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Abstract

The genetic component of complex disease risk in humans remains largely unexplained. A corollary is that

the allelic spectrum of genetic variants contributing to complex disease risk is unknown. Theoretical models

that relate population genetic processes to the maintenance of genetic variation for quantitative traits may

suggest profitable avenues for future experimental design. Here we use forward simulation to model a

genomic region evolving under a balance between recurrent deleterious mutation and Gaussian stabilizing

selection. We consider multiple genetic and demographic models, and several different methods for

identifying genomic regions harboring variants associated with complex disease risk. We demonstrate that

the model of gene action, relating genotype to phenotype, has a qualitative effect on several relevant aspects

of the population genetic architecture of a complex trait. In particular, the genetic model impacts genetic

variance component partitioning across the allele frequency spectrum and the power of statistical tests.

Models with partial recessivity closely match the minor allele frequency distribution of significant hits from

empirical genome-wide association studies without requiring homozygous effect-sizes to be small. We

highlight a particular gene-based model of incomplete recessivity that is appealing from first principles.

Under that model, deleterious mutations in a genomic region partially fail to complement one another. This

model of gene-based recessivity predicts the empirically observed inconsistency between twin and SNP based

estimated of dominance heritability. Furthermore, this model predicts considerable levels of unexplained

variance associated with intralocus epistasis. Our results suggest a need for improved statistical tools for

region based genetic association and heritability estimation.

Author Summary

Gene action determines how mutations affect phenotype. When placed in an evolutionary context, the details

of the genotype-to-phenotype model can impact the maintenance of genetic variation for complex traits.

Likewise, non-equilibrium demographic history may affect patterns of genetic variation. Here, we explore the

impact of genetic model and population growth on distribution of genetic variance across the allele frequency
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spectrum underlying risk for a complex disease. Using forward-in-time population genetic simulations, we

show that the genetic model has important impacts on the composition of variation for complex disease risk

in a population. We explicitly simulate genome-wide association studies (GWAS) and perform heritability

estimation on population samples. A particular model of gene-based partial recessivity, based on allelic

non-complementation, aligns well with empirical results. This model is congruent with the dominance

variance estimates from both SNPs and twins, and the minor allele frequency distribution of GWAS hits.

Introduction 1

Risk for complex diseases in humans, such as diabetes and hypertension, is highly heritable yet the causal 2

DNA sequence variants responsible for that risk remain largely unknown. Genome-wide association studies 3

(GWAS) have found many genetic markers associated with disease risk [1]. However, follow-up studies have 4

shown that these markers explain only a small portion of the total heritability for most traits [2, 3]. 5

There are many hypotheses which attempt to explain the ‘missing heritability’ problem [2–5]. Genetic 6

variance due to epistatic or gene-by-environment interactions is difficult to identify statistically because of, 7

among other reasons, increased multiple hypothesis testing burden [6, 7], and could artificially inflate 8

estimates of broad-sense heritability [8]. Well-tagged intermediate frequency variants may not reach 9

genome-wide significance in an association study if they have smaller effect sizes [9,10]. One appealing verbal 10

hypothesis for this ‘missing heritability’ is that there are rare causal alleles of large effect that are difficult to 11

detect [4, 11, 12]. These hypotheses are not mutually exclusive, and it is probable that a combination of 12

models will be needed to explain all heritable disease risk [13]. 13

The standard GWAS attempts to identify genetic polymorphisms that differ in frequency between cases 14

and controls. A complementary approach is to estimate the heritability explained by genotyped (and 15

imputed) markers (SNPs) under different population sampling schemes [14,15]. Stratifying markers by minor 16

allele frequency (MAF) prior to performing SNP-based heritability estimation allows the partitioning of 17

genetic variation across the allele frequency spectrum to be estimated [16], which is an important summary 18

of the genetic architecture of a complex trait [16–23]. This approach has inferred a contribution of rare 19

alleles to genetic variance in both human height and body mass index (BMI) [16], consistent with theoretical 20

work showing that rare alleles will have large effect sizes if fitness effects and trait effects are 21

correlated [18,20–25]. Yet, simulations of causal loci harboring multiple rare variants with large additive 22

effects predict an excess of low-frequency significant markers relative to empirical findings [4, 26]. 23

SNP-based heritability estimates have concluded that there is little missing heritability for height and 24

BMI, and that the causal loci simply have effect sizes that are too small to reach genome-wide significance 25

under current GWAS sample sizes [14, 16]. Further, extensions to these methods decompose genetic variance 26

into additive and dominance components and find that dominance variance is approximately one fifth of the 27

additive genetic variance on average across seventy-nine complex traits [27]. When taken into account 28

together with results from GWAS, these observations can be interpreted as evidence that the genetic 29

architecture of human traits is best-explained by a model of small additive effects. However, a recent large 30

twin study found a substantial contribution of dominance variance for fourteen out of eighteen traits [28]. 31

The reason for this discrepancy in results remains unclear. One possibility is a statistical artifact; for 32
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example, twin studies may be prone to mistakenly infer non-additive affects when none exist. Another 33

possibility, which we return to later, is that this apparently contradictory results are expected under a 34

different model of gene action. 35

The design, analysis, and interpretation of GWAS are heavily influenced by the ”standard model” of 36

quantitative genetics [29]. This model assigns an effect size to a mutant allele, but formally makes no 37

concrete statement regarding the molecular nature of the allele. Early applications of this model to the 38

problem of human complex traits include Risch’s work on the power to detect causal mutations [30, 31] and 39

Pritchard’s work showing that rare alleles under purifying selection may contribute to heritable variation in 40

complex traits [17]. When applied to molecular data, such as SNP genotypes in a GWAS, these models treat 41

the SNPs themselves as the loci of interest. For example, influential power studies informing the design of 42

GWAS assign effect sizes directly to SNPs and assume Risch’s model of multiplicative epistasis [32]. 43

Similarly, the single-marker logistic regression used as the primary analysis of GWAS data typically assumes 44

an additive or recessive model at the level of individual SNPs [33]. Finally, recent methods designed to 45

estimate the heritability of a trait explained by genotyped markers assigns additive and dominance effects 46

directly to SNPs [14,16,27,34]. Naturally, the results of such analyses are interpreted in light of assumed 47

model of gene action. 48

A weakness of the multiplicative epistasis model [30, 31] when applied to SNPs is that the concept of a 49

gene, defined as a physical region where loss-of-function mutations have the same phenotype [35], is lost. 50

