
Pages 1–4

k-BOOM: A Bayesian approach to ontology structure
inference, with applications in disease ontology
construction
Christopher J. Mungall 1∗, Sebastian Koehler2, Peter Robinson2, Ian Holmes3,
Melissa Haendel4
1Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory,
MS977, 1 Cyclotron Road, Berkeley, CA 94720 USA
2Institute for Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Augustenburger
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ABSTRACT
One strategy for building ontologies covering domains such as
disease or anatomy is to weave together existing knowledge sources
(databases, vocabularies and ontologies) into single cohesive whole.
A first step in this process is to generate mappings between the
elements of these different sources. There are a number of well-
known techniques for generating mappings (also known as ontology
alignemnt), both manual and automatic[7]. Sometimes mappings
are seen as an end in themselves, with the sources remaining in
a loosely connected state. However, if we want to take the next
step and use the mappings to integrate the different sources into a
cohesive reference ontology, then we need to translate the mappings
into precise logical relationships. This will allow us to safely merge
equivalent concepts, creating a unified ontology. This translation is
a non-trivial step, as each mapping can be interpreted as multiple
different logical relationships, with each interpretation affecting the
likelihood of the others. There is a lack of automated methods to
assist with this last step; this resolution is typically performed by
expert ontologists.

Here we describe an ontology construction technique that takes
two or more ontologies linked by hypothetical axioms, and
estimates the most likely unified logical ontology. Hypothetical
axioms can themselves be derived from semantically loose
mappings. The method combines deductive reasoning and
probabilistic inference and is called Bayesian OWL Ontology
Merging (BOOM). We describe a special form k-BOOM that works
by factorizing the probabilistic ontology into k submodules. We
also briefly describe a supplemental lexical and knowledge-based
technique for generating a set of hypothetical axioms from loose
mappings.

We are currently using this technique to build a merged disease
ontology (Monarch Disease Ontology; MonDO) that unifies a broad
range of vocabularies into a consistent and coherent whole.

∗to whom correspondence should be addressed

1 INTRODUCTION
Ontologies provide a cohesive representation of some knowledge
domain, such as human anatomy or human disorders. One of the
characteristic features of an ontology is that relationships between
elements have precise logical interpretations, usually expressed in
the Web Ontology Language (OWL). For some domains, such as
cellular biology, we have consensus reference ontologies such as
the Gene Ontology, with broad and deep coverage of the domain.
In other areas, such as diseases) there are multiple ontologies and
databases with distinct perspectives and overlapping content. Here
no single ontology provides the complete picture, so we would like
to integrate these together into a unified cohesive whole. The most
common approach here is to generate mappings connecting classes
or database entities. However, mappings are only one step towards
producing a unified ontology. Most mappings lack clear semantics,
and so cannot be used effectively for reasoning in a description
logic environment. Additionally, mappings are typically not enough
to merge classes from two ontologies into a common class, unless
we are guaranteed the mapping represents true equivalence. This is
illustrated in figure 1, which shows mappings between classes in
three vocabulary sources.

We have devised and implemented an algorithm called kBOOM
that assists a biocurator in merging ontologies. The kBOOM
algorithm takes as input a probabilistic ontology which consists
of a combination of logical axioms and hypothetical axioms, and
returns the most likely ground ontology. Hypothetical axioms can
be generated using a variety of methods, including using pre-
defined curated mappings. The resulting ontology will include only
precise logical axioms connecting classes, such as SubClass (v)
and Equivalence (≡) axioms. Any classes connected via equivalence
axioms can be safely merged (i.e. merging produces a structure with
the same logical entailments)

We are applying kBOOM to merge a mixture of ontologies,
databases and vocabularies which describe diseases or disorders,
into the Monarch Disease Ontology (MonDO), because no one
single source provides a comprehensive picture of the disease
space. For example, the Disease Ontology (DO)[3] provides a
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Fig. 1. (a) Mappings between 3 vocabularies (shown in different colors).
Logical relationships (axioms) within an ontology (subsumption) shown in
solid lines, Arrows denote SubClassOf (e.g. type-1v type-1/2). In the yellow
ontology, types 1 and 3 are declared Disjoint (i.e. no shared subclasses).
Dashed lines represent loose mappings (b) one possible configuration with
hypothetical axioms derived from mappings shown as double red lines. In
this example, all mappings interpreted as equivalence (≡) except hereditary
angioedema v angioedema (white to grey). Note that due to the logical
properties of v and ≡ all nodes in the enclosing box are inferred to be in
a mutually equivalent clique, yielding incoherency (via disjointness axiom).

