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Abstract

The study of fitness landscapes, which aims at mapping genotypes to fitness, is receiving
ever-increasing attention. Novel experimental approaches combined with NGS methods en-
able accurate and extensive studies of the fitness effects of mutations – allowing us to test
theoretical predictions and improve our understanding of the shape of the true underlying
fitness landscape, and its implications for the predictability and repeatability of evolution.

Here, we present a uniquely large multi-allelic fitness landscape comprised of 640 engineered
mutants that represent all possible combinations of 13 amino-acid changing mutations at six
sites in the heat-shock protein Hsp90 in Saccharomyces cerevisiae under elevated salinity.
Despite a prevalent pattern of negative epistasis in the landscape, we find that the global
fitness peak is reached via four positively epistatic mutations. Combining traditional and
extending recently proposed theoretical and statistical approaches, we quantify features of
the global multi-allelic fitness landscape. Using subsets of this data, we demonstrate that
extrapolation beyond a known part of the landscape is difficult owing to both local ruggedness
and amino-acid specific epistatic hotspots, and that inference is additionally confounded by
the non-random choice of mutations for experimental fitness landscapes.
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Author Summary

The study of fitness landscapes is fundamentally concerned with understanding the rela-
tive roles of stochastic and deterministic processes in adaptive evolution. Here, the authors
present a uniquely large and complete multi-allelic intragenic fitness landscape of 640 sys-
tematically engineered mutations in yeast Hsp90. Using a combination of traditional and
recently proposed theoretical approaches, they study the accessibility of the global fitness
peak, and the potential for predictability of the fitness landscape topology. They report
local ruggedness of the landscape and the existence of epistatic hotspot mutations, which
together make extrapolation and hence predictability inherently difficult, if mutation-specific
information is not considered.
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Introduction

Since first proposed by Sewall Wright in 1932 [1], the idea of a fitness landscape relating
genotype (or phenotype) to the reproductive success of an individual has inspired evolution-
ary biologists and mathematicians alike [2, 3, 4]. With the advancement of molecular and
systems biology towards large and accurate data sets, it is a concept that receives increasing
attention across other subfields of biology [5, 6, 7, 8, 9]. The shape of a fitness landscape
carries information on the repeatability and predictability of evolution, the potential for
adaptation, the importance of genetic drift, the likelihood of convergent and parallel evo-
lution, and the degree of optimization that is (theoretically) achievable [4]. Unfortunately,
the dimensionality of a complete fitness landscape of an organism – that is, a mapping of all
possible combinations of mutations to their respective fitness effects – is much too high to
be assessed experimentally. With the development of experimental approaches that allow for
the assessment of full fitness landscapes of tens to hundreds of mutations, there is growing
interest in statistics that capture the features of the landscape, and that relate an experi-
mental landscape to theoretical landscapes of similar architecture, which have been studied
extensively [10]. It is, however, unclear whether this categorization allows for an extrapola-
tion to unknown parts of the landscape, which would be the first step towards quantifying
predictability – an advance that would yield impacts far beyond the field of evolutionary
biology, in particular for the clinical study of drug resistance evolution in pathogens and the
development of effective vaccine and treatment strategies [8].

Existing research in this rapidly growing field comes from two sides. Firstly, different em-
pirical landscapes have been assessed (reviewed in [4]), generally based on the combination
of previously observed beneficial mutations or on the dissection of an observed adaptive
walk (i.e., a combination of mutations that have been observed to be beneficial in concert).
Secondly, theoretical research has proposed different landscape architectures (such as the
House-of-cards, the Kaufmann NK, and the Rough-Mount-Fuji model), studied their re-
spective properties, and developed a number of statistics that characterize the landscape
and quantify the expected degree of epistasis (i.e., interaction effects between mutations)
[11, 12, 13, 10, 14].

The picture that emerges from these studies is mixed, reporting both smooth [15] and rugged
[16, 17] landscapes with both positive epistasis (i.e., two mutations in concert are more
advantageous than expected; [18]) and negative epistasis (i.e., two mutations in concert are
more deleterious than expected; [19, 20]; but see [21, 22]). Current statistical approaches have
been used to rank the existing landscapes by certain features [10, 14] and to assess whether
they are compatible with Fisher’s Geometric Model [23]. A crucial remaining question is the
extent to which the non-random choice of mutations for the experiment affects the topology
of the landscape, and whether the local topology is indeed informative as to the rest of the
landscape.
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Figure 1: Individual amino-acid substitutions and their effect on the parental background in
elevated salinity, obtained from 1000 samples from the posterior distribution of growth rates.
The box indicates with colored dots which mutations are involved in the focal landscapes
discussed throughout the main text: the four mutations leading to the global optimum
(“opt”), the four individually most beneficial mutations (“best”) and the four mutations
with the individually lowest growth rates (“worst”). Inset: parental sequence at positions
582-590 and assessed amino acids by position.

Here, we present an intragenic fitness landscape of 640 amino-acid changing mutations in the
heat shock protein Hsp90 in Saccharomyces cerevisiae in a challenging environment imposed
by high salinity. With all possible combinations of 13 mutations of various fitness effects at
6 positions, the presented landscape is not only uniquely large but also distinguishes itself
from previously published work regarding several other experimental features – namely, by its
systematic and controlled experimental setup using engineered mutations of various selective
effects, and by considering multiple alleles simultaneously. We begin by describing the land-
scape and identifying the global peak, which is reached through a highly positively epistatic
combination of four mutations. Based on a variety of implemented statistical measures and
models, we describe the accessibility of the peak, the pattern of epistasis, and the topology
of the landscape. In order to accommodate our data, we extend several previously used
models and statistics to the multi-allelic case. Using subsets of the landscape, we discuss the
predictive potential of such modeling and the problem of selecting non-random mutations
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when attempting to quantify local landscapes in order to extrapolate global features.
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Material and Methods

Here, we briefly outline the materials and methods used. A more detailed treatment of the
theoretical work is presented in the Supporting Information.