Specifically, under the standard model, the genetic concept of a failure to complement is a property of SNPs 51

and not ”gene regions” (see [36] for a detailed discussion of this issue). We have recently introduced an 52

alternative model of gene action, one in which risk mutations are unconditionally deleterious and fail to 53

complement at the level of a ”gene region” [36]. This model, influenced by the standard operational 54

definition of a gene [35], gives rise to the sort of allelic heterogeneity typically observed for human Mendelian 55

diseases [37], and to a distribution of GWAS ”hit” minor allele frequencies [4, 26] consistent with empirical 56

results [36]. In this article, we explore this ”gene-based” model under more complex demographic scenarios 57

as well as its properties with respect to the estimation of variance components using SNP-based 58

approaches [34] and twin studies. We also compare this model to the standard models of strictly additive 59

co-dominant effects, and multiplicative epistasis with dominance. 60

We further explore the power of several association tests to detect a causal gene region under each genetic 61

and demographic model. We find significant heterogeneity in the performance of burden tests [36, 38,39] 62

across models of the trait and demographic history. We find that population expansion reduces the power to 63

detect causal gene-regions due to an increase in rare variation, in agreement with work by [22,23]. The 64

behavior of the tests under different models provides us with insight as to the circumstances in which each 65

test is best suited. 66

In total, our results show that modeling gene action is key to modeling GWAS, and thus plays an 67

important role in both the design and interpretation of such studies. Further, the model of gene-based 68

recessivity best explains the differences between estimates of additive and dominance variance components 69

from SNP-based methods [27] and from twin studies [28] and is consistent with the distribution of 70

frequencies of significant associations in GWAS [4,26]. Further, the genetic model plays a much more 71

important role than the demographic model, which is expected based on previous work on additive models 72
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showing that the genetic load is approximately unaffected by changes in population size over time, [21, 22]. 73

Consistent with recent work by [23], we find that rapid population growth in the recent past increases the 74

contribution of rare variants to total genetic variance. However, we show here that different models of gene 75

action are qualitatively different with respect to the partitioning of genetic variance across the allele 76

frequency spectrum. We also show that these conclusions hold under the more complex demographic models 77

that have been proposed for human populations [21, 40]. 78

Results and Discussion 79

The Models 80

As in [36],we simulate a 100 kilobase region of human genome, contributing to a complex disease phenotype 81

and fitness. The region evolves forward in time subject to neutral and deleterious mutation, recombination, 82

selection, and drift. To perform genetic association and heritability estimation studies in silico, we need to 83

impose a trait onto simulated individuals. In doing so, we introduce strong assumptions about the molecular 84

underpinnings of a trait and its evolutionary context. 85

How does the molecular genetic basis of a trait under natural selection influence population genetic 86

signatures in the genome? This question is very broad, and therefore it was necessary to restrict ourselves to 87

a small subset of molecular and evolutionary scenarios. We analyzed a set of approaches to modeling a single 88

gene region experiencing recurrent unconditionally-deleterious mutation contributing to a quantitative trait 89

subject to Gaussian stabilizing selection. Specifically, we studied three different genetic models and two 90

different demographic models, holding the fitness model as a constant. Parameters are briefly described in 91

Table 1. 92

We implemented three disease-trait models of the phenotypic form P = G+ E. G is the genetic 93

component, and E = N(0,�2
e

) is the environmental noise expressed as a Gaussian random variable with 94

mean 0 and standard deviation �2
e

. In this context, �2
e

should be thought of as both the contribution from 95

the environment and from the remaining genetic variance at loci in linkage equilibrium with the simulated 96

100kb region. The genetic models are named the additive co-dominant (AC) model, multiplicative recessive 97

(Mult. recessive; MR) model and the gene-based recessive (GBR) model. The MR model has a parameter, h, 98

that controls the degree of recessivity; we call this model the complete MR (cMR) when h = 0 and the 99

incomplete MR (iMR) when 0  h  1. It is important to note that here recessivity is being defined in terms 100

of phenotypic effects; this may be unusual for those more accustomed to dealing directly with recessivity for 101

fitness effects. An idealized relationship between dominance for fitness effects and trait effects of a mutation 102

on an unaffected genetic background is shown in S15 Fig. 103

The critical conceptual difference between recessive models is whether dominance is a property of a locus 104

(nucleotide/SNP) in a gene or the gene overall. Mathematically, this amounts to whether one first determines 105

diploid genotypes at sites (and then multiplies across sites to get a total genetic effect) or calculates a score 106

for each haplotype (the maternal and paternal alleles). For completely co-dominant models, this distinction 107

is irrelevant, however for a model with arbitrary dominance one needs to be more specific. As an example, 108

imagine a compound heterozygote for two biallelic loci, i.e. genotype Ab/aB. In the case of traditional 109

multiplicative recessivity the compound heterozygote is wild type for both loci and therefore wild-type over 110
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all; this implies that these loci are in different genes (or independent functional units of the same gene) 111

because the mutations are complementary. However, in the case of gene-based recessivity [36], neither 112

haplotype is wild-type and so the individual is not wild-type; the failure of mutant alleles to complement 113

defines these loci as being in the same gene [35]. 114

For a diploid with m
i

causative mutations on the ith haplotype, we may define the additive model as 115

G
AC

=
2X

i=1

m

iX

j=1

c
i,j

, (1)

where c
i,j

is the effect size of the jth mutation on the ith haplotype. Each c
i,j

is sampled from an 116

exponential distribution with mean of �, to reflect unconditionally deleterious mutation. In other words, 117

when a new mutation arises it’s effect c is drawn from an exponential distribution, and remains constant 118

throughout it’s entire sojourn in the population. 119

The GBR model is the geometric mean of the sum of effect sizes on each haplotype [36]. We sum the 120

causal mutation effects on each allele (paternal and maternal) to obtain a haplotype score. We then take the 121

square root of the product of the haplotype scores to determine the total genetic value of the diploid. 122

G
GBR

=

vuut
m1X

j=1

c1,j ⇥
m2X

j=1

c2,j (2)

Finally, the MR model depends on the number of positions for which a diploid is heterozygous (m
Aa

) or 123

homozygous (m
aa

) for causative mutations, 124

G
MR

=

0

@
m

AaY

j=1

(1 + hc
j

)

1

A

0

@
m

aaY

j=1

(1 + 2c
j

)

1

A� 1. (3)

Thus, h = 0 is a model of multiplicative epistasis with complete recessivity (cMR), and h = 1 closely 125

approximates the additive model when effect sizes are small. 126

Here, phenotypes are subject to Gaussian stabilizing selection with an optimum at zero and standard 127

deviation of �
s

= 1 such that the fitness, w, of a diploid is proportional to a Gaussian function [41]. 128

w = e
� P

2

2�2
s (4)