broad classification of disease types, but does not enumerate all
the diseases in Online Mendelian Inheritance in Man (OMIM)[1].
Conversely, OMIM provides largely a flat list without a hierarchy,
and typically only covers disorders with genetic etiology. ORDO[8]
is derived from Orphanet and has an emphasis on rare disease,
and employs different classification criteria from DO. When
previous attempts have been made to unify these, the results
are frequently incomplete. For example, MedGen[2] includes
OMIM and Orphanet, but many of the entries, such as that for
Hyperekplexia hereditary lack a classification. Here we explore an
ontology merging strategy as one possible solution to this problem.

2 METHODS
Our approach takes a collection of ontologies O1, ..., Ov , and
produces a coherent well-connected merged ontology OM , in which
the classes are connected using OWL logical axioms. We include
vocabularies and databases in our definition of ontology. The input
may also include a set of previously curated mappings M ∈ C×C,
where C is the total set of classes in all sources. We assume that a
mapping means that the two classes have some substantial degree of
similarity, but do not assume any logical semantics.

Our approach consists of a pipeline with two steps:

1. Generation of a probabilistic ontology with prior probabilities.
Prior probabilities can be generated using a variety of methods,
such as lexical approaches, or by using existing curated
mappings.

2. Estimation of the most likely ontology. We attempt to maximize
the posterior probability for different combinations of axioms,
utilizing the complete OWL semantics1. Once this has been

1 https://www.w3.org/TR/owl2-direct-semantics/

determined, additional post-processing can be performed, such
as merging equivalent classes.

We focus on this second step as it is a generalizable method,
and the primary contribution of this paper. We first describe the
general approach which is applicable to OWL ontologies of any
expressivity, and we then describe a specific approach which can
be applied to simpler ontologies in which the probabilistic aspect
utilizes only concept inclusion and equivalence axioms.

To illustrate the first step with a concrete example, we give an
example of a procedure for estimating prior weights for disease
ontology mappings, and outline how we are using the combined
procedure to build the Monarch merged disease ontology (MonDO).

2.1 Ontology structure inference: general approach
2.1.1 Probabilistic Ontologies The input to the structure
inference procedure is a probabilistic ontology:

OP = 〈A,H〉 (1)

where A consists of logical axioms A1, ..., Al, and H consists of
hypothetical axioms H1, ..., Hn.

Both of these axiom sets involve any combination of classes from
the union of sources, which we denote C. However, a common
use case is that A consists purely of within-source axioms (e.g.
two independent disease ontologies) and H consists of hypothetical
axioms derived from cross-ontology mappings.

The joint probability distribution (JPD) is:

P (OP ) = P (H,A) = P (H)P (A|H) (2)

P (OP ) =
∏

Hi∈H

P (Hi = hi)P (A|H) (3)

where hi is a boolean representing the truth value of hypothetical
axiom Hi

For P (A|H) we assume a uniform probability, except in the case
where the ontology OP is incoherent, i.e. there exists a class c ∈
C such that c is unsatisfiable, where unsat(c) = OP � c ≡⊥.
This situation can arise whenever the ontology violates any logical
constraints, encoded in OWL. This state can be checked using a
standard deductive OWL reasoner.

We attempt to find the most likely ontology, i.e. set of values
h1, ..., hn that maximizes the posterior probability.

As there are 2|H| combinations, we use a number of techniques
to reduce the search space. For the first of these, we factorize the
calculation by splitting the ontology into sub-modules.