Data generation

Codon substitution libraries consisting of 640 combinations (single, double, triple and quadru-
ple mutants) of 13 previously isolated individual mutants within the 582-590 region of yeast
Hsp90 were generated from optimized cassette ligation strategies as previously described in
[24] and cloned into the p417GPD plasmid that constitutively expresses Hsp90.

Constitutively expressed libraries of Hsp90 mutation combinations were introduced into the S.
cerevisiae shutoff strain DBY288 (can1-100 ade2-1 his3-11,15 leu2-3,12 trp1-1 ura3-1 hsp82:
:leu2 hsc82: :leu2 ho: : :pgals-hsp82-his3) using the lithium acetate method [25]. Following
transformation the library was amplified for 12 hours at 30deg C under nonselective conditions
using galactose (Gal) medium with 100 µg/mL ampicillin (1.7 g yeast nitrogen base without
amino acids, 5 g ammonium sulfate, 0.1 g aspartic acid, 0.02 g arginine, 0.03 g valine, 0.1
g glutamic acid, 0.4 g serine, 0.2 g threonine, 0.03 g isoleucine, 0.05 g phenylalanine, 0.03 g
tyrosine, 0.04 g adenine hemisulfate, 0.02 g methionine, 0.1 g leucine, 0.03 g lysine, 0.01 g
uracil per liter with 1% raffinose and 1% galactose). After amplification the library culture
was transferred to selective medium similar to Gal medium but raffinose and galactose are
replaced with 2% dextrose. The culture was grown for 8 hours at 30deg C to allow shutoff
of the wild-type copy of Hsp90 and then shifted to selective medium containing 0.5M NaCl
for 12 generations. Samples were taken at specific time points and stored at -80degC.

Yeast lysis, DNA isolation and preparation for Illumina sequencing were performed as pre-
viously described [26]. Sequencing was performed by Elim Biopharmaceuticals, Inc and pro-
duced ≈30 million reads of 99% confidence at each read position based on PHRED scoring
[27, 28]. Analysis of sequencing data was performed as previously described [29].

Estimation of growth rates

Individual growth rates were estimated according to the approach described by [20] using
a Bayesian Monte Carlo Markov Chain (MCMC) approach proposed in [30]. Nucleotide
sequences coding for the same amino acid sequence were interpreted as replicates with equal
growth rates. The resulting MCMC output consisted of 10,000 posterior estimates for each
amino acid mutation corresponding to an average effective samples size of 7,419 (minimum
725). Convergence was assessed using the Hellinger distance approach [31] combined with
visual inspection of the resulting trace files.

Adaptive walks

In the strong selection weak mutation (SSWM) limit [32], adaptation can be modeled as a
Markov process only consisting of subsequent fitness-increasing one-step substitutions that
continue until an optimum is reached (so-called adaptive walks). This process is characterized

6

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 15, 2016. ; https://doi.org/10.1101/048769doi: bioRxiv preprint 

https://doi.org/10.1101/048769
http://creativecommons.org/licenses/by-nc-nd/4.0/


by an absorbing Markov chain with a total of n different states (i.e., mutants), consisting
of k absorbing (i.e., optima) and n− k transient states (i.e., non-optima). Defining w(g) as
the fitness of genotype g, and g[i] as the genotype g carrying a mutant allele at locus i, the
selection coefficient is denoted by sj(g) = w(g[j])−w(g), such that the transition probabilities
pg,g[i] for going from any mutant g to any mutant g[i] are given by the selection coefficient
normalized by the sum over all adaptive, one-mutant neighbours of the current genotype g.
If g is a (local) optimum, pg,g = 1. Putting the transition matrix P in its canonical form and
computing the fundamental matrix, then allows to determine the expectation and the variance
in the number of steps before reaching any optimum, and to calculate the probability to reach
optimum g when starting from genotype g′ [33]. Robustness of the results and the influence
of specific mutations were assessed by deleting the corresponding columns and rows in P
(i.e., by essentially treating the corresponding mutation as unobserved), and re-calculating
and comparing all statistics to those obtained from the full data set.

Correlation of fitness effects of mutations

Strength and type of epistasis was assessed by calculating the correlation of fitness effects of
mutations γ [14], which quantifies how the selective effect of a focal mutation is altered when
put onto a different genetic background, averaged over all genotypes of the fitness landscape.
Extending recent theory [14], we calculated the matrix of epistatic effects between different
pairs of alleles (Ai,Bi) and (Aj ,Bj) termed γ(Ai,Bi)→(Aj,Bj) (eq. S1_8), the vector of epistatic
effects between a specific pair of alleles (Ai,Bi) on all other pairs of alleles γ(Ai,Bi)→ (eq. S1_9),
the vector of epistatic effects between all pairs of alleles on a specific allele pair (Aj ,Bj) termed
γ
→(Aj,Bj) (eq. S1_12), and the decay of correlation of fitness effects γd (eq. S1_15) with
Hamming distance d averaged over all genotypes g of the fitness landscape.