The AC and MR models draw no distinction between a “mutation” and a “gene” (as discussed in [36]). 129

The GBR is also a recessive model, but recessivity is at the level of a haplotype (or allele) and is not an 130

inherent property of individual mutations (see [36] for motivation of this model). Viewed in light of the 131

traditional AC and MR models, the recessivity of a site in the GBR model is a function of the local genetic 132

background on which it is found. Based on several qualitative comparisons we find that the GBR model is 133

approximated by iMR models with 0.1  h  0.25. However, no specific iMR model seems to match well in 134

all aspects. The demographic models are that of a constant sized population (no growth) and rapid 135

population expansion (growth). 136

The use of the MR model is inspired by Risch’s work [30,31], linking a classic evolutionary model of 137

multiple loci interacting multiplicatively [42, 43] to the the genetic epidemiological parameter relative risk. 138

Risch and Merikangas [44] used this model to calculate the power detect causal risk variants as a function of 139
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their frequency and effect size. Pritchard extended Risch’s model to consider a trait explicitly as a product of 140

the evolutionary process [17]. Pritchard’s work demonstrated that the equilibrium frequency distribution 141

suggested an important role for rare deleterious mutations when a trait evolves in a constant sized, randomly 142

mating population with recurrent mutation and constant effect sizes. However, multiplicative epistasis is only 143

one model of gene action, and the effect of different genotype-to-phenotype models on the genetic architecture 144

of traits and GWAS outcomes remains unknown. Exploring this issue is the focus of the current work. 145

Additive and dominance genetic variance in the population 146

The amount of narrow sense heritability, h2 = (V
A

)/(V
P

), explained by variants across the frequency 147

spectrum is directly related to the effect sizes of those variants [29]. Thus, this measure is an important 148

predictor of statistical power of GWAS and should inform decisions about study design and analysis [45]. 149

Empirically, SNP-based estimates of heritability have inferred negligible dominance variance underlying most 150

quantitative traits [27]. We have a particular interest in the amount of additive variance, V
A

, that is due to 151

rare alleles and how much of genetic variance, V
G

, is attributable to V
A

under different recessive models. 152

We follow the approach of [21], by calculating the cumulative percent of V
G

explained by the additive 153

effects of variants less than or equal to frequency x, (V
A;qx

)/(V
G

). The product of this ratio and broad-sense 154

heritability is an estimate of the narrow-sense heritability, h2. This calculation is a population-wide 155

equivalent to a SNP-based estimate of heritability in a population sample. In addition we calculate the same 156

distribution for dominance effects (V
D;qx

)/(V
G

) using the orthogonal model of [27]. Methods based on 157

summing effect sizes [29] or the site frequency spectrum [21] would not apply to the GBR model, because the 158

effect of a variant is not independent of other variants (e.g., there is intralocus epistasis). Therefore, we resort 159

to a regression-based approach, where we regress the genotypes of the population onto the total genetic value 160

as defined in our disease trait models (see Material and Methods). In the limit of Hardy-Weinberg and 161

linkage equilibrium, the regression estimates are equivalent to standard quantitative genetic estimates [29] 162

(S14 Fig). For consistency, we applied the regression approach to all models. Overall, these distributions are 163

substantially different across genetic models, demographic scenarios and model parameters (Fig 1). 164

Under the AC model, all of V
G

is explained by additive effects if all variants are included in the 165

calculation; in Fig 1 the solid variance curves reach unity in the AC panel. Low frequency and rare variants 166

(q < 0.01) explain a large portion of narrow sense heritability (26% - 95%) even in models without rapid 167

population expansion. Further, the variance explained at any given frequency threshold increases 168

asymptotically to unity as a function of increasing � (S4 Fig). While the total heritability of a trait in the 169

population is generally insensitive to population size changes (S1 Fig, see also [21, 22, 46]), rapid population 170

growth increases the fraction of additive genetic variation due to rare alleles (Fig 1). 171

Here, increasing � corresponds to stronger selection against causative mutations, due to their increased 172

average effect size. Recent work by Zuk et al. [24], takes a similar approach and relates the allele frequency 173

distribution directly to design of studies for detecting the role of rare variants. However, our findings 174

contrast with those of Zuk [24] and agree with those of Lohmueller [22], in that we predict that population 175

expansion will substantially increase the heritability, or portion of genetic variance, that is due to rare 176

variants. Our results under the AC model agree with those of Simons et al. [21], in that we find that 177

increasing strength of selection, increasing � in our work, increases the contribution to heritability of rare 178
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variants. However, under the GBR model and the cMR model the distribution of genetic variance over risk 179

allele frequency as function � is non-monotonic (Fig 1 and S4 Fig). 180

For all recessive models, we find that total V
A

is less than V
G

(Fig 1). For the MR models, all additional 181

genetic variation is explained by the dominance variance component; in Fig 1 the dotted variance curves 182

reach unity in the MR panels. As expected, genetic variation under the MR model with partial recessivity 183

(h = 0.25) is primarily additive [29, 47], whereas V
G

under the cMR model (h = 0) is primarily due to 184

dominance. The GBR model shows little dominance variance and is the only model considered here for 185

which the total V
G

explained by V
A

+ V
D

is less than the true V
G

for all �. This can be clearly seen in Fig 1 186

where the dotted curves do not reach unity in the GBR panel. These observations concerning the GBR 187

model are consistent with the finding of [27] that dominance effects of SNPs do not contribute significantly 188

to the heritability for complex traits. 189

Under the GBR model, large trait values are usually due to compound heterozygote genotypes (e.g., 190

Ab/aB, where A and B represent different sites in the same gene) [36]. Therefore, the recessivity is at the 191

level of the gene region while the typical approach to estimating V
A

and V
D

assigns effect sizes and 192

dominance to individual mutations. Thus, compound heterozygosity, which is commonly observed for 193

Mendelian diseases (see [36] and references therein) would be interpreted as variation due to interactions 194

(epistasis) between risk variants. Importantly, the GBR model assumes that such interactions should be local, 195

occurring amongst causal mutations in the same locus. While the GBR model is reflective of the original 196

definition of a gene in which recessive mutations fail to complement, we emphasize that this does not imply 197

that mutations are necessarily exomic. The GBR model is of a general genomic region in which mutations 198

act locally in cis to disrupt the function of that region with respect to a phenotype. 199

