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 2

Summary 37 

 38 

• Deep microbiome profiling has sparked a revolution in biology, 39 

recontextualizing mechanisms such as macroorganismal adaptation 40 

and evolution. Amplicon sequencing has been critical for 41 

characterization of highly diverse microbiomes, but several challenges 42 

still hinder their investigation: (1) Poor coverage of the full diversity, (2) 43 

Read depth losses and (3) Erroneous diversity inflation/distortion. 44 

 45 

• We developed a modular approach to quickly profile at least 8 46 

interchangeable loci in a single sequencing run, including a simple and 47 

cost-effective way to block amplification of non-targets (like host DNA). 48 

We further correct observed distortion in amplified diversity by 49 

phylogenetically grouping erroneous OTUs, creating a phylogeny-50 

based unit we call OPUs. 51 

 52 

• Our approach achieves full, accurate characterization of a mixed-53 

kingdom mock community of bacteria, fungi and oomycetes at high 54 

depth even in non-target contaminated systems. The OPU concept 55 

enables much more accurate estimations of alpha and beta diversity 56 

trends than OTUs and overcomes disagreements between studies 57 

caused by methodology. Leveraging the approach in the Arabidopsis 58 

thaliana phyllosphere, we generated to our knowledge the most 59 

complete microbiome survey to date. 60 

 61 

• Microbiomes are extremely diverse, extending well beyond bacteria 62 

and fungi. Our method makes new questions in a variety of fields 63 

tractable with accurate, systems-based overviews of microbial 64 

community structures. 65 

 66 

•  67 

Keywords:  68 

microbiome, erroneous diversity, microbial diversity, holobiont, amplicon 69 

sequencing, bacteria, fungi, oomycete, protist 70 

 71 
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Introduction 73 

A revolution in biology is currently underway as our understanding of various 74 

systems is brought into the context of newly characterized structures and 75 

roles of symbiotic microbial consortia. This transformation is the result of 76 

growing research on microbiota associated with various abiotic or biotic 77 

systems (270 vs. 3494 publications had the words “Microbial community” or 78 

“Microbiome” in the title in 2005 vs. 2015 according to a PubMed search on 79 

Mar 22, 2016). Strong interest in this field is not surprising considering that 80 

research is turning up important roles of the community context of 81 

microorganisms in systems as diverse as biotechnological transformations 82 

(Werner et al., 2011) and plant and animal health and fitness (Hehemann et 83 

al., 2010, Mills et al., 2013, Panke-Buisse et al., 2015, Rolli et al., 2015). 84 

A typical approach employed by microbiome researchers is first to 85 

characterize microbial community structures in a system of interest. To do so, 86 

many studies rely on amplicon sequencing of phylogenetically informative 87 

genomic loci to generate microbiota profiles. These profiles are then linked to 88 

specific experimental parameters, host phenotypes or performance 89 

measurements. Community profiling based on ribosomal gene phylogeny 90 

dates to Pace and colleagues (Stahl et al., 1985) who in 1985 reported on 91 

isolating and sequencing the 5S rRNA gene in environmental samples to 92 

identify abundant but uncultured bacteria. The technology has come a long 93 

way: As with many recent important developments in biology, rapid and 94 

inexpensive DNA sequencing technology has been an enabling force in 95 

microbiome research. Its democratization, however, is due to development of 96 

highly parallel library indexing which made high-throughput amplicon 97 

sequencing extremely inexpensive on a per sample basis (Hamady et al., 98 

2008). 99 

Today, with for example the MiSeq platform, amplicon libraries are routinely 100 

and rapidly generated from hundreds of samples and sequenced together in a 101 

single run. This process generates millions of sequences up to 600 bp in 102 

length (Caporaso et al., 2012), enabling extremely deep profiling of targeted 103 

microbial groups. In the first experiment of the current study, we used the 104 

Illumina MiSeq to characterize A. thaliana root compartments more deeply 105 
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than we could previously with 454 pyrosequencing (Schlaeppi et al., 2014) in 106 

hope of gaining new insights. We show that better diversity recovery with the 107 

Illumina protocol, not read depth, enabled better differentiation of soil and 108 

rhizosphere compartments. In addition to the need to maximize microbial 109 

diversity coverage, we identified two other problems limiting characterization 110 

of diverse microbial communities: (1) Losses to read depth because of non-111 

target amplification and (2) Artificial inflation/distortion of diversity due to 112 

erroneous OTUs. 113 

Limited profiling of diversity extends well beyond bacteria, since microbiomes 114 

are often composed of species from all kingdoms of life. These cohabiting 115 

members interact with the environment and influence one another via direct 116 

associations (Fisher & Mehta, 2014) or indirectly via a host (Hajishengallis, 117 