Fraction of epistasis

Following [34] and [35], we quantified whether specific pairs of alleles between two loci interact
epistatically, and if so whether these display magnitude epistasis (i.e., fitness effects are non-
additive, but fitness increases with the number of mutations), sign epistasis (i.e., one of
the two mutations considered has an opposite effect in both backgrounds) or reciprocal sign
epistasis (i.e., if both mutations show sign epistasis). In particular, we calculated the type
of epistatic interaction between mutations g[i] and g[j] (with i 6= j) with respect to a given
reference genotype g over the entire fitness landscape. There was no epistatic interaction
if |si(g[j]) − si(g)|< ε = 10−6, magnitude epistasis if sj(g)sj(g[i]) ≥ 0 and si(g)si(g[j]) ≥ 0,
reciprocal sign epistasis if sj(g)sj(g[i]) < 0 and si(g)si(g[j]) < 0, and sign epistasis in all other
cases [36].

Roughness-to-slope ratio

Following [11], we calculated the roughness-to-slope ratio ρ by fitting the fitness landscape
to a multidimensional linear model using the least-squares method. The slope of the linear
model corresponds to the average additive fitness effect [10, 23], whereas the roughness is
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given by the variance of the residuals. Generally, the better the linear model fit, the smaller
the variance in residuals such that the roughness-to-slope ratio approaches 0 in a perfectly
additive model. Conversely, a very rugged fitness landscape would have a large residual
variance and, thus, a very large roughness-to-slope ratio (as in the House-of-Cards model). In
addition, we calculated a test statistic Zρ by randomly shuffling fitness values in the sequence
space to evaluate the statistical significance of the obtained roughness-to-slope ratio from the
data set ρdata given by Zρ= ρdata−E[ρRSL]√

Var[ρRSL]
.
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Results and Discussion

We used the EMPIRIC approach [24, 26] to assess the growth rate of 640 mutants in yeast
Hsp90 (see Materials and Methods). Based on previous screenings of fitness effects in different
environments [29] and on different genetic backgrounds [20], and on expectations of their
biophysical role, 13 amino-acid changing point mutations at 6 sites were chosen for the
fitness landscape presented here (Fig. 1). The fitness landscape was created by assessing
the growth rate associated with each individual mutation on the parental background, and
all possible mutational combinations. A previously described MCMC approach was used to
assess fitness and credibility intervals ([30]; see Materials and Methods).

The fitness landscape and its global peak

Figure 2 presents the resulting fitness landscape, with each mutant represented based on
its Hamming distance from the parental genotype and its median estimated growth rate.
Lines connect single-step substitutions, with vertical lines occurring when there are multi-
ple mutations at the same position (Fig. 1). With increasing Hamming distance from the
parental type, many mutational combinations become strongly deleterious. This indicates
strong negative epistasis between the substitutions that, as single steps on the background
of the parental type, have small effects. This pattern is consistent with Fisher’s Geometric
Model [37] when combinations of individually beneficial or small-effect mutations overshoot
the optimum. It is also intuitively comprehensible on the protein level, where the accumu-
lation of too many mutations is likely to destabilize the protein and render it dysfunctional
[38].

Curiously, the global peak of the fitness landscape is located 4 mutational steps away from
the parental type (Fig. 2B), with 98% of posterior samples identifying the peak. The fitness
advantage of the global peak reaches nearly 10% over the parental type, and is consistent
between replicates (see Materials and Methods; Supplementary Fig. 1). Though perhaps
surprising given the degree of conservation of the studied genomic region ([24], Fig. S5), it is
important to note that these fitness effects are measured under highly artificial experimental
conditions including high salinity, which are unlikely to represent a natural environment of
yeast. The effects of the individual mutations comprising the peak in a previous experiment
without added NaCl were -0.04135, -0.01876, -0.03816, -0.02115 for mutations W585L, A587P,
N588L and M589A, respectively, emphasizing the potential cost of adaptation associated with
the increased salinity environment (data from [20]; see also [29]).

The global peak is not reached by combining the most beneficial single-step mutations, but
via a highly synergistic combination of one beneficial and three ‘neutral’ mutations (i.e.,
mutations that are individually indistinguishable from the parental type in terms of growth
rate). Figure 2C demonstrates that a multiplicative combination of the four mutations in-
volved in the peak (termed “opt”) predicts only a 4% fitness advantage. Furthermore, even
a combination of the four individually most beneficial single-step mutations in the data set
(“best”; considering at most one mutation per position) only predicts a benefit of 6%. No-
tably, the actual combination of these four mutations is highly deleterious and thus exhibits
strong negative epistasis. Although negative epistasis between beneficial mutations during
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Figure 2: (A) Empirical fitness landscape by mutational distance to parental type. Each
line represents a single substitution. Vertical lines appear when multiple alleles have been
screened at the same position. There is a global pattern of negative epistasis. The three
focal landscapes are highlighted. (B) Close-up on the beneficial portion of the landscape. (C)
Expected (multiplicative) fitness versus observed fitness for the focal landscapes, obtained
from 1000 posterior samples. We observe strong positive epistasis in the landscape that
contains the global optimum, whereas the other two are dominated by negative epistasis. In
all panels, the y axis depicts growth rate as a proxy for fitness.
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adaptation has been reported more frequently, positive epistasis has also been observed oc-
casionally [18, 39], particularly in the context of compensatory evolution. In fact, negative
epistasis between beneficial mutations and positive epistasis between neutral mutations has
been predicted by de Visser et al. [40]. Furthermore, our results support the pattern recently
found in the gene underlying the antibiotic resistance enzyme TEM-1 b-lactamase in E. coli,
showing that large-effect mutations interact more strongly than small-effect mutations such
that the fitness landscape of large-effect mutations tends to be more rugged than the land-
scape of small-effect mutations [13]. However, this conclusion is highly dependent on the
measures of epistasis used and the selection of mutants for the landscape [10].