The increase in the number of rare alleles due to population growth is a well established theoretical and 200

empirical result [48–61]. The exact relationship between rare alleles [4, 17, 26,62,63], and the demographic 201

and/or selective scenarios from which they arose [21, 22, 64], and the genetic architecture of common complex 202

diseases in humans is an active area of research. An important parameter dictating the relationships between 203

demography, natural selection, and complex disease risk is the degree of correlation between a variant’s effect 204

on disease trait and its effect on fitness [18,20–22]. In our simulations, we do not impose an explicit degree of 205

correlation between the phenotypic and fitness effects of a variant. Rather, this correlation is context 206

dependent, varying according to the current genetic burden of the population, the genetic background in 207

which the variant is present and random environmental noise. However, if we re-parameterized our model in 208

terms of [18], then we would have ⌧  0.5 (Gaussian function is greater than or equal to its quadratic 209

approximation), which is consistent with recent attempts at estimating that parameter [20, 65]. Our 210

approach is reflective of weak selection acting directly on the complex disease phenotype, but the degree to 211

which selection acts on genotype is an outcome of the model. While the recent demographic history has little 212

effect on key mean values such as broad-sense heritability of a trait or population genetic burden (S1 Fig and 213

S3 Fig), the structure of the individual components in the population which add up to those mean values 214

varies considerably. The specific predictions with respect to the composition of the populations varies 215

drastically across different modeling approaches. It is therefore necessary to carefully consider the structure 216

of a genetic model in a simulation study. 217

The conclusions reached here also hold when we consider more complex demographic scenarios relevant to 218
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human populations. Under the demographic model for European populations from [40], the additive and 219

GBR models show the same behavior as in Fig 1 (S17 Fig). At all key time points where population size 220

changes, V
A

= V
G

for the additive model, and the variance explained by rare mutations depends primarily on 221

� (S17 Fig). For the GBR model, V
A

< V
G

(as in Fig 1), and plateaus at the same ratio V
A

/V
G

for all time 222

points except immediately after the bottleneck, which results in a short-lived increase in V
A

/V
G

that is 223

undetectable by the time growth begins (S17 Fig). All recessive models (GBR, iMR and cMR) may show a 224

transient increase in total V
G

after the bottleneck, depending on the value of � (S18 Fig). However, the GBR 225

and iMR models with h > 0.25 showed a return to constant population size levels by the final time point. 226

The changes in V
A

and V
G

under recessive models is likely due to the transfer of non-additive variation into 227

V
A

during a bottleneck, which has been studied thoroughly in the theoretical literature [66, 67]. As in Fig 1, 228

the genetic model, and not the demographic details, drive the relationship between mutation frequency and 229

additive genetic variance. 230

Estimating additive and dominance variance from population samples 231

The previous section shows that the relationship between genetic variance and allele frequency in the entire 232

population strongly depends on the genetic model. Recent estimates of variance components from large 233

population samples of unrelated individuals have inferred that dominance variance (V
D

) is negligible for most 234

traits [27]. However, a recent study of more than 104 Swedish twins and 18 traits obtained a contradictory 235

result, inferring significant non-additive variance for most traits, which was interpreted as V
D

[68]. In this 236

section, we show that this apparent inconsistency is expected under certain models of gene action. 237

We applied GREMLd, MAF-stratified GREMLd (MS-GREMLd), and MAF-stratified Haseman-Elston 238

regression (see Methods for details). We found MS-GREMLd to be numerically unstable on our simulated 239

data, and thus we present results for non-MS-stratified GREMLd. The numerical stability issues likely 240

resulted from some combination of small number of SNPs per region (O(1000)), low total V
G

in a region, or 241

high variance in effect sizes across causal mutations [69]. Further, for large �, where V
G

is primarily due to 242

rare alleles (Fig 1), heritability in a sample may not reflect heritability in the entire population (S13 Fig). 243

Fig 2 shows the GREMLd additive and dominance heritability estimates, as compared to the respective 244

population value, over �. Under the cMR model (h = 0), the dominance component is much larger than the 245

additive component as predicted from Fig 1. When GREMLd is performed on data after removing variants 246

with MAF  0.01, as done in [27], the total heritability estimate (AD) is quite accurate. As anticipated, 247

GREMLd using unfiltered data yields results with a slight upward bias [70]. However, for the iMR (h = 0.25) 248

model the filtered GREMLd estimates are only accurate for � < 0.1 reflecting the preponderance of rare 249

causal variants for larger values of �. Unfiltered GREMLd estimates under the iMR (h = 0.25) model show a 250

slight upward bias for small values of �, but are otherwise accurate. This shows that GREMLd is performing 251

as expected under the site-based model for which it is designed. The MS-HE regression results are generally 252

consistent with the GREMLd results. 253

The GREMLd and MS-HE estimates are accurate under the GBR model when � is small, because most 254

heritability is additive in that case(Fig 1). However, under the GBR model, both filtered and unfiltered 255

GREMLd heritability estimates show downward bias when � is large (Fig 2). The MS-HE regression results 256

reveal a similar pattern, which indicates that the downward bias for large values of � is not strictly due to 257
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removal of rare variants in the filtered GREMLd analysis. Instead, the bias shown for large values of � is 258

likely due to the presence of substantial non-additive heritability, which is not captured by the dominance 259

effects of SNPs. 260

In contrast to the variance component methods, our simulated large twin studies provide approximately 261

unbiased estimates of total heritability for large values of �, but were biased upward for small effect sizes 262

under the AC and GBR models (Fig 2). The variance in twin-study estimates was large enough that 263

study-to-study disagreement would be expected. Formally, twin studies estimate an additive and a 264

non-additive component of variance and interpreting the non-additive component as epistatic or dominance 265

variance is a matter of perspective. However, the GBR model is inspired by the definition of a gene as a 266

physical region in which recessive mutations leading to the same phenotypic outcome fail to complement [35], 267

consistent with the allelic heterogeneity observed for human Mendelian disorders (see [36] for further 268

discussion). Thus, the model of recessivity at the level of the gene region is picked up as non-additive 269

variance in twin studies, but missed by variance component methods (GREML and HE regression) because 270

the dominance in the GBR model is due to Ab/aB (compound heterozygotes) genotypes rather than a/a 271

genotypes (heterozygotes for a specific loss of function variant) assumed by variance component methods. 272

Thus the contradictory results of applying variance component methods [27] and analysis of large twin 273

studies [68] in order to estimate V
A

and V
D

may be interpreted as evidence for a model of gene action such 274

as the GBR, which may be viewed as either recessivity at the haplotype/gene level or intralocus epistasis at 275

the level of causative mutations in a single gene region. Both interpretations are valid. The alternative 276

explanation is that we must assert that one of the study designs is generating artifacts. 277