2015). To resolve these interactions and model microbial community 118 

dynamics, robust systems approaches are needed (Lima-Mendez et al., 119 

2015). For example, analysis of modularity in microbial correlation networks 120 

(i.e., co-occurring groups of microbes) has revealed rice root-associated 121 

prokaryotes involved in methane cycling (Edwards et al., 2015) as well as 122 

modules of fungi and bacteria that together correlate with certain soil 123 

parameters (de Menezes et al., 2015). To improve the usefulness of such 124 

approaches, some studies are profiling a larger diversity like bacteria and 125 

fungi simultaneously (Marupakula et al., 2016). Such approaches can reveal, 126 

for example, keystone species that underlie microbial community structures 127 

because they interact heavily, linking external abiotic and biotic sources of 128 

variation to the community (Berry & Widder, 2014). Recent studies in 129 

phyllosphere microbial communities (Agler et al., 2016) and in ocean samples 130 

(Chow et al., 2014) have emphasized that keystone microbes participate 131 

heavily in inter-kingdom interactions. Thus, broad coverage of diversity is 132 

critical to pinpoint these important microbes in community surveys. 133 

Parallel amplification and sequencing of multiple loci is one way to cover more 134 

diversity and for this approach many well-characterized targets are available. 135 

Among other target loci, structures of communities can be probed via the 16S 136 

rRNA gene (Baker et al., 2003), the internal transcribed spacer (ITS) region 1 137 

or 2 (Blaalid et al., 2013) or the 18S rRNA gene (Hugerth et al., 2014) for 138 

prokaryotic, fungal, and other eukaryotic microbes, respectively. For most of 139 
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these targets, many possible primer sets are available, each bringing their 140 

own biases and specificities. Therefore, including multiple loci from a single 141 

gene target can be advantageous and provide complementary information 142 

(Wang et al., 2016). Whatever the target choice, modular methods are 143 

needed to quickly adapt methodology to specific questions because 144 

represented diversity varies considerably between different microbial 145 

communities. Previously, we developed a method to prepare, sequence and 146 

analyze two loci from each of bacteria (16S), fungi (ITS) and oomycetes (ITS) 147 

in parallel and used it to evaluate microbial structure and interactions in the 148 

Arabidopsis thaliana phyllosphere (Agler et al, 2016). Here, we use a mixed 149 

mock community of microorganisms to optimize it for high throughput, 150 

resolution and accuracy. 151 

We also address the two other major barriers to full characterization of 152 

microbial communities. The first is amplification of host or non-target 153 

organismal DNA such as mitochondrial 16S, chloroplast 16S or non-target 154 

genomic ITS sequences that can lead to major loss of useful reads (Bulgarelli 155 

et al., 2012, Ihrmark et al., 2012). We developed “blocking oligos” that 156 

inexpensively and nearly completely eliminated non-target amplification in 157 

mock communities with simulated “host” contamination. We also show that 158 

their use does not bias results and that they can be adapted to block 159 

amplification of undesirable microbial targets. Second, we addressed false 160 

trends in recovered microbial community diversity arising because of 161 

sequencing errors (Kunin et al., 2010). Here, we introduce the “operational 162 

phylogenetic unit” (OPU) – phylogenetic groupings of erroneous OTUs. We 163 

show that this method resolves differences between our 454 and Illumina 164 

methods caused by errors. We also demonstrate that OPUs can be used to 165 

generate a phylogenetic beta diversity distance metric even for fungal ITS 166 

reads and that they are a much more accurate direct measure of species 167 

richness than OTUs. 168 

Finally, we leverage all of these benefits to profile microbes associated with 169 

leaves of wild A. thaliana plants. To demonstrate full modularity and that any 170 

desirable locus could be included, we expand to target microbial eukaryotes 171 

with two loci of the 18S rRNA gene (8 loci total). The result is deep profiling of 172 

all 8 loci and to our knowledge the most complete picture to date of diversity 173 
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in a microbial community. We provide all tools and information needed for 174 

researchers to analyze up to 50 samples with the 8 loci described here or to 175 

expand the system for their needs. Together, these simple solutions will 176 

enable researchers to rapidly, accurately and nearly completely characterize 177 

many microbial communities in a single sequencing run. We expect these 178 

methods to broaden the applicability and impact of amplicon sequencing 179 

experiments. 180 

 181 

Materials and Methods 182 

Comparison of methods for amplicon sequencing 183 

We first tested an amplification and sequencing protocol for the Illumina 184 

MiSeq that includes amplicon generation in two PCR steps (Fig. S1). We 185 

prepared bacterial 16S rRNA gene libraries from 3 bulk soil, 3 plant 186 

rhizosphere and 2 plant root samples from the ‘Eifel’ natural site experiment 187 

(Experiment 1, Table S1) and sequenced them as described in SI methods. 188 

We combined Illumina data with data from the same samples previously 189 

generated using 454 technology (Schlaeppi et al, 2014) and generated OTUs 190 

as described in SI methods. We then summarized OTUs by taxonomy and 191 

generated plots at the phylum level (all taxa) or the family level (the 20 most 192 

abundant taxa). We compared the cumulative OTU discovery vs. depth 193 

between the two technologies by rarifying tables at read depth intervals of 10 194 

between 0 and 100 and 100 between 100 and 3000 and counting the number 195 

of unique and shared OTUs generated by each technology. Finally, we 196 

compared the ability of the technologies to discriminate between 197 

compartments of Arabidopsis thaliana roots by plotting boxplots of Bray-Curtis 198 

or weighted UniFrac distances between sample classes using phyloseq 199 

(McMurdie & Holmes, 2013) and ggplots2. 200 

Optimizing modular, multi-locus library preparation and sequencing 201 

We expanded the method used in the first experiment to target multiple loci in 202 

a single sequencing run (Experiment 2, Table S1 and Table S2). Accuracy 203 

was tested by amplifying mixed kingdom mock communities (Table S3) in 6 204 

separate PCR reactions targeting two loci from phylogenetically informative 205 

regions of each of bacteria (16S rRNA V3-V4 and V5-V7), fungi (ITS1 and 2) 206 
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and oomycetes (ITS1 and 2). We tested effects of library preparation 207 

methodology by performing PCR in one step (35 cycles) or two steps (10 then 208 

25 cycles or 25 then 10 cycles) (Fig. S1b and Table S1). For two-step 209 

preparations, the primers used in the first step consisted of unmodified 210 

universal amplification primers (Fig. 1a). For single-step preparations and for 211 

the second step in two-step preparations, primers were a concatenation of the 212 