Adaptive walks on the fitness landscape

Next, we studied the empirical fitness landscape within a framework recently proposed by
Draghi and Plotkin [41]. Given the empirical landscape, we simulated adaptive walks and
studied the accessibility of the six observed local optima. In addition, we evaluated the length
of adaptive walks starting from any mutant in the landscape, until an optimum is reached.
In the strong selection weak mutation limit [42], we can express the resulting dynamics as
an absorbing Markov chain, where local optima correspond to the absorbing states, and in
which the transition probabilities correspond to the relative fitness increases attainable by
the neighboring mutations (see Materials and Methods). This allowed us to derive analytical
solutions for the mean and variance of the number of steps to reach a fitness optimum (see
extended Materials and Methods), and the probability to reach a particular optimum starting
from any given mutant in the landscape (Figs. 3, S2_2, S2_3).

Using this framework, we find that the global optimum can be reached with non-zero prob-
ability from almost 95% of starting points in the landscape, and is reached with high proba-
bility from a majority of starting points - indicating high accessibility of the global optimum
(Fig. 3). The picture changes when restricting the analysis to adaptive walks initiating from
the parental type (Figs. 3, S2_2, S2_3). Here, although 73% of all edges and 78% of all
vertices are included in an adaptive walk to the global optimum, it is reached with only 26%
probability. A local optimum two substitutions away from the parental type (Fig. 3C) is
reached with a much higher probability of 47%. Hence, adaptation on the studied landscape
is likely to stall at a sub-optimal fitness peak. This indicates that the local and global land-
scape pattern may be quite different, an observation that is confirmed and discussed in more
detail below. In line with the existence of multiple local fitness peaks, we find that pairs
of alleles at different loci show pervasive sign (30%) and reciprocal sign (8%) epistasis [34],
whereas the remaining 62% are attributed to magnitude epistasis (i.e., there is no purely
additive interaction between alleles; for a discussion of the contribution of experimental error
see Fig. S2_4).

Epistasis measures and the topology of the fitness landscape

Next, we considered the global topology of the fitness landscape. Various measures of epista-
sis and ruggedness have been proposed, most of them correlated and hence capturing similar
features of the landscape [10]. However, drawing conclusions has proven difficult because
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Figure 3: Graphical illustration of the sub-landscape of all beneficial mutants with respect
to the parental type. (A) Each vertex (circle) corresponds to a mutant that is beneficial with
respect to the parental type (triangle), colored according to their fitness. Arrows connect
mutants that differ by a single substitution, with their direction indicating an increase in
fitness. The five local optima in this sub-landscape are indicated as squares. Inset: dis-
tribution of average lengths of adaptive walks starting from any type in the full landscape
(i.e., absorbing times of the Markov chain). The red line indicates mean path lengths for
adaptive walks from the parental genotype (B) Paths leading towards the global optimum
when beginning an adaptive walk at the parental genotype. Note that while 73% of all edges
and 78% of all vertices are included in such a walk, it is reached in only 26% of all possible
walks. Conversely, 47% of walks will reach the local optimum in panel C, which is closer
to the parental type in terms of its Hamming distance. This demonstrates that evolution
on this landscape is not well predicted by fitness only, and that a population may become
stuck in a sub-optimal fitness peak. Inset B & C: Distribution of absorbing probabilities,
that is, the probability to reach a specific optimum starting from a given mutant computed
for all mutants in the data set. The red line corresponds to the respective probability when
starting from the parental sequence. The global optimum is in general reached with a very
high probability, but there are starting points from which it is poorly accessible.
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the studied landscapes were created according to different criteria. Furthermore, published
complete landscapes are too small to be divided into subsets, preventing tests for the consis-
tency and hence the predictive potential of landscape statistics. The landscape studied here
provides us with this opportunity. Moreover, because multiple alleles at the same site are
contained within the landscape, we may study whether changes in the shape of the landscape
are site- or amino-acid specific.
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Figure 4: (A) Expected pattern of landscape-wide epistasis measure γd (eq. S1_15) with
mutational distance for theoretical fitness landscapes with 6 loci from [14]. (B) Observed
decay of γd with mutational distance under the drop-one approach is quite homogenous,
except when hotspot mutation 588P is removed. (C) Observed decay of γd for all di-allelic
6-locus sub-landscapes. Depending on the underlying mutations, γd is vastly different sug-
gesting qualitative differences in the topology of the underlying fitness landscape and in
the extent of additivity in the landscape. Three focal landscapes representative of different
types, and γd for the full landscape have been highlighted. (D) Observed decay of γd for all
di-allelic 4-locus sub-landscapes containing the parental type, indicative of locally different
landscape topologies. Highlighted are the three focal landscapes. Insets: Histograms of the
roughness-to-slope ratio r/s for the respective subset, with horizontal lines indicating values
for highlighted landscapes (r/s for global landscape (blue) is significantly different from HoC
expectation, p = 0.01). Similar to γd, there is a huge variation in r/s for subparts of the
fitness landscape, especially when considering the 4-locus subsets.