2.1.2 Factorization via module extraction A modularization
procedure takes an ontology O and produces N ontology modules.
We can apply the analogous procedure to probabilistic ontologies
and produce k probabilistic modules. A number of different
modularization strategies can be applied. For some problems it may
be possible to produce k modules that are independent, in which
case the probability can be factorized as:

P (OP ) =
∏
k∈N

P (OP
k ) (4)

In other cases, modules may have dependencies; we do not cover
this here, approaches may involve Bayes networks or factor graphs.
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2.1.3 Greedy selection search procedure Even after factorization,
the number of possibilities may still be prohibitive (a module size of
100 nodes is not atypical, which has 4100 configurations). In order
to further reduce the search space, we apply a greedy approach.
Here, when searching for solutions for any module Ok we iteratively
take the axiom for Hk with the highest probability and assume it to
be true. We repeat this until the number of hypothetical axioms is
reduced to a user-specified threshold T .

We immediately reject any axioms that lead to OP becoming
incoherent. We attempt to re-modularize at each stem: the selection
procedure may lead to the current module being splittable into
sub-modules.

2.2 Ontology structure inference: Approach for
AL−-ontologies

We have implemented a procedure for inferring ontology structures
where the hypothetical axioms consist only of the v (SubClass)
or ≡ (Equivalence) constructs, applied between two named classes
Ci, Cj ∈ C. Formally:

H ⊂ {Ci v Cj : i, j ∈ C} ∪ {Ci ≡ Cj : i, j ∈ C} (5)

This is a subset of the Description Language AL (Attributive
Language), which we denote AL−. Note we do not restrict the
expressivity of the non-hypothetical logical axioms A.

Limiting the expressivity of the probabilistic subset reduces the
search space, as there are fewer possibilities. For any pair of classes
c, d in a mapping, there are only four possibilities: c @ d, d @ c,
c ≡ d, c 6v d ∧ d 6v c. This limitation also allows for the extraction
of smaller modules.

For the ontology mapping use case, we also assume an additional
logical constraint in the form of AllDistinguishableFrom axioms.
Here we assign each class in the ontology to a source, and we
constrain such that there are no equivalent pairs of classes within
a source.

Ci ∈ S,Cj ∈ S,Ci 6= Cj → Ci 6≡ Cj (6)

2.2.1 Extracting Locally Independent Modules for AL− By
limiting the probabilistic subset to only SubClass and Equivalence
axioms, we can exhaustively partition the ontology into independent
submodules, based on whether the probability of any two members
of the partition being equivalent is non-zero.

Here we split the ontology into k modules such that each module
is independent. We take all hypothetical equivalence axioms in
H and assume P (Hi = true) = 1, thus creating a maximally
equivalent ontology O′ (see figure 1b for example). We then obtain
the set of all entailed equivalence cliques N from O′ (using any
reasoner that is complete for the profile of A). For this step, we
ignore logical axioms such as disjointness axioms that can lead to
incoherency.

We then iterate through all cliques N1, ..., Nn ∈ N and extract a
probabilistic module ONi , where the module contains all classes in
Ni, plus all logical axioms in A that reference any class in Ni, plus
all hypothetical axioms in H that connect a class in Ni.

This corresponds to the factorization in Equation 4.

2.2.2 Estimating prior edge probabilities for disease mappings
kBOOM takes as inputs hypothetical axioms with assigned prior
probabilities. For this, we make use of existing mappings provided
by source databases and ontologies. These are manually curated
and are generally of high quality, in that a mapping typically
corresponds to a biological or clinical connection. However, they
are often incomplete, and do not have a strict meaning, ranging
from equivalence, subclass, superclass, without any guarantees on
the interpretation.

We turn each mapping into a hypothetical axiom and use a variety
of heuristics and rules to generate weights for different axiom types.
Given a pair of classes c and d, we have rules such as:

1. c ≡ d +++ if label contains ’type’ or ’complementation’

2. c ≡ d ++ if StrictLexicalMatch(c,d)

3. c ≡ d + if NonStrictLexicalMatch(c,d)

4. c v d ++ if c ∈ OMIM, d ∈ OrdoGroupOfDiseases

5. c v d ++ if c ∈ OMIM and d has a subclass

6. c v d + if c has a NarrowSynonym = label(d)

7. d v c + if c has a BroadSynonym = label(d)

8. c v d + if label(c) SubStringOf label(d)

The number of +s denotes the weighting (we omit the actual
calculations and numbers here for brevity, code on GitHub for
details). For example, if the labels or exact synonyms match
exactly, and the string is of a form like Foo type 2, then our
confidence in an equivalence match is higher. In addition to lexical
criteria, we use ontology structure criteria. For example, Orphanet
classifies diseases into meta-classes such as GroupOfDisorders and
EtiologicalSubtype, with the latter always being a superclass of the
former - these can be used to weight our confidence of equivalence
vs subclass matches.