Illumina adapter P5 (forward) or P7 (reverse), an index sequence (reverse 213 

only), a linker region, and the universal primer for the region being amplified 214 

(Fig. 1b, Fig. S1a and File S1). Details of all PCR steps can be found in the 215 

SI methods. Libraries were purified, quantified, and combined in equimolar 216 

concentrations. Sequencing was on a single Illumina MiSeq lane (Illumina, 217 

Inc.) by adapting the approach of Caporaso et al. (Caporaso et al, 2012) for 218 

multiple loci (Fig. S1c and File S1). This recovers ~8% more high quality 219 

bases than protocols relying on Illumina sequencing primers (calculated in SI 220 

Note). 221 

Details on generating OTU tables and taxonomy from raw multi-locus data 222 

can be found in the SI Methods. We summarized bacterial, fungal and 223 

oomycete OTU tables by taxonomic rank, converted abundances to relative 224 

values and plotted the family-level taxonomic distribution directly from this 225 

data with the package ggplots2 in R. To calculate distances of samples from 226 

expected, we added the expected distributions (Table S3) to the OTU tables 227 

and summarized taxa at the family level. After removing “host“-derived reads, 228 

we calculated Bray-Curtis distances between samples using Vegan (Oksanen 229 

et al., 2013). We plotted distances from expected distributions in boxplots 230 

using ggplots2. Each box represents three “replicate” libraries generated with 231 

the same mixed kingdom mock community template but with differing 232 

amounts of “host“ DNA added. 233 

Avoiding non-target template amplification with “blocking oligos” 234 

To make the method applicable to host-associated studies, we addressed 235 

non-target amplification in library preparation. In short, primers specific to the 236 

known, undesirable template (hereafter “blocking oligos”) are designed to bind 237 

nested inside the universal primer binding sites (Experiment 3, Table S1). 238 

Thereby, most amplicons made in the first PCR step from non-target template 239 

are short and lack the universal primer sequences. These cannot be 240 
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elongated in the second PCR step and subsequently are not sequenced (Fig. 241 

1b, Fig. S1b and S1c). Blocking oligos were designed for the A. thaliana 242 

chloroplast (16S rRNA V3-V4 region) or mitochondria (16S rRNA V5-V7 243 

region) and the A. thaliana ITS1 and ITS2 regions by adapting the approach 244 

of Lundberg et al. (Lundberg et al., 2013) originally for PNA clamps. See SI 245 

Methods and Fig. S2 for details of design and use in library preparation and 246 

File S1 their sequences. To analyze the percent reduction in host plant-247 

associated reads when blocking oligos were employed, we considered the 248 

relative abundance of reads associated with the class “Chloroplast” or the 249 

order “Rickettsiales” in the 16S OTU tables and reads in the kingdom 250 

“Viridiplantae” in the ITS OTU tables in samples with A. thaliana DNA and with 251 

and without blocking oligos. 252 

Clustering OTUs by phylogeny into OPUs 253 

For the 454/Illumina comparison and multi-kingdom mock community data, 254 

OTUs were clustered into phylogenetically closely related groups that we 255 

called operational phylogenetic units (OPUs, Fig. 1c, Experiment 4 in Table 256 

S1). In short, OTUs were divided at the rank of family, combined with 257 

sequences from the taxonomy reference databases and a phylogenetic tree 258 

was built for each by alignment with MUSCLE (Edgar, 2004). UPGMA trees 259 

for each family were created with the R function hclust. The tree was 260 

dynamically split into clusters using the hybrid method in cutreeDynamic in the 261 

dynamicTreeCut package (Langfelder et al., 2008) in R. This method was 262 

designed to identify clusters in trees similar to hierarchical clustering but 263 

without predetermined clustering depths. It dynamically identifies groups of 264 

tips in a dendrogram that form clusters using both the tree and the distance 265 

matrix that the tree is based on. A set of user-defined parameters define the 266 

cluster detection sensitivity and we found that setting the minimum cluster 267 

size to 15 and the deepSplit parameter to 3 was effective for OTU clustering. 268 