The genetic model affects the outcomes of GWAS 278

Both demography and the model of gene action affect the degree to which rare variants contribute to the 279

genetic architecture of a trait (Fig 1). However, the different mappings of genotype to phenotype from model 280

to model make it difficult to predict a priori the outcomes of GWAS under each model. Therefore, we sought 281

to explicitly examine the performance of statistical methods for GWAS under each genetic and demographic 282

model. We assessed the power of a single marker logistic regression to detect the gene region by calculating 283

the proportion of model replicates in which at least one variant reached genome wide significance at 284

↵  10�8 (Fig 3A). The basic logistic regression is equivalent to testing for association under the AC model. 285

We simulated both a perfect “genotyping chip” (all markers with MAF � 0.05) and complete re-sequencing 286

including all markers (Fig 3B). 287

Across all genetic models, the single marker logistic regression has less power under population expansion 288

(Fig 3A). The loss of power is attributable to a combination of rapid growth resulting in an excess of rare 289

variants overall [48–61], and the increasing efficacy of selection against causal variants in growing 290

populations [21]. While complete resequencing is more powerful than a gene-chip design, the relative power 291

gained is modest under growth (Fig 3A). Region-based rare variant association tests behave similarly with 292

respect to population growth (Fig 3B). 293

There are important differences in the behavior of the examined statistical methods across genetic models. 294

We focus first on the single marker tests (Fig 3A). For gene-chip strategies, power increases for “site-based” 295

models as recessivity of risk variants increases (compare power for AC, iMR, and cMR models in Fig 3B). 296
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This increase in power is due to the well-known fact that recessive risk mutations are shielded from selection 297

when rare (due to being mostly present as heterozyogtes), thus reaching higher frequencies on average (S5 298

Fig), and that the single-marker test is most powerful when risk variants are common [32]. Further, for the 299

complete multiplicative-recessive model (cMR), the majority of V
G

is due to common variants (Fig 1), 300

explaining why resequencing does not increase power for this model (Fig 3A). 301

For single-marker tests, the GBR model predicts large gains in power under re-sequencing for intermediate 302

� (the mean trait-effect size of newly arising causal mutations), similar to the AC or iMR model. But, when 303

� is larger power may actually be less under the GBR model than under AC or iMR. For all models, causal 304

mutations are more rare with increasing lambda (S7 Fig). However, as a function of frequency, all V
G

may be 305

attributed to V
A

or V
D

in the site-specific models whereas there is increasing intralocus epistasis in the GBR 306

model as a function of � (Fig 1). It is well-known that the single marker test has lower power when causal 307

mutations have low frequencies, are poorly tagged by more common SNPs, or have small main effects [32, 71]. 308

Region-based rare variant association tests show many of the same patterns across genetic model and 309

effect size distribution as single marker tests, but there are some interesting differences. The ESM 310

test [36, 72] is the most powerful method tested for the AC, iMR, and GBR models (Fig 3b), with the 311

c-Alpha test as a close second in some cases. For those models, the power of naive SKAT, linear kernel SKAT 312

and SKAT-O, is always lower than the ESM and c-Alpha tests. This is peculiar since the c-Alpha test 313

statistic is the same as the linear kernel SKAT test. The major difference between SKAT and ESM/c-Alpha 314

is in the evaluation of statistical significance. SKAT uses an analytical approach to determine p-values while 315

the ESM/c-Alpha tests use an explicit permutation approach. This implies that using permutation based 316

p-values results in greater power. Yet, under the cMR model the linear kernel SKAT is the most powerful, 317

followed by c-alpha. The cMR model does not predict a significant burden of rare alleles and so the default 318

beta weights of SKAT are not appropriate, and the linear kernel is superior. The ESM test does poorly on 319

this model because there are not many marginally significant low-frequency markers. It is logical to think 320

that these tests would all perform better if all variants were included. The massive heterogeneity in the 321

performance of region-based rare variant tests across models strongly suggests that multiple methods should 322

be used when prior knowledge of underlying parameters is not available. In agreement with [22,73], we 323

predict that population growth reduces the power to associate variants in a causal gene region with disease 324

status (Fig 3) when the disease also impacts evolutionary fitness. We have recently released software to apply 325

the ESM test to case control data [72] in order to facilitate applying this test to real data. 326

The distribution of minor allele frequencies of GWAS hits 327

It was noted by [4, 26], that an excess of rare significant hits, relative to empirical data, is predicted by AC 328

models where large effect mutations contribute directly to fitness and the disease trait. We confirm that AC 329

models are inconsistent with the empirical data (Fig 4), except when �  0.01. The empirical data in Fig 4 330

represent a pooled data set with the same diseases and quality filters as in [26], but updated to include more 331

recent data. The data are described in S1 Table, and can be visualized alone more clearly in S16 Fig. Close 332

to half of the data comes from GWAS studies uploaded to the NHGRI database after 2011, yet the same 333

qualitative pattern is observed. This contradicts the hypothesis that the initial observation of an excess of 334

common significant hits relative to the prediction under an AC model was simply due to small sample sizes 335

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 8, 2016. ; https://doi.org/10.1101/048819doi: bioRxiv preprint 

https://doi.org/10.1101/048819
http://creativecommons.org/licenses/by-nc-nd/4.0/


11

and low marker density in early GWAS previously analyzed in [4, 26]. Yet the initial observation is in fact 336

robust and the meta-pattern provides an appropriate point of comparison when considering the compatibility 337

of explicit population-genetic models with existing GWAS data. 338

The GBR model predicts few rare significant hits and an approximately uniform distribution across the 339

remainder of MAF domain (Fig 4), even for intermediate and large values of �. For smaller values of �, the 340

GBR predicts an excess of common significant hits. The more uniform distribution of significant single 341

markers seen under the GBR is consistent with the flatter distribution of genetic variance (Fig 1). Under the 342

GBR model and population growth, a KS test (marginal ↵ = 0.05) cannot reject identical distributions of 343

MAF’s of significant hits for all values of � (S19 Fig). The cMR (h = 0) model shows an excess of 344

intermediate frequency variants, although this does not result in rejection under the KS test (S19 Fig). If one 345

considers trying to determine an approximate dominance coefficient in the GBR model, it would be found 346

that there is a distribution of coefficients across sites. Yet, when simulating iMR model, we find that an 347

intermediate degree of dominance, h = 0.25, results in distribution of significant hits which is similar to the 348

GBR results (Fig 4). 349

We note that there is no compelling reason to expect any specific value of � to be a particularly good fit 350

to the empirical data. The empirical data are composed of genome-wide data for multiple traits. We feel that 351

the mutational parameters, � and mutation rate to causal variants, are likely to vary across the genome and 352

across traits. Thus, the empirical data reflect a mixture of different underlying models and ascertainment 353

schemes. The reason we emphasize this feature of the data is to demonstrate that models with rare alleles of 354

large effect do not necessarily imply an observed excess of rare significant GWAS hits. 355

