facilitating reproducibility, as well as making it easy

to add minor adjustments at any point within the pipeline. While graphical interfaces provide

more accessibility, we believe this is outweighed by the advantages of the scripting approach.

Finally, all Bioconductor packages are distributed with documentation and vignettes, ensuring

that users have access to instructions and examples of usage.

Recommendations. We have performed an up-to-date, extensible performance comparison

of clustering methods for automated detection of cell populations during unsupervised analysis

of high-dimensional flow and mass cytometry (CyTOF) data. We compared 18 clustering meth-

ods, using 6 publicly available data sets from experiments in immunology. Based on our results,

we recommend the use of FlowSOM (with manual selection of the number of clusters) as a first

choice for this type of analysis, since this method gave best or near-best performance across

all data sets, together with extremely fast runtimes. Other high-performing methods included

X-shift, PhenoGraph, Rclusterpp, and flowMeans. Fast runtimes make FlowSOM well-suited

for performing interactive, exploratory analyses of large data sets (possibly up to millions of

cells) on a standard laptop or desktop computer. Several methods (including FlowSOM) were

sensitive to random starts and bootstrap resampling when detecting rare cell populations;

we recommend the use of multiple random starts in these cases. Automatically selecting

the number of clusters often did not work well; we found that methods providing a simple

parameter input to manually select the final number of clusters were the easiest to work with.

In general, it is advisable to select somewhat more clusters than necessary, as this helps ensure

that smaller populations remain adequately separated, and it is a relatively simple matter to
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manually merge clusters during downstream analysis. Finally, we recommend that researchers

run methods via a scripting approach wherever possible (for example using R/Bioconductor

packages), to facilitate reproducibility and integration into analysis pipelines and downstream

statistical analysis. R scripts and pre-processed data files to reproduce our analyses are

available from GitHub (https://github.com/lmweber/cytometry-clustering-comparison) and

FlowRepository (repository FR-FCM-ZZPH), allowing our comparisons to be extended to

include new clustering methods and reference data sets.
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Supplementary Information. PDF document containing Supplementary Methods, Sup-

plementary Results, and Supplementary Figures.

Supplementary Table S1. Spreadsheet file containing Supplementary Table S1.
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