We then generated a map of the OTUs in each OPU and generated an OPU 269 

abundance table. 270 

For the 454/Illumina data, overlap of OPU generation between technologies 271 

and Bray-Curtis distance plots were generated exactly as described above for 272 

OTUs. For mock communities, species richness estimates were based on 273 

data from the evenly distributed mock community template with A. thaliana 274 
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“host” contamination, amplified in 2 steps (10 cycle / 25 cycle) with blocking 275 

oligos. We used QIIME 1.8.0 (Caporaso et al., 2010) to calculate the number 276 

of observed species in 10 rarefactions at 30 evenly spaced depths based on 277 

the OPU table, the OTU table, and the tables of OTUs grouped taxonomically 278 

at levels species, genus, family and order. The maximum depth was based on 279 

the OPU read depth since a few reads were discarded during OPU generation 280 

(Bacteria V3/V4: 2530, V5/V6/V7: 34780, Fungi ITS1: 9930, ITS2: 48400, 281 

Oomycete ITS1: 26820, ITS2: 5000). We plotted the average number of 282 

observed species against sequencing depth for the bacterial 16S V3-V4 283 

dataset and the ratios of observed:expected OTUs and OPUs for all datasets. 284 

Characterizing A. thaliana phyllosphere microbiota 285 

We used the multi-locus approach to characterize the phyllosphere 286 

microbiome of A. thaliana leaves infected with the oomycete pathogen Albugo 287 

laibachii with near-complete taxonomic coverage (Experiment 5 in Table S1 288 

and Table S2). Whole leaves (defined as a single whole rosette) or 289 

endophytic fractions of leaves (defined as in (Agler et al, 2016)) were 290 

collected in the wild (a total of 18 samples - 9 whole leaf, 9 endophyte) and 291 

were immediately frozen on dry ice. DNA extraction was performed as 292 

described previously (Agler et al, 2016). Library preparation, sequencing and 293 

analysis was performed as described above. To more completely cover 294 

eukaryotic microbial diversity, we expanded the 6 loci method to 8 with two 295 

additional 18S rRNA gene loci (V4-V5 and V8-V9, see File S1). 296 

To reduce A. thaliana or A. laibachii amplification in the 18S region we 297 

designed additional blocking oligos for both of these organisms (File S1). We 298 

tested them by preparing 18S amplicons from two mock communities 299 

consisting of A. thaliana (97% or 87%), A. laibachii (0 or 10%), Sphingomonas 300 

sp. (1.5%), Bacillus sp. (1.5%) and 0.001% to 1% of target Saccharomyces 301 

cerevisiae. (Table S4).  302 

To provide a complete and concise picture of the diversity of microbiota 303 

inhabiting A. thaliana, we combined the data from all samples. To visualize 304 

data, we assigned taxonomy to OTUs and generated two phylogenetic trees 305 

where branches represent unique genera. Trees were generated from the 306 

taxonomic lineages (not OTU sequence similarity) with the ape package in R 307 

and output as newick files (Paradis et al., 2004). Therefore, OTUs from taxa 308 
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not represented in the databases are simply grouped as “Unclassified”. These 309 

were uploaded to iTOl v3.1 (Letunic & Bork, 2016) to color branches by 310 

taxonomy or by targeted regions. The first tree, for Eukaryotes, includes data 311 

from the 18S and ITS targeted regions. The second tree includes data from 312 

the 16S targeted regions. 313 

Data Availability and Figure Regeneration 314 

Raw sequencing data is being made publicly available via Qiita 315 

(https://qiita.ucsd.edu/) study number 10408 and is currently available for 316 

direct download at: 317 

http://bioinfo.mpipz.mpg.de/download/MethodPaper_Share/. All modified 318 

databases, OTU tables and metadata files, as well as scripts and instructions 319 

to generate OPUs and recreate the main figures are available at Figshare 320 

(https://figshare.com/s/07b3493d1f6442d34dfd). 321 

 322 

Results 323 

Pattern recovery depends on diversity coverage but is obscured by 324 

erroneous OTUs  325 

We first re-analyzed the 454-generated bacterial 16S data from (Schlaeppi et 326 

al, 2014), confirming that rhizosphere and soil compartments from A. thaliana 327 

roots were weakly distinct (Fig. 2a). We hypothesized that because of their 328 

relatively high alpha diversity, higher read depth was needed to differentiate 329 

microbiota between the compartments. Thus, we reanalyzed the same set of 330 

samples at higher depth (86,406-211,907 reads/sample vs. 12,699-20,844 331 

reads/sample previously) with our protocol for the Illumina platform (Fig. 1a 332 

and 1b and Table S1). Bray-Curtis distances, which consider all OTUs 333 

equally, suggested that the Illumina method indeed better distinguished 334 

rhizosphere and soil compartments (Fig. 2a). Surprisingly, this was depth-335 

independent and was also true for differences between other compartments. 336 

This was apparently driven by widely divergent OTU profiles with only 35% of 337 

all OTUs observed in both datasets (Fig. 2b, 700 and 1424 OTUs were 338 

unique to 454 and Illumina, respectively). Huge numbers of unique OTUs 339 

suggested that either: (1) Differences in the methods of library generation and 340 

sequencing resulted in little overlap or (2) OTUs were inflated by error. To 341 
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check this, we calculated between-sample weighted UniFrac distances, which 342 

gives less importance to differences caused by closely related, likely 343 

erroneous OTUs (Fig. 2a). With this metric only soil and rhizosphere 344 

compartments were better differentiated in the Illumina dataset, suggesting a 345 

mixture of real differences and erroneous OTUs leading to false diversity 346 

trends. True differences could be due to higher sensitivity with the Illumina 347 

method to the phyla Verrucomicrobia, TM7 and Chloroflexi, which were more 348 

abundant in that dataset (Fig. S3). However, there were apparently too many 349 

errors to locate soil/rhizosphere differential OTUs with certainty. In any case, 350 