We computed various landscape statistics (roughness-to-slope ratio, fraction of epistasis,
and the recently proposed gamma statistics; see Supplementary Material) [11, 10, 14], and
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compared them to expectations from theoretical landscape models (NK, Rough-Mount-Fuji
(RMF), House-of-Cards (HoC), Egg-Box landscapes). Whenever necessary, we provide an
analytical extension of the used statistic to the case of multi-allelic landscapes (see Materials
and Methods). To assess consistency and predictive potential, we computed the whole set
of statistics for (1) all landscapes in which one amino acid was completely removed from
the landscape (a cross-validation approach [43], subsequently referred to as the ‘drop-one’
approach), (2) all possible 360 di-allelic sub-landscapes, and (3) for all 1,570 di-allelic 4-step
landscapes containing the parental genotype, highlighting as special examples the three focal
landscapes discussed.

We find that the general topology of the fitness landscape resembles that of a RMF landscape
with intermediate ruggedness, which is characterized by a mixture of a random HoC com-
ponent and an additive component (Fig. 4A,B). Whereas the whole set of landscape statis-
tics supports this topology and our conclusions, the gamma statistics measuring landscape-
averaged correlations in fitness effects, recently proposed by [14], proved to be particularly
illustrative. We will therefore focus on these in the main text; we refer to the Supplementary
Material for additional results.

Predictive potential of landscape statistics

When computed based on the whole landscape and on a drop-one approach, the landscape ap-
pears quite homogeneous, and the gamma statistics show relatively little epistasis (Fig. 4B,
5B). On first sight, this contradicts our earlier statement of strong negative and positive
epistasis but can be understood given the different definitions of the epistasis measures used:
Above, we have measured epistasis based on the deviation from the multiplicative combi-
nation of the single-step fitness effects of mutations on the parental background. As these
effects were small, epistasis was strong in comparison. Conversely, the gamma measure is
independent of a reference genotype and captures the fitness decay with a growing number
of substitutions as a dominant and quite additive component of the landscape.

Only mutation 588P has a pronounced effect on the global landscape statistics, and seems
to act as an epistatic hotspot by making a majority of subsequent mutations (of indivually
small effect) on its background strongly deleterious (clearly visible in Fig. 4B, 5C). This
can be explained by looking at the biophysical properties of this mutation. In wild-type
Hsp90, amino acid 588N is oriented away from solvent and forms hydrogen bond interactions
with neighboring amino acids [24]. Proline lacks an amide proton, which inhibits hydrogen
bond interactions. As a result, substituting 588N with a proline could disrupt hydrogen
bond interactions with residues that may be involved in main chain hydrogen bonding and
destabilize the protein. In addition, the pyrrolidine ring of proline is extremely rigid and can
constrain the main chain, which may restrict the conformation of the residue preceding it in
the protein sequence [44].

The variation between inferred landscape topologies increases dramatically for the 360 di-
allelic 6-locus sub-landscapes (Fig.4C). Whereas they are still largely compatible with an
RMF landscape, the decay of landscape-wide epistasis with mutational distance (as mea-
sured by γd) shows a large variance, suggesting large differences in the degree of additivity.
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Interestingly, sub-sections of the landscape, typically carrying mutation *588P, show a relax-
ation of epistatic constraint with increasing mutational distance that cannot be captured by
any of the proposed theoretical fitness landscape models, suggestive of non-random compen-
satory interactions. The variation in the shape of the fitness (sub-)landscapes is also reflected
in the corresponding roughness-to-slope ratio (inset of Fig. 4C-D), further emphasizing in-
homogeneity of the fitness landscape with local epistatic hotspots.

Finally, the 1,570 di-allelic 4-locus landscapes containing the parental genotype, though
highly correlated genetically, reflect a variety of possible landscape topologies (Fig.4D), rang-
ing from almost additive to egg-box shapes, accompanied by an extensive range of roughness-
to-slope ratios. The three focal landscapes discussed above are not strongly different com-
pared with the overall variation; yet show diverse patterns of epistasis between substitutions
(Fig. 5).
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Figure 5: (A) Epistasis measure γ(Ai,Bi)→(Aj ,Bj) (eq. S1_8) between any two substitutions,
averaged across the entire landscape. The majority of interactions are small to moderate
(blue). Parts of the fitness landscape show highly localized and mutation-specific epistasis,
ranging from strong magnitude epistasis (white) to sign and reciprocal sign epistasis (yellow).
(B) The average epistatic effect γAi→ (eq. S1_9) of a mutation occurring on any background
is always small. (C) The average epistatic effect γ→Aj (eq. S1_13) of a background on any
new mutation is usually small, except for background P588*, which shows a strong magnitude
effect. (D) Locus-specific gamma for the 4 mutations leading to the global optimum (top),
the 4 largest single effect mutations (middle), and the single effect mutations with the lowest
fitness (bottom). The “opt” landscape exhibits strong sign epistasis between locus 587 and
588, and 588 and 589. Also the “best” landscape exhibits pervasive epistasis with sign
epistasis between locus 588 and locus 585 and 586, respectively. We observe almost no
epistasis in the “worst” landscape.
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Thus, predicting fitness landscapes is difficult indeed. Extrapolation of the landscape, even
across only a single mutation, may fail due to the existence of local epistatic hotspot muta-
tions. While the integration of biophysical properties into landscape models is an important
step forward [e.g. 45], we demonstrate that such models need to be mutation-specific. Con-
sidering a site-specific model (e.g., BLOSUM matrix; [46]) is not sufficient. Newer models
such as DeepAlign may provide the opportunity to allow integration of mutation-specific
effects via aligning two protein structures based on spatial proximity of equivalent residues,
evolutionary relationship and hydrogen bonding similarity [47].

Conclusion

Originally introduced as a metaphor to describe adaptive evolution, fitness landscapes promise
to become a powerful tool in biology to address complex questions regarding the predictabil-
ity of evolution and the prevalence of epistasis within and between genomic regions. Due
to their high-dimensional nature, however, the ability to extrapolate will be paramount to
progress in this area, and the optimal quantitative and qualitative approaches to achieve this
goal are yet to be determined.