In consideration of the rare allele of large effect hypothesis, [62] proposed a model where multiple rare 356

alleles dominate disease risk and create synthetic associations with common SNPs. However, later it was 357

shown that this particular model was inconsistent with GWAS theoretically and empirically [4, 26, 74]. This 358

inconsistency remained un-reconciled in the literature until now. We find that the MAF distribution of 359

significant hits in a GWAS varies widely with choice of genetic model. In particular, we confirm the results of 360

Wray et al. [26], that AC evolutionary models predict an excess of low frequency significant hits unless trait 361

effect sizes are quite small. Also, the cMR model predicts an excess of intermediate and common significant 362

hits. Utilizing a GBR model or an intermediate iMR model with h = 0.25� 0.5, reconciles this inconsistency 363

by simultaneously predicting the importance of rare alleles of large effect and the correct allele frequency 364

distribution among statistically significant single markers. 365

Conclusion 366

Several empirical observations provide support for the presence of gene-based recessivity underlying variation 367

for some complex traits in humans. The minor allele frequency distribution of significant GWAS hits is 368

relatively flat [4, 75], which our results show is consistent with either the presence of small additive effect loci 369

or gene-/site-based partially-recessive loci with intermediate to large effects (Fig 4). Models with loci of large 370

additive effects predict an excess of rare significant hits. Oppositely, models with complete site-based 371

recessivity predict an excess of common significant hits for all simulated mutation effect size distributions. 372

SNP based estimates of dominance heritability are much lower than estimates of dominance from 373

twins [27, 68]. Of the models we explored, only the gene-based recessive model with intermediate to large 374
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effects is consistent with difference between twin and SNP based estimates of dominance variance (Fig 2). 375

Under a site-based recessive model of partial recessivity (e.g. h =0.25), there should be no significant 376

difference between estimates of dominance variance from SNP and twin studies, provided that the statistical 377

assumptions are met for both approaches (Fig 2). Our findings support a more thorough investigation into 378

the importance of compound heterozygosity in the genetics complex-traits. However, it may be difficult to 379

directly observe non-additive gene-level effects through analysis of individual SNP markers. 380

Additionally, the genetic model appears to be important in the design and analysis of association studies. 381

While changes in population size do affect the relationship between effect size and mutation frequency [48–61] 382

(Fig 1 and S5 Fig), different mappings of genotype to trait value do this in radically different ways for the 383

same demographic history (Fig 1). From an empirical perspective, our findings suggest that re-sequencing in 384

large samples is likely the best way forward in the face of the allelic heterogeneity imposed by the presence of 385

rare alleles of large effect. Re-sequencing of candidate genes [76–79] and exomes [40,80–85] in case-control 386

panels have observed an abundance of rare variants associated with case status. Here we show that under a 387

model of mutation-selection balance at genes, neither current single-marker nor popular multi-marker tests 388

are especially powerful at detecting large genomic regions harboring multiple risk variants (Fig 3). However, 389

we show that using permutations to derive p-values improves the power of SKAT [69] with a linear kernel 390

(equivalent test statistic to c-Alpha [38]). Similarly, another permutation based test, the ESM test [72], has 391

more robust power across demographic and genetic models (Fig 3). 392

Conceptually, cis-effects arise naturally from the original definition of a gene in which mutant recessive 393

alleles fail to complement [35]. We show that cis-effects within a locus, represented by the GBR model, can 394

have an important impact on the population level architecture of a complex trait. This conclusion is 395

important for future simulation studies as well as the interpretation of empirical data. It is important to note 396

that despite our use of the term ”gene-based” this model may apply to any functional genomic element in 397

which there are multiple mutable sites affecting a trait in in cis, not just to genes. From a theoretical 398

perspective, our work motivates the development of a more generalized gene-based model to include arbitrary 399

dominance and arbitrary locus size. Empirically, we find that the GBR model is broadly consistent with a 400

variety of observations from the human statistical genetics literature. Thus, there is an evident need for 401

improved region-based association tests and the development of genetic variance component methods for 402

haplotypes. 403

Materials and Methods 404

Forward simulation 405

Using the fwdpp template library v0.2.8 [86], we implemented a forward in time individual-based simulation 406

of a Wright-Fisher population with mutation under the infinitely many sites model [87], recombination, and 407

selection occurring each generation. We simulated populations of size N = 2e4 individuals for a time of 8N 408

generations with a neutral mutation rate of µ = 0.00125 per gamete per generation and a per diploid per 409

generation recombination rate of r = 0.00125. Deleterious mutations occurred at a rate of µ
d

= 0.1µ per 410

gamete per generation. These parameters correspond to ✓ = 4Nµ = ⇢ = 4Nr = 100 and thus our simulation 411

approximates a 100Kb region of the human genome. For simulations with growth, we simulated an additional 412
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500 generations of exponential growth from N
i

= 2e4 to N
final

= 1e6. This demographic model is much 413

simpler than current models fit to empirical data [58]. However, this simple model allows us to more easily 414

get a sense of the impact of population expansion [21,22]. 250 simulation trials were performed for each 415

parameter/model combination. 416

Exploring the gene region’s contribution to heritability 417

Broad-sense heritability can be calculated directly from our simulated data as H2 = V

G

V

P

. We explored 418

broad-sense heritability as a function of mean causative effect size under each model. We compare our 419

simulation results to H2 ⇠ 4µ
d

V
s

for additive models and H2 ⇠ 2µ
d

V
s

for recessive models [88, 89]. In our 420

simulations, V
s

= 1, and we tuned the environmental variance V
e

to generate simulations for which 421

E[H2] ⇠ 0.04 or ⇠ 0.08. 422

Determining the genetic load of the population 423

Genetic load is defined as the relative deviation in a populations fitness from the fitness optimum, 424