the role of improved taxonomic resolution in detecting fine differences 351 

between datasets motivated us to expand to target loci beyond prokaryotes. 352 

 353 

A fully modular, multi-locus approach to improve insight into microbial 354 

diversity 355 

We previously (Agler et al, 2016) adapted our 2-step Illumina amplicon library 356 

generation protocol to simultaneously target 6 genomic loci, two from each of 357 

bacteria, fungi and oomycetes. Here, we optimized the protocol by extensively 358 

testing variations of it on a mock community consisting of microbes from the 359 

three kingdoms (Table S3). We found that for all three kingdoms, taxa 360 

distributions (shown at the order level in Fig. 3a and Fig. S4a) were similar to 361 

expected. Mocks with staggered distributions of microorganisms were 362 

generally closest to expected (Fig. 3b and Fig. S4b) because the effect of 363 

underestimated taxa was sometimes stronger in even communities (e.g., the 364 

order Mucorales was not efficiently recovered by fungal ITS1 primers Fig. 3a 365 

and Tables S5-S7). Recovered community structures were reproducible, 366 

since the distance of technical replicates from the expected distribution was 367 

consistent (Fig. 3b and Fig. S4b). 2-step amplification recovered microbial 368 

community structures that were closer to the expected than 1-step 369 

amplification although the trend was not significant in all datasets. Further, 370 

leaving the bulk of PCR cycling for the second step (10 cycles followed by 25 371 

cycles) tended to give the most accurate results. These close-to-expected 372 

taxonomy distributions were based on OTUs grouped by taxonomy. At the 373 

OTU level we again observed inflated diversity due to erroneous OTUs. OTUs 374 

overestimated species richness by on average 257.5%, 2575% and 387.5% 375 
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(only considering OTUs in the expected taxa) for bacteria, fungi and 376 

oomycetes, respectively (Tables S5-S7). 377 

We tested applicability of our method to host-associated microbiomes by 378 

mixing 90% A. thaliana “host” DNA and 10% mock communities (Fig. 3). Non-379 

target host-derived DNA amplification accounted for up to 94% of reads 380 

(chloroplast-derived in the 16S V3-V4 dataset) and much less but still 381 

significant amounts in other target regions (Fig. 3a and Fig. S4). Therefore, 382 

we developed and implemented “blocking oligos” to reduce amplification of 383 

non-target DNA template. This method largely recovered read depth by 384 

eliminating 60 - 90% of chloroplast contamination in bacterial 16S 385 

communities and nearly all of the small amount of contamination in fungal ITS 386 

communities (Fig. 4a). Importantly, employing blocking oligos did not change 387 

the recovered distribution of taxa (each of the 2-step amplification boxplots in 388 

Fig. 3b included a replicate with blocking oligos but all had the same distance 389 

to expected). Thus, whereas extensive host contamination would obscure all 390 

but the most abundant microbes, blocking oligos enable deeper amplicon 391 

sequencing to uncover rare microbiota. 392 

 393 

Recognizing true diversity trends with phylogenetic OTU clustering 394 

Prolific generation of erroneous OTUs strongly distorted true diversity 395 

patterns. Since erroneous OTUs derive from the same true sequence (Fig. 396 

1c), they should cluster closely in phylogenetic trees. Using this principle we 397 

grouped OTUs generated in the 454/Illumina comparison into a unit that we 398 

call operational phylogenetic units (OPUs). This approach reduced the total 399 

from 3268 OTUs to 293 OPUs. OPUs properly grouped divergent erroneous 400 

OTUs generated with 454 and Illumina since overlap between them increased 401 

from 35% (OTUs, Fig. 2b) to 90% (OPUs, Fig. 5a). There were only 11 and 402 

21 OPUs unique to 454- and Illumina, respectively. Bray-Curtis distances 403 

based on OPUs (Fig. 5b) closely resembled UniFrac distances based on 404 

OTUs (Fig. 2a) where Illumina only better distinguished soil and rhizosphere 405 

compartments. We determined that 16 OTUs (maximum 150.8 reads/sample) 406 

and 10 OPUs (maximum 213.7 reads/sample) significantly contributed to 407 

observed soil/rhizosphere differentiation (Table S8). Significant OTUs and 408 

OPUs were in agreement, since both were dominated by the phylum 409 
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Chloroflexi (4 of 6 OTUs with > 20 reads/sample and the most abundant OPU, 410 

Table S8). 411 

We used the mock community dataset to check if OPUs can provide accurate 412 

diversity estimates in all target loci. Indeed, all OPU rarefaction curves quickly 413 

reached an asymptote close to expected species richness (Fig. 5c). 414 

Considering only expected families, species richness was estimated at 110%, 415 

87.5% and 87.5% of expected for bacteria, fungi and oomycetes, respectively 416 

(Tables S5-S7). For fungal and oomycete ITS2 data, richness was estimated 417 

perfectly in all families, and the same was true for most families in other 418 

datasets (Tables S5-S7). Considering all discovered OPUs and OTUs 419 

(including non-targets and contaminants), phylogenetic grouping reduced the 420 

average total number of observed units from 86 to 30.5 (OTUs to OPUs) for 421 

bacteria (20 expected), 121.5 to 7 for fungi (4 expected) and 26 to 7.5 for 422 

oomycetes (4 expected) (Fig. 5d and Tables S5-S7). Comparatively, OTUs 423 

and even OTUs grouped by taxonomy extensively overestimated diversity and 424 

their non-asymptotic rarefaction curve suggests continued inflation with 425 

deeper sequencing (Fig. 5c). Overall, OPUs contribute to drastically improved 426 