Here, we have taken an important step towards addressing this question via the creation and
analysis of a landscape comprising 640 engineered mutants of the Hsp90 protein in yeast.
The unprecedented size of the fitness landscape along with the multi-allelic nature allows us
to test whether global features could be extrapolated from subsets of the data. Although the
global pattern indicates a rather homogeneous landscape, smaller sub-landscapes are a poor
predictor of the overall global pattern because of ‘epistatic hotspots’.

In combination, our results highlight the inherent difficulty imposed by the duality of epistasis
for predicting evolution. In the absence of epistasis (i.e., in a purely additive landscape)
evolution is globally highly predictable as the population will eventually reach the single
fitness optimum, but the path taken is locally entirely unpredictable. Conversely, in the
presence of (sign and reciprocal sign) epistasis evolution is globally unpredictable, as there
are multiple optima and the probability to reach any one of them depends strongly on the
starting genotype. At the same time, evolution may become locally predictable with the
population following obligatory adaptive paths that are a direct result of the creation of
fitness valleys owing to epistatic interactions.

The empirical fitness landscape studied here appears to be intermediate between these ex-
tremes. Although the global peak is within reach from almost any starting point, there is
a local optimum that will be reached with appreciable probability, particular when start-
ing from the parental genotype. From a practical standpoint, these results thus highlight
the danger inherent to the common practice of constructing fitness landscapes from ascer-
tained mutational combinations. However, this work also suggests that one promising way
forward for increasing predictive power will be the utilization of multiple small landscapes
used to gather information about the properties of individual mutations, combined with the
integration of site-specific biophysical properties.
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Supporting Information 1: Extended Materials and Methods

Adaptive walks

Under the strong selection weak mutation (SSWM) limit [42], adaptation follows an absorbing
Markovian process characterized by a series of fitness-increasing substitutions along one-
mutant neighbours until reaching a fitness optimum (forming a so-called adaptive walk),
with a total of n different states (i.e., mutants), consisting of k absorbing (i.e., optima) and
n− k transient states (i.e., non-optima). Defining w(g) as the fitness of genotype g, and g[i]
as the genotype g carrying a mutant allele at locus i, the selection coefficient is denoted by

sj(g) = w(g[j])− w(g), (S1_1)

such that the transition probabilities for going from any mutant j to any mutant i are given
by the transition matrix

P =


si∑

i∈Mj

si
if Mj 6= ∅

1 else,
(S1_2)

where M(g) := {j : sj(g) > 0,DHD(g, g[j]) = 1} denotes the set of all adaptive, one-mutant
neighbours of the current genotype g.

The canonical form of P can then be obtained by permutation, such that

P =
(

Q R
0 Ik

)
, (S1_3)

where Q is a (n − k) × (n − k) matrix which contains the transition probabilities between
transient states; R is a (n− k)× k matrix which gives the transition probabilities from any
transient to any absorbing state; 0 is the k× (n− k) zero matrix; and Ik is the k× k identity
matrix [33].

Using the above representation, all basic properties of the absorbing Markov chain can be
calculated from the fundamental matrix

N =
∞∑
i=0

= Qi =
(
I(n−k) −Q

)−1
. (S1_4)

In particular, the expected number of steps before absorption (i.e., the expected number of
steps on the fitness landscape before reaching any optimum) is given by

E[t] = N1, (S1_5)
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where 1 is a column vector of length (n−k) with all entries being 1, and the ith entry of E[t]
gives the expected number of steps when starting from state (mutant) i.

Similarly, the variance in the number of steps before being absorbed can be computed as

Var[t] = (2N− It) E[t]− E[t]� E[t], (S1_6)

where � denotes the Hadamard product.

Finally, the probability of being absorbed in state j when starting from transient state i (i.e.,
reaching optimum j when the initial genotype is i), is given by the (n− k)× k-matrix

B = NR. (S1_7)

Thus, these methods give an easy and computationally fast way of quantifying and predicting
adaptive walks on fitness landscapes. Furthermore, the robustness of these results and the
influence of particular mutants can be assessed by deleting the ith column and row of P –
i.e., by essentially treating mutant i as unobserved –, recalculating the above statistics and
comparing these to the statistics obtained from the full data set. Similarly, entire mutations
(i.e., amino acids) can be left out to assess their relative effect on the fitness landscape and
the generality of our analysis (and the statistics used).

Measuring epistasis

We applied different metrics for quantifying epistasis over the entire fitness landscape as
well as for particular mutations and assessed their consistency in capturing the strength of
gene×gene interactions. In particular, we follow the definition of epistasis by [48] (originally
termed epistacy), as the deviation from additivity when combining two genetic effects which
is measured by the difference in log-fitness between the effects of the double mutant and the
single mutant relative to the wild-type fitness.