L = (w
max

� w̄)/(w
max

). We set the phenotypic optimum to be zero; P
opt

= 0. When determining fitness 425

for the SBR models, we subtract one from all phenotypes. This implies that w
max

= e
�

P

2
opt

2�2
s = 1 and that 426

load is a simple function of the phenotypes of the population, L = 1� e
� P

2

2�2
s . We also used the mean number 427

of mutations per individual, and the mean frequency and effect sizes of segregating risk variants as proxies 428

for the genetic load [21,90]. 429

Additive and dominance genetic variance over allele frequency 430

We used an approach based sequential (type-1) regression sums of squares to estimate the contribution of the 431

additive and dominance effects of variants to the total genetic variation due to a locus. Given a genotype 432

matrix (rows are individuals and columns are risk variants) of (0,1, or 2) copies of a risk allele (e.g. all 433

mutations affecting phenotype), we sort the columns by decreasing risk mutation frequency. Then, within 434

frequency classes, columns were sorted by decreasing effect sizes. For each variant a dominance component 435

was also coded as 0, 2q, or 4q-2 according to the orthogonal model of [27], where q is the frequency of the 436

variant in the population. We then used the R package biglm [91] to regress the individual genetic values (G 437

in the previous section) onto this matrix. The variance explained by the additive and dominance effects of 438

the m markers with q  x is then approximately r2 = (
P

m

i=1 ⌃SSreg,i

)/(SS
tot

). Averaging results across 439

replicates, this procedure results in a Monte-Carlo estimate of the fraction of V
G

that is due to additive and 440

dominance effects of variants with population frequency less than or equal to x is 441

(V
A;qx

+ V
D;qx

)/(V
G;q1) [21]. This fraction can be easily partitioned into strictly additive and dominance 442

components. 443

Additive and dominance heritability in random population samples 444

We employed three different SNP-based approaches to estimating heritability from population samples: 445

GREMLd, minor allele frequency stratified(MS) GREMLd [27], and MS-Haseman-Elston (HE) 446
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regression [92,93]. For comparison, we calculated the true total heritability in the sample as 447

H2
sample

= (V
G;sample

)/(V
P ;sample

). Unfortunately, due to the nature of our simulated data MS-GREMLd 448

did not result in sufficiently reliable results. Under MS-GREMLd, many replicates resulted in numerical 449

errors in GCTA. These problems were present at a rate of less than 1/100 replicates using non-MS GREMLd, 450

but were increased by splitting the data into multiple GRMs. 451

Using raw individual phenotypic values as quantitative trait values, random samples from simulated 452

populations (n=6000) were converted to .bed format using PLINK 1.90a [94]. PLINK was also used to test 453

for HWE (p < 1e� 6) and filter on minor allele frequency. GCTA 1.24.4 [34] was used to make genetic 454

relatedness matrices (GRM) for both additive and dominance components with the flags –autosome and 455

–make-grm(-d). 456

For non-MS runs, we tested the effect of filtering on MAF by performing the analysis on unfiltered 457

datasets and with markers with MAF < 0.01 removed. For MS estimates we stratified the additive and 458

dominance GRM’s into two bins MAF  0.01 and MAF > 0.01. GREMLd analysis was performed in 459

GCTA with Fisher scoring, no variance component constraint and a max of 200 iterations. MS-HE regression 460

was carried out by regressing the off diagonal elements of each GRM onto the cross product of the scaled and 461

centered phenotypes in a multiple linear regression setting in R [95]. 462

Twin studies 463

To simulate twin studies we sampled 2000 monozygotic (MZ) and 2000 dizygotic (DZ) twins pairs from the 464

final generation of the simulations. Parents were sampled randomly without replacement. MZ twin pairs 465

were formed by sampling a single gamete pair, one recombinant from each parent, and two environmental 466

random deviates. DZ twin pairs were formed by sampling two gamete pairs, two recombinant gametes from 467

each parent, and two environmental random deviates. Our simulated studies are ideal in that there are no 468

correlated environmental effects, but potentially problematic due to low total heritability. We explored the 469

use of structural equation modeling (SEM) using the package OpenMx [96], but chose to rely strictly on 470

estimates of twin correlation obtained directly from the data. For monozygotic (MZ) twins, we used only a 471

single child gamete pair with two unique environmental deviates. For dizygotic (DZ) twins we used two child 472

gamete pairs, each with a unique environmental deviate. Broad sense heritability is the correlation between 473

MZ twin pairs; H2 = r
MZ

. Under a purely additive model, the DZ twin correlation should be half of the MZ 474

twin correlation. Non-additive genetic components of phenotypic variance reduce the DZ twin correlation. If 475

all non-additive heritability is due to dominance, then the dominance heritability can be calculated as twice 476

the difference between the MZ twin correlation and two-times the DZ twin correlation: 477

�2 = 2 ⇤ (r
MZ

� 2 ⇤ r
DZ

). The additive heritability can then be calculated as the difference between the 478

broad-sense and non-additive component: h2 = H2 � �2 = 4 ⇤ r
DZ

� r
MZ

[29]. 479

These direct estimates of MZ and DZ twin correlations in our simulations are reliable as we have no 480

measurement error, shared environmental effects, gene-by-environment effects, or gene-by-gene interactions. 481

Additionally, we only simulate a single genomic region contributing H2 ⇠ 0.04, which made use of SEM 482

difficult numerically. This creates a limitation in that we can not discuss when a model with dominance is a 483

better fit to the data than the additive only model. But, the benefit of using direct estimates is that we can 484

clearly see what signals are present in the data. To further clarify the data visualization, we pooled our 512 485
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twin-study replicates into groups of 8, creating 64 sets of MZ-DZ twin phenotypes. This did not have an 486

effect on the central tendencies of our estimates, but it reduced the variance. The twin study error bars in 487

Fig 2 are based on 64 sets of 64,000 individuals, which is larger than a typical twin study. However, one 488

reason our results have high variance is because we only simulate a single locus, rather than a whole trait. 489

Case-control studies 490

Following [36], we sampled 3000 cases and 3000 controls from each simulated population. Cases were 491

randomly sampled from the upper 15% of phenotypic values in the population, and controls were randomly 492

sampled from within 1 standard deviation of the population mean. This is the liability scale model (see [29]). 493

We define a ”GWAS” to be a study including all markers with MAF � 5% and a re-sequencing study to 494

include all markers. In all cases we used a minor allele count logistic regression as the single marker test. For 495

single marker tests, the p-value cut off for significance is p  1e� 08 which is common in current 496

GWAS [62,97]. Power is determined by the percentage of simulation replicates in which at least one marker 497

reaches genome wide significance. 498

Region-based tests of association due to rare alleles 499

We applied multiple region-based tests to our simulated data, ESM
K

[36], several variations of SKAT [39] 500

and c-Alpha [38]. We used the R package from the SKAT authors to implement their test 501

(http://cran.r-project.org/web/packages/SKAT/index.html). The remaining tests were implemented 502

in a custom R package (see Software availability below). For the ESM
K

and c-Alpha we performed up 503

to 2e6 permutations of case-control labels to determine empirical p-values. Common variants (q � 0.05) were 504

removed prior to performing region-based rare variant association tests. 505

Distribution of Significant GWAS Hits 506

Following [4, 26], we calculated the distribution of the minor allele frequency (MAF) of the most significant 507