microbial diversity profiles from amplicon sequencing data. 427 

 428 

Towards a complete survey of complex host-associated microbiomes 429 

Next, we leveraged the full modularity of our approach to provide a near-430 

complete survey of prokaryotic and eukaryotic diversity in A. thaliana leaves 431 

collected in several locations using 8 loci (2 for each of bacteria, general 432 

eukaryotes, fungi and oomycetes). Since the leaves of A. thaliana are often 433 

infected by the obligate biotroph pathogen A. laibachii, templates from leaves 434 

are dominated by Arabidopsis and Albugo genomic DNA. To overcome non-435 

target amplification of these two organisms by universal 18S primers, another 436 

set of blocking oligos were designed. We tested the oligos by preparing 18S 437 

amplicons from mock community templates (Table S4) containing bacterial, 438 

A. thaliana, A. laibachii and target S. cerevisiae genomic DNA. Quantification 439 

(qPCR) of target levels in the 18S libraries showed that blocking non-targets 440 

increased target levels between ~57x (1% target template) and ~57,000x 441 

(0.001% target template) (tested in the 18S V4-V5 region, Fig. 4b). 442 
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Here, we present the most complete picture of the A. thaliana-associated 443 

microbiome (and to our knowledge any microbiome) ever assembled in a 444 

single amplicon sequencing run (Fig. 6) based on combined diversity in 24 445 

leaf samples collected from three wild locations. As expected, the 18S rRNA 446 

gene primers recovered a wide diversity of fungal and non-fungal eukaryotic 447 

microbiota, including various algae, cercozoa and amoebozoa (Fig. 6a). They 448 

even suggested that insects and helminthes are or were present on the 449 

leaves (File S2). The fungal and oomycete ITS datasets complemented the 450 

broader 18S data with more specificity in those groups – together, these two 451 

accounted for 44% of tree tips (observed genera, Fig. 6a). The prokaryote 452 

trees further demonstrate complementarity for primer sets targeting the same 453 

groups of microbes (Fig. 6b). Here, 42% of observed genera were discovered 454 

by both primer sets, with complementary diversity discovery especially in the 455 

phyla Cyanobacteria (V3-V4 dataset) and Firmicutes (V5-V7 dataset). 456 

 457 

Discussion 458 

Amplicon sequencing of phylogenetically or functionally informative loci has 459 

become an indispensable technique in a variety of biology-related fields 460 

because its targeted approach (compared to untargeted approaches like 461 

metagenomics) allows the most accurate annotation possible by using 462 

specialized databases (DeSantis et al., 2006). It has revealed that microbial 463 

community structuring is more complex than previously thought and 464 

suggested extensive interactions between (a)biotic factors and microbes (de 465 

Menezes et al, 2015) and between microbes even across kingdoms (Agler et 466 

al, 2016, Lima-Mendez et al, 2015). To understand these interactions, 467 

microbiome researchers need to be able to more completely characterize 468 

diversity in a single sequencing run. The current method enables this by 469 

targeting at least 8 loci in parallel. This drastic increase in resolution critically 470 

overcomes an inherent uncertainty in systems-scale investigations of factors 471 

contributing to microbial community structures.  472 

A key technique enabling the current advances is employment of a two-step 473 

amplicon library preparation as opposed to a single step amplification. Many 474 

commonly used protocols (e.g., the Earth Microbiome Project 16S protocol 475 
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based on (Caporaso et al., 2011)) recommend using large, concatenated 476 

primers and one-step amplification. The advantages in technical 477 

reproducibility of a two-step approach that excludes concatenated primers in 478 

the first step were already described by Berry et al. (Berry et al., 2011) for T-479 

RFLP or 454 amplicon sequencing. For Illumina sequencing, concatenated 480 

primer bias was addressed with a 3-step approach: A 2-step amplification plus 481 

adapter ligation (Herbold et al., 2015). That approach also allowed 482 

characterization of multiple gene regions, but a “head” sequence was 483 

concatenated to universal primers in the first amplification step. Our use of 484 

only universal primers in the first step, therefore, probably explains why mock 485 

community structure recovery was very accurate and replicable. Additionally, 486 

our approach adds all required adapters for sequencing in the second 487 

amplification step, eliminating problems associated with adapter ligation 488 

(Sambrook et al., 1989). 489 

Another major problem in amplicon sequencing is associated with using 490 

“universal” primers that in host-associated amplified non-target species, 491 

sacrificing read depth and masking diversity (Hanshew et al., 2013). 492 

Previously, peptide nucleic acid “clamps” were used that were highly specific 493 

to non-target templates and which physically block their amplification 494 

(Lundberg et al, 2013). These clamps work efficiently in single-step 495 

amplifications, but their production is expensive, limiting rapid development 496 

and deployment of multiple clamps for new loci or for blocking several non-497 

targets. Other approaches, like using oligonucleotide clamps that physically 498 

block the universal primer binding site (Vestheim & Jarman, 2008) are not 499 

applicable here because target and non-target binding sites are too highly 500 

conserved. Alternatively, blocking oligos are versatile and cheap and can be 501 

extensively tested at very low costs and adapted to virtually any target. Some 502 