Correlation of fitness effects of mutations: γ

The first measure has recently been introduced by [14] and is defined as the single-step
correlation of fitness effects for mutations between neighbouring genotypes. It quantifies
how the selective effect of a focal mutation is altered when it occurs in a different genetic
background averaged over all genotypes of the fitness landscape. Geometrically, γ measures
the correlation between slopes (with respect to genotype-fitness hypercube) of the same
mutation put into different genetic backgrounds. Thus, if the fitness effect of a mutation
is independent of its genetic background (i.e., if there is no epistasis), the correlation in
slopes will be perfect (γ = 1), whereas it will be zero if the fitness slopes of each genotype
are independent of the fitnesses of other genotypes (as in the House-of-Cards model; 49).
Depending on the scale γ can either be used to quantify the strength of gene×gene interactions
between specific mutations or as an overall measure for the entire fitness landscape. However,
in its original form γ was defined for bi-allelic data only and thus needs to be extended by
considering pairs of specific alleles at different loci [14].
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Let Ai = {1i, 2i, . . . ,mi} denote the set of different alleles present at locus i for all poly-
morphic loci i ∈ {1, 2, . . . , n} such that |Ai|≥ 2 for all loci i. Further, let G be the set of
all phenotypes that can be formed by combining all alleles such that the total number of
genotype is |G|= ∏n

i=1 mi.

Then the matrix of epistatic effects between loci i and j carrying alleles Ai, Bi ∈ Ai and
Aj, Bj ∈ Aj is given by

γ(Ai,Bi)→(Aj ,Bj) = Cor[s(Aj ,Bj)(g), s(Aj ,Bj)(g[(Ai,Bi)])] =
∑
g sj(g)sj(g[i])∑
g(sj(g))2 . (S1_8)

where g := {x ∈ G|xi = Ai or xi = Bi and xj = Aj or xj = Bj} ⊆ G such that the sum is
only calculated over the subset of genotypes carrying one of the two focal alleles at each focal
locus. Thus, γ(Ai,Bi)→(Aj ,Bj) is a quadratic matrix of dimension

(∑n
i=1

|Ai|(|Ai|−1)
2

)
. Note that

in the case where |Ai|= 2 for all loci i, we obtain equation 9 in [14].

Likewise, the epistatic effect of a mutation in locus i with alleles (Ai, Bi) on other loci (and
pairs of alleles) can be calculated as

γ(Ai,Bi)→ = Cor[s(g), s(g[(Ai,Bi)])] =
∑
j 6=i

∑
aj

∑
g sj(g)sj(g[i])∑

j 6=i
∑

aj

∑
g(sj(g))2 , (S1_9)

where the summation index aj = {(Aj, Bj) | Aj, Bj ∈ Aj and Aj 6= Bj} is over the set of
subsets of size two that can be constructed from all alleles found at locus j. Note that the
third summation index g changes depending on aj.

An additional summation allows calculation of the epistatic effect of a mutation in locus i
carrying allele (Ai) on other loci (and pairs of alleles) can be calculated as

γAi→ = Cor[s(g), s(g[Ai])] =
∑
j 6=i

∑
fi

∑
aj

∑
g sj(g)sj(g[i])∑

j 6=i
∑

fi

∑
aj

∑
g(sj(g))2 , (S1_10)

where fi = {(Ai, Bi) | Bi ∈ Ai and Ai 6= Bi} such that the sum is only calculated over the
elements of the set of subsets of size two that can be constructed from all alleles found at
locus i that contain allele Ai.

Then, summing over li = {(Ai, Bi) | Ai, Bi ∈ Ai and Ai 6= Bi}, i.e., the elements of the set of
subsets of size two that can be constructed from all alleles found at locus i, gives the epistatic
effect of a mutation in locus i

γi→ = Cor[s(g), s(g[i])] =
∑
j 6=i

∑
li

∑
aj

∑
g sj(g)sj(g[i])∑

j 6=i
∑

li

∑
aj

∑
g(sj(g))2 . (S1_11)

Similarly, the epistatic effect of other mutations (again considering pairs of alleles first) on
locus j with alleles (Ai, Bi) can be calculated as
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γ→(Aj ,Bj) = Cor[s(Aj ,Bj)(g), s(Aj ,Bj)(g1)] =
∑
i6=j

∑
ai

∑
g sj(g)sj(g[i])∑

i6=j
∑

ai

∑
g(sj(g))2 , (S1_12)

the epistatic effect of other mutations on locus j carrying allele (Aj) is given by

γ→(Aj) = Cor[s(Aj)(g), s(Aj)(g1)] =
∑
i6=j

∑
fj

∑
ai

∑
g sj(g)sj(g[i])∑

i6=j
∑

fj

∑
ai

∑
g(sj(g))2 , (S1_13)

and the epistatic effect of other mutations on locus j becomes

γ→j = Cor[sj(g), sj(g1)] =
∑
i6=j

∑
lj

∑
ai

∑
g sj(g)sj(g[i])∑

i6=j
∑

lj

∑
ai

∑
g(sj(g))2 . (S1_14)

Finally, γd, that is the decay of correlation of fitness effects with Hamming distance d, (i.e.,
the cumulative epistatic effect of d mutations averaged over the entire fitness landscape) is
calculated as

γd = Cor[s(g), sj(gd)] =
∑
g

∑
gd

∑
j 6=i1,i2...id

∑
Aj\{Aj} sj(g)sj(g[i1i2...id])∑

g

∑
Aj\{Aj}(sj(g))2 , (S1_15)

where the last summation is over all different alleles present at locus j except the one carried
by genotype g at locus j. Note that there is unfortunately no multi-allelic analog to equa-
tion (14) of [14]. Furthermore, as desired when there are only two alleles at a given locus,
equations (S1_9 – S1_11) and equations (S1_12 – S1_14) collapse and give identical values,
and reduce to their bi-allelic counterparts (i.e., eq. 7-8 in 14).

Fraction of epistasis

The second statistic quantifies whether specific pairs of alleles between two loci interact
epistatically, and if so whether they display magnitude epistasis (i.e., fitness effects are non-
additive, but fitness increases with the number of mutations), sign epistasis (i.e., one of
the two mutations considered has an opposite effect in both backgrounds) or reciprocal sign
epistasis (i.e., if both mutations show sign epistasis; 34, 35; for an implementation see [36]).