SNPs in a GWAS in empirical and simulated data. The empirical data was obtained from the NHGRI-EBI 508

GWAS database (http://www.ebi.ac.uk/gwas/) on 02/05/2015. We considered the same diseases and 509

applied the same filters as in Table 3 of [26]. Specific information regarding the empirical data can be 510

obtained in S1 Table. 511

In order to mimic ascertained SNP data, we sampled markers from our case/control panels according to 512

their minor allele frequencies [98], as done in [36]. Additionally, we removed all markers with MAF < 0.01 to 513

reflect common quality controls used in GWAS. The simulated data were grouped by genetic model, 514

demographic scenario, heritability level, and mutation effect distribution. We then plotted the minor allele 515

frequency of the most significant marker with a single-marker score �log10(p) � 8, for all replicates where 516

significant markers were present.Finally, we performed a two-sample KS test in R between each group of 517

simulated GWAS hit allele frequencies and the empirical data. 518
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Human demography 519

We simulated a demographic model for Europeans based on [40] as described in [21]. For simplicity, we 520

ignored migration between the European (EA) and African American (AA) populations. The model was 521

implemented using the Python package fwdpy version 0.0.4, which uses fwdpp [86] version 0.5.1 as a C++ 522

back-end. During the evolution of the EA population, we recorded the genetic variance in the population, 523

V
G

, and the number of deleterious mutations per diploid (a measure of genetic load [21]) every 50 524

generations. In a separate set of simulations, we applied the regression method described above to calculate 525

cumulative additive genetic variance as a function of allele frequency. Because the regressions are 526

computationally demanding, we applied the method in the generation immediately before, and at the start 527

of, any changes in population size. 528

These simulations were run with no neutral mutations, and the recombination rate and mutation rate to 529

causative mutations were the same as in the simulations described above. 530

The Python scripts for these simulations and iPython/Jupyter notebooks used for generating figures are 531

available online (see Software availability section below). 532

Software availability 533

Our simulation code and code for downstream analyses are freely available at 534

• http://github.com/ThorntonLab/disease_sims 535

• http://github.com/molpopgen/buRden 536

• http://github.com/molpopgen/fwdpy 537

• http://github.com/molpopgen/TennessenEAonly 538
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Figures 880

Table 1. Description of parameters used in the models.
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Fig 1. Variance explained over allele frequency. The cumulative additive and dominance genetic

variance which can be explained by markers whose frequencies, q, are  x. Each color represents a different

value of �: the mean effects size of a new deleterious mutation. Shown here are the gene-based (GBR),

additive co-dominant (AC), incomplete multiplicative recessive (Mult. recessive (h = 0.25); iMR) and

complete multiplicative recessive (Mult. recessive (h = 0);cMR) models. Solid lines show the additive

variance alone and dotted lines show the combined additive and dominance variance. All data shown are for

models where H2 ⇠ 0.08, although it was confirmed (data not shown) that these particular results are

independent of total H2. The additive and dominance genetic variance is estimated by the adjusted r2 of the

regression of all markers (and their corresponding dominance encoding ) with q  x onto total genotypic

value (see methods for details); data are displayed as the mean of 250 simulation replicates. The vertical

dotted and dashed lines correspond to the q = 0.001 and q = 0.05, respectively. The curves under no growth

appear to be truncated with respect to rapid growth because the range of the x-axis differs between growth

and no growth (minimum q = 1/2N).
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Fig 2. Heritability estimates compared to population heritability. Heritability estimates and

population heritability as a function of �: the mean effect size of a new deleterious mutation. Additive (A;

orange) component of true heritability is calculated by multiplying the end point(q = 1) of the variance

curves in Fig 1 by the broad-sense heritability values summarized in S1 Fig. HE-regression and GREMLd

estimates were obtained from random population samples (n = 6000). GREMLd analysis was performed in

GCTA using genotype data that was either unfiltered or filtered to remove variants with MAF<0.01. Twin

study estimates are directly calculated using MZ and DZ twin correlations from 64 sets of twin studies. Each

study consisted of pooling 2000 MZ twin pairs and 2000 DZ twin pairs from each of 8 model replicates for a

total of 64,000 individual phenotypes. Data are plotted as the median across replicate sets ± half the

interquartile range. Shown are the additive co-dominant (AC), gene-based (GBR) incomplete multiplicative

recessive (Mult. recessive (h = 0.25); iMR) and complete multiplicative recessive (Mult. recessive (h = 0);

cMR) models.
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Fig 3. Power of association tests. (A) The power of a single marker logistic regression, at significance

threshold of ↵  10�8, as a function of �: the mean effect size of a new deleterious mutation. For single

marker tests we define power as the number of simulation replicates in which any single marker reaches

genome wide significance. Two study designs were emulated. For the gene chip design only markers with

MAF > 0.05 were considered and all markers were considered for the resequencing design. Genetic models

shown here are the additive co-dominant (AC), gene-based (GBR), complete multiplicative site-based

recessive (Mult. recessive (h = 0); cMR) and incomplete multiplicative site-based recessive models (Mult.

recessive (h = 0.25); iMR) (B) The power of region-based rare variant association tests to detect association

with the simulated causal gene region at significance threshold of ↵  10�6. For region-based tests, we define

power as the percent of simulation replicates in which the p-value of the test was less than ↵. The p-values

for the ESM, c-Alpha were evaluated using 2⇥ 106 permutations. SKAT p-values were determined by the

SKAT R package and represent numerical approximations to the presumed analytical p-value.
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Fig 4. Distribution of significant GWAS hits. Horizontal violin plots depict the distribution of minor

allele frequencies (MAF) of the most strongly associated single marker in a GWAS. Individual hits are plotted

as translucent points and jittered to provide a sense of the total number and density of hits. Each panel

contains simulated data pooled across model replicates for each value of � with empirical data for comparison.

Empirical data are described in Materials and Methods. In cases where more than one marker was tied for

the lowest p-value, one was chosen at random. Shown here are the additive co-dominant (AC), gene-based

(GBR), incomplete multiplicative recessive (Mult. recessive (h = 0.25); iMR) and complete multiplicative

recessive (Mult. recessive (h = 0);cMR) models. All data shown are for models where H2 ⇠ 0.08, because

single marker test power was too low under H2 ⇠ 0.04 to make informative density plots. Simulated data

were subjected to ascertainment sampling such that the MAF distribution of all markers on the simulated

genotyping chip was uniform. Specific information regarding the empirical data can be obtained in S1 Table.
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