universal primers targeting fungal ITS amplify fungal targets more efficiently 503 

than host, which explains why we had only minor host contamination in mixed 504 

mock community libraries. However, when fungal templates are less abundant 505 

they can significantly amplify plant ITS (Ihrmark et al, 2012). Because 506 

blocking oligos did not bias results, it is beneficial to always include them 507 

when relative abundance of target and non-target DNA is unknown.  508 
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One of the most persistent problems identified so far in amplicon sequencing 509 

is vast inflation of OTU diversity, mostly caused by sequencing errors (Kunin 510 

et al, 2010). Despite useful approaches to remove erroneous reads (Bokulich 511 

et al., 2013, Reeder & Knight, 2010) or to reduce erroneous OTUs (Edgar, 512 

2013) false diversity trends are commonly observed (Sinclair et al., 2015). 513 

Errors explain the popularity of phylogenetics-based tools for beta diversity 514 

estimation based on the Kantorovich-Rubinstein metric, such as UniFrac 515 

(Evans & Matsen, 2012, Lozupone & Knight, 2005) or alpha diversity metrics 516 

like Faith’s PD (Faith, 1992). These weight differences in samples caused by 517 

distantly related OTUs more heavily since erroneous OTUs should be 518 

phylogenetically closely related. They have been very successful in identifying 519 

real differences between samples even when sequencing error is high. 520 

However, they are generally not applicable to loci like ITS, where extreme 521 

variability makes drawing phylogenetic relationships between all sequences 522 

questionable (Schoch et al., 2012). Additionally, the assumptions of 523 

phylogenetic approaches do not hold when distantly related microbes occupy 524 

similar niches. For example, the basidiomycete yeast-like Pseudozyma spp. 525 

are phenotypically and ecologically much more similar to species like 526 

Dioszegia sp. (Inácio et al., 2005) than to plant pathogenic members of its 527 

close relative Ustilago sp (Lefebvre et al., 2013). Therefore, complementary 528 

approaches are needed that are sensitive to shifts in abundance among 529 

closely related taxa but which accurately delineate true and erroneous taxa. 530 

The OPU approach addresses this problem because they are in principle like 531 

phylogenetic diversity metrics – very closely related (likely erroneous) OTUs 532 

are grouped into a unit which can be used to generate standard beta or alpha 533 

diversity metrics. Therefore, the results are less abstract than UniFrac or 534 

Faith’s PD (which lacks a taxonomic unit) and should be more sensitive to 535 

changes in abundance of closely related taxa. The term OPU was discussed 536 

elsewhere (Pernthaler & Amann, 2005) in the context of using phylogenetic 537 

grouping of organisms to move away from a specific percent identity as a 538 

working taxonomic unit but not as a systematic way to group erroneous 539 

OTUs. This concept was implemented in approaches to dynamically group 540 

amplicon reads by phylogeny based on tree cutting. Here clusters of reads 541 

were identified by training on a subset of data with known taxonomies (White 542 
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et al., 2010) or by known differences in substitution errors between or within 543 

species (Zhang et al., 2013). General applicability of these approaches is 544 

unclear because of the major computational resources needed to cluster raw 545 

reads and because inferring phylogeny among all reads is questionable at 546 

some highly divergent loci like ITS (Schoch et al, 2012). Our implementation 547 

on the other hand uses pre-clustering of reads into OTUs and taxonomic 548 

groups. In this way large datasets are not a barrier because parallelization 549 

can be maximized according to available resources. Further, OTUs split by a 550 

taxonomic rank, e.g., family, are closely related and phylogenetic relationships 551 

can be determined even at highly divergent ITS loci. Therefore, diversity 552 

metrics based on OPUs represent a much needed phylogenetic method for 553 

loci that are not conserved enough to build alignments for example for 554 

UniFrac distances. 555 

The realization of the immense complexity of biological systems – and our 556 

inability to adequately describe them - has led to many important, unresolved 557 

issues. For example, there is ongoing debate about what it means to view 558 

macroorganisms as holobionts, since symbiotic microbiota affect host health 559 

and fitness (Brucker & Bordenstein, 2013, Sharma et al., 2014). Unanswered 560 

questions also linger, like what causes host genotype-independent taxonomic 561 

conservation of plant root microbiomes over broad geographic distances 562 

(Hacquard et al., 2015). The tools described here will significantly increase 563 

the ability of researchers to accurately resolve microbial communities, 564 

addressing one of the primary limitations to progress. Although challenges 565 

remain, we expect this approach to equip researchers to make better 566 

hypotheses and to address seemingly intractable questions. These advances 567 

will thereby assist in increasing discovery of the important roles of microbiota. 568 
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Figures 818 