We can also look at the distribution of mappings between two
sources. In general, if a single class in S1 is mapped to multiple
classes in S2, then the relationship between the two classes is more
likely to be a superclass relationship, because in general classes have
more children than parents. We make an exception for Orphanet,
which frequently groups disorders under multiple classes on a per-
phenotype basis.

The rules above do not exhaustively cover all cases, and a number
of additional lexical normalization steps are applied. These are not
described here for brevity.

3 RESULTS AND DISCUSSION
Our Java implementation of kBOOM is in GitHub3, and currently
only implements the special case for AL−.

We created a GitHub repository for the disease use case4

containing both the rules to generate hypothetical axioms from
pre-defined mappings and the generated ontology. Our inputs are
DO, OMIM labels, Orphanet, MeSH, MEDIC, OMIA, GARD
and DECIPHER (with some only contributing labels). The largest
cluster we have observed has 184 classes, constructed from a

3 https://github.com/monarch-initiative/bayes-owl-ontology-merging
4 https://github.com/monarch-initiative/monarch-disease-ontology/
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Fig. 2. Module resolution graph exported by kBOOM; Initial input is nodes
plus solid arrows (SubClassOf axioms in ORDO). Dotted lines are supplied
mappings (no logical interpretation). Figure shows inferred most likely
configuration. equivalence=red, subclass=blue, with prior probabilities
written as edge labels (thick lines more probable). Enclosing boxes denote
equivalence cliques, which can be merged to a single class, yielding a
grouping class with two children.

highly connected set of mappings for retinitis pigmentosa, code-
rod dystrophy and Leber Congenital Amaurosis subtypes. Over
65k hypothetical axioms were generated from mappings, of which
11,800 were interpreted as equivalence axioms, allowing the safe
merging of multiple duplicate classes across ontologies.

Our next steps are to perform a full evaluation of these results.
Figure 2 shows an example of how a module has been resolved.

3.1 Tolerance and detection of mapping errors
When we assign prior probabilities, we assume a low error rate in
source-provided mappings, and thus for larger modules these are
rarely rejected, even if it leads to an overall more probable structure
(due to the greedy selection procedure). As a pre-processing step
we take large modules and iteratively test removal of axioms to
determine if the module can be broken into semantically distinct
submodules, which can sometimes detect incorrect mappings5. We
plan to fold this into the probabilistic approach.

3.2 Integration with curation
One advantage of our approach is that it fits well with both manual
curation and knowledge-driven approaches. The more knowledge
provided by a curator, the better the results; at the same time, the
approach is robust to incomplete information, attempting to estimate
the most likely structure, and always producing a coherent result, if
it can be found.

A curator can provide different kinds of information, and this can
be done iteratively. The most basic information to be provided is a
manually vetted curation. Additional information can be in the form

5 e.g http://github.com/DiseaseOntology/HumanDiseaseOntology/issues/134

of prior probabilities for different axiom types; for example, if a
curator strongly believes a mapping denotes equivalence, this can
be provided (and if the curator is highly confident, the axiom can
be removed from the probabilistic set and added directly into the
ontology).

The search procedure uses an OWL reasoner, so other axiom
types can be freely used; e.g the curator can provide defining
equivalence axioms to class expressions. The curator can also
provide constraints on possible models using constructs such as
disjointness axioms, or taxon constraints or some of the other logical
constraints developed in GO[6] and Uberon.

3.3 Comparison with other approaches
There are a number of probabilistic approaches to ontology
mapping, but most are aimed at generating rather than interpreting
mapping. One exception is the OMEN algorithm[5] which is similar
to our approach in that it generates probability distributions for
axiom types based on mappings, and factorizes the joint probability
distribution into a bayesian network. However, the approach has
certain assumptions that are problematic for the disease mapping use
cases, such as the combined ontology containing no cycles. We aim
to do further investigation into a generalized approach that unifies
OMEN and kBOOM, and to compare with other disease merging
efforts e.g. MedGen and EFO[4].
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