Using equation (S1_1) the type of epistatic interaction between a mutations at locus i and j
(with i 6= j) when introduced on some reference genotype g, e(g, i, j), can formally be given
as

e(g, i, j) =


none if |si(g[j])− si(g)|= 0
magnitude if sj(g)sj(g[i]) ≥ 0 and si(g)si(g[j]) ≥ 0
reciprocal sign if sj(g)sj(g[i]) < 0 and si(g)si(g[j]) < 0
sign else

. (S1_16)

Note that for numerical purposes we allowed for a very small deviation ε = 10−6 in the case
of no epistatic interaction. For ease of notation, we treat the elements in Ai as fixed and
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ordered, and define I(g[i]) as the index of the allele present at locus i in genotype g in Ai
such that the fraction of epistasis over all G can be calculated as

E(x) = c−1∑
g

mi∑
k=I(g[i])+1

mj∑
l=k+1

1x (e(g, k, l)) , (S1_17)

where x ∈ {none,magnitude, sign, reciprocal sign}, 1x(y) is the indicator function that is 1

if x = y and 0 otherwise, and c =
∑

g

mi∑
k=I(g[i])+1

mj∑
l=k+1

1
 is a normalization constant.
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Supporting Information 2: Supporting Figures

Figure S2_1: (A) Scatterplot demonstrating the correlation of estimated growth rates (R2 =
0.944). Orange dots indicate median growth rates, rectangles indicate the limits of the 95%
credibility intervals (in blue if they do not overlap between replicates). (B) In contrast,
estimated initial population sizes are much more variable between replicates, demonstrating
that initial representation in the mutant library had no effect on the estimated growth rate.
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Figure S2_2: Graphical illustration of the sub-landscape of all beneficial mutants with respect
to the parental type. (A) Each vertex (circle) corresponds to a mutant that is beneficial
with respect to the parental type (triangle), colored according to their fitness and arranged
circularly by their Hamming distance to the parental type. Arrows connect mutants that
differ by a single substitution, with their direction indicating an increase in fitness. The five
local optima in this sub-landscape are indicated as squares. Inset: distribution of average
lengths of adaptive walks starting from any type in the full landscape (i.e., absorbing times
of the Markov chain). The red line indicates mean path lengths for adaptive walks from
the parental genotype. (B)-(F) Paths leading towards the different optima – highlighted by
their sequence name – when beginning an adaptive walk at the parental genotype. Inset
(B) - (F): Distribution of absorbing probabilities, that is, the probability to reach a specific
optimum starting from a given mutant computed for all mutants in the data set. The red
line corresponds to the respective probability when starting from the parental sequence. The
global optimum is in general reached with a very high probability, but there are starting
points from which it is poorly accessible.
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Figure S2_3: (A) Path probability of reaching a specific local optimum when beginning an
adaptive walk at the parental genotype. Results are presented on log scale. Boxes represent
the interquartile range (i.e., the 50% C.I.), whiskers extend to the highest/lowest data point
within the box ± 1.5 times the interquartile range, and black circles represent close outliers.
(B) Path length (i.e., the number of substitutions) to reach a specific local optimum. Inset:
Color coding for the different optima with the total number of different paths leading to the
respective optimum in brackets. There is a total of 3776 different paths that can be taken
from the parental genotype, 66% of which lead to the global optimum (yellow). Most of these,
however, require multiple substitutions, such that the probability to reach the global optimum
is generally low. In contrast, the local optimum close to the parental genotype (orange) can
be reached with only a few substitutions, and thus, with relatively high probability.
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Type Mean 95% IQR

none 8.24E-06 [0, 9.47E-05]
magnitude 0.62 [0.612, 0.628]

sign 0.298 [0.291, 0.305]
reciprocal sign 0.082 [0.078, 0.086]

A B

Figure S2_4: (A) The fraction of epistasis (eq. S1_17) calculated for different values of
ε, quantifying the error threshold beyond which interactions between different alleles are
considered to be epistatic. Expectedly, as ε increases the number of non-epistatic interac-
tions between alleles increases, which in the majority of cases were previously classified as
magnitude epistatic interactions. Likewise, the fraction of sign and reciprocal sign epistasis
decreases. The red dashed line shows the mean absolute difference between median growth
rates obtained from the two independent replicates calculated over all mutants with median
growth rate larger than the mean median growth rate estimated for the substitution F583∗
(i.e., when substituting a stop codon) between the two replicates. Using this threshold for
ε, we find that approximately 10% of all interactions are additive, approximately 50% show
magnitude epistasis, whereas the sign and reciprocal sign epistasis remains roughly constant
at 30% and 8%, respectively. (B) The mean and the 95% interquantile range (IQR) of the
fraction of epistasis calculated over 10,000 posterior samples obtained from the MCMC sim-
ulations using the standard threshold ε = 10−6. There is only little to no variation in the
fraction of epistasis and the mean value is essentially identical to the proportions reported in
the main text, indicating robustness of the inferred fraction of epistasis, and confirming that
variation in posterior samples is typically small (i.e., growth rates are estimated with high
precision).

30

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 15, 2016. ; https://doi.org/10.1101/048769doi: bioRxiv preprint 

https://doi.org/10.1101/048769
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Author Summary
	Introduction
	Material and Methods
	Results and Discussion
	Epistasis measures and the topology of the fitness landscape
	Acknowledgements

	Supporting Information 1: Extended Materials and Methods
	Supporting Information 2: Supporting Figures