 819 

Figure 1. Strategy to increase taxonomic coverage and accuracy of 820 

amplicon sequencing. A. In the first step, 8 individual PCR reactions are 821 

performed per sample each targeting a specific gene region. B. Blocking 822 

oligos are employed in the first PCR step which are specific for non-target 823 

templates so that these cannot be elongated to the final libraries with 824 

concatenated primers in the second step. P5 and P7 are standard Illumina 825 

adapter sequences. L indicates the linker sequence. C. Inflation of the number 826 

of observed OTUs caused largely by sequencing error is addressed by 827 

dividing them up by taxonomic lineages, building a phylogenetic tree and then 828 

clustering closely related members into operational phylogenetic units 829 

(OPUs). 830 

 831 
Figure 2. A comparison of 454- vs. Illumina-based amplicon sequencing 832 

protocols shows little overlap of OTUs, suggesting high erroneous OTU 833 

generation. A. Bray-Curtis distances based on OTU relative abundances 834 

suggest that data recovered with the Illumina protocol significantly better 835 

distinguishes all pairs of compartments. Weighted UniFrac, however, 836 

suggests that the Illumina protocol only better distinguishes rhizosphere and 837 

soil compartments, implying that differences between others were due to 838 

closely related and probably erroneous OTUs. B. Between 454 and Illumina 839 

datasets, rarefaction curves of the number of OTUs discovered with 840 

increasing read depth suggest that erroneous OTUs are very common since 841 

most OTUs are unique to datasets produced by one or the other technology, 842 

with only about one-third of all OTUs found in both datasets. The rarefaction 843 

curves are separated into OTUs that are unique to Illumina, unique to 454 or 844 

shared by both technologies. 845 

 846 

Figure 3. Reproducible and accurate characterization of mock 847 

communities of bacteria, fungi, and oomycetes by amplicon sequencing. 848 

A. Observed taxa at the order level in sequenced mock communities closely 849 

matched expected communities. The taxa “Other” is primarily non-target 850 

amplification from A. thaliana “host” DNA that was added to test blocking 851 
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oligomers which prevent “host” DNA amplification. “NA” indicates a sample 852 

where sequencing depth was too low after subsampling to be included. B. 853 

Distance (Bray-Curtis distance based on relative abundance of order-level 854 

taxa) of sequenced communities from the expected distribution where 0 is 855 

identical and 1 is unrelated. Even or staggered revers to the distribution of the 856 

organisms in the mock communities (see expected distributions in A). PCR 857 

Steps refers to a 1-step (35 cycles with concatenated primers) or 2-step (10 or 858 

25 cycles with standard primers followed by 25 or 10 cycles with extension 859 

primers containing Illumina adapters) amplification protocol. Letters indicate p 860 

< 0.1 (FDR-corrected) based on pairwise t-tests between groups. 861 

 862 

Figure 4. Employing blocking oligomers greatly reduces non-target and 863 

increases target yield in amplicon libraries. A. Near-complete reduction of 864 

amplification of A. thaliana “host” non-target plastid 16S or ITS by employing 865 

blocking oligos in preparation of mock community libraries. B. Relative 866 

increase of target (Saccharomyces sp.) 18S V4-V5 region amplicons (qPCR 867 

2-ΔCq values relative to measurement without blocking oligomers) in mock 868 

community libraries prepared with blocking oligomers to reduce A. thaliana 869 

and A. laibachii non-target amplification. 870 

 871 

Figure 5. Clustering of operational taxonomic units (OTUs) into 872 

operational phylogenetic units (OPUs) by their phylogenetic relatedness 873 

corrects erroneous diversity discovery.  A. Between 454 and Illumina 874 

datasets, the number of shared and unique OPUs and the fraction of shared 875 

OPUs demonstrates that OTU clustering greatly reduces erroneous dataset 876 

disagreements compared to Fig. 2B. B. Bray-Curtis distances based on OPUs 877 

displays similar trends as weighted UniFrac distances with the only significant 878 

differences between rhizosphere and soil compartments. C. Rarefaction 879 

curves of observed units at the OTU level, various taxonomic ranks, and for 880 

OPUs for bacterial 16S V3/V4 amplicon data show that unclustered OTUs and 881 

most taxonomic ranks greatly overestimate the expected diversity and the 882 

curves do not reach an asymptote, while OPUs quickly reach an asymptote 883 

close to the expected diversity. D. Numbers of observed OTUs or OPUs vs. 884 

expected units for all target regions demonstrates near-expected numbers of 885 
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taxa in all target regions. Data in C. and D. is generated from the evenly 886 

distributed mock community with A. thaliana “host” DNA and using host-887 

blocking oligomers and only considers OTUs and OPUs in the expected 888 

taxonomic families. 889 

 890 

Figure 6. A comprehensive overview of high diversity microbiomes 891 

inhabiting A. thaliana leaves revealed by parallel amplicon sequencing 892 

of 8 loci targeting eukaryotes and prokaryotes microbes. A. 6 loci 893 

targeting eukaryotes: Two regions of the 18S rRNA gene (V4-V5 and V8-V9), 894 

two regions of the fungal ITS (ITS 1 and 2) and two regions of the oomycete 895 

ITS (ITS 1 and 2) revealed a diverse eukaryotic microbiota. The 18S loci 896 

revealed the broadest diversity but was complemented by fungi and 897 

oomycete-specific primer sets which had more detailed resolution within these 898 

groups. “Target loci specificity” refers to the taxa identified with each target 899 

group (Eukaryotes) or locus (Prokaryotes). B. 2 loci targeting prokaryotes: 900 

Two regions of the 16S rRNA gene (V3-V4 and V5-V7) that amplify mostly 901 

bacteria revealed a largely overlapping diversity profile complemented by 902 

unique discovery of taxa from each of the two target regions. 903 

 904 
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