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Ultra-rare inherited and de novo disruptive variants in highly constrained (HC) 
genes are enriched in neurodevelopmental disorders 1-5. However, their impact on 
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cognition in the general population has not been explored. We hypothesize that 
disruptive and damaging ultra-rare variants (URVs) in HC genes not only confer 
risk to neurodevelopmental disorders, but also influence general cognitive abilities 
measured indirectly by years of education (YOE). We tested this hypothesis in 
14,133 individuals with whole exome or genome sequencing data. The presence of 
one or more URVs was associated with a decrease in YOE (3.1 months less for each 
additional mutation; P-value=3.3x10-8) and the effect was stronger in HC genes 
enriched for brain expression (6.5 months less, P-value=3.4x10-5). The effect of these 
variants was more pronounced than the estimated effects of runs of homozygosity 
and pathogenic copy number variation 6-9. Our findings suggest that effects of URVs 
in HC genes are not confined to severe neurodevelopmental disorder, but influence 
the cognitive spectrum in the general population. 
 
Educational attainment, measured by the highest number of YOE attained, is a complex 
trait influenced by public policy 10, economic resources11 and many heritable traits, 
including cognitive abilities and behavior 12. Importantly, YOE is positively associated 
with healthy behaviors and lower rates of chronic diseases 13-15.  
 
GWAS meta-analyses have identified 74 genome-wide significant loci for YOE 16. The 
additive heritability of YOE explained by common genetics variants has been estimated 
at 21% (95% C.I. 11-31%) 17, which is approximately half of the total heritability 
estimated from twin studies (40%; 95% C.I. 35-44%)] 18. It has been hypothesized that 
rare to ultra-rare exonic variants might account for some of the heritability currently not 
captured by GWAS 19.  
 
Recent studies of intellectual disability, autism and schizophrenia have shed light on the 
impact of de novo and URVs on the genetic architecture of these disorders 1-5 (Genovese 
et al, submitted), showing a specific enrichment in HC genes (i.e. genes intolerant to loss-
of-function or missense mutations). Moreover, emerging evidence suggests that de novo 
loss-of-function mutations are associated with reduced adaptive functioning in 
individuals without diagnosis of autism 20. Finally, using array data, a study has 
suggested that individuals with extremely high IQ have a reduced burden of rare protein-
altering variants compared to unselected population-based controls 21. 
 

We tested the hypothesis that a burden of URVs in HC genes is associated with YOE in 
14,133 individuals participating in four studies from three Northern European countries: 
Sweden, Estonia and Finland. Of these, 5,047 individuals have been diagnosed with 
schizophrenia. The remaining 9,086 individuals are selected to be free of schizophrenia 
or bipolar disorder, or from epidemiological studies, or from a biobank collection and are 
representative samples of the population (Supplementary Material). For each study we 
used the 1997 International Standard Classification of Education of the United Nations 
Educational, Scientific and Cultural Organization to define YOE. 
 
The average numbers of YOE were 13.1, 13.6, and 11.8 in Swedish, Estonian, and 
Finnish participants, respectively. These differences are partially explained by different 
age and sex distributions, as well as by different methods used to measure educational 
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attainment. For the Estonian and Finnish samples, we used self-report data; whereas for 
the Swedish sample, we obtained YOE from the national registries (Supplementary 
Table 1).  
We observed lower YOE among men (12.8 vs. 13.2 years, P-value=4.8x10-12) and older 
individuals (0.8 month less of education for each additional year of age, P-value < 1x10-

15) (Supplementary Table 2). 
 
We developed a new software package called Hail to very efficiently perform quality 
control, annotation and analysis of large-scale sequencing data (online Methods). 
Using whole exome sequencing (WES) data (N. individuals=11,431) and protein coding 
regions in high-coverage whole genome sequencing (WGS) data (N. individuals=2,702), 
we identified URVs in HC genes (see the Online Methods for a detailed definition). 
URVs are variants that are observed only once (singletons) across each study and not 
observed in 60,706 exomes sequenced in the Exome Aggregation Consortium (ExAC) 22. 
The primary goal of this approach is to maximize the expected deleteriousness of the 
variants included (due to purifying selection). Within URVs we defined variants that 
were: (1) disruptive, putative loss-of-function variants including premature stop codons, 
essential splice site mutations and frameshift indels; (2) damaging, missense variants 
classified as damaging by seven different in silico prediction algorithms and (3) negative 
control, synonymous variants not predicted to change the encoded protein. We observed 
one or more of such mutations in 25%, 24%, 78% of individuals, respectively 
(Supplementary Table 3). 
 
For each study, we fit a generalized linear regression model controlling for year of birth, 
sex, first 10 ancestry principal components, and schizophrenia status (Online Methods) 
to test for association of YOE with the number of disruptive or damaging URVs in HC 
genes (Fig. 1) and meta-analyzed the results across studies. Principal components of 
genetic data showed that individuals within each study were of similar ancestry 
(Supplementary Fig. 1). 
 
On average, we observed a 3.1 months reduction in YOE for each disruptive mutation (P-
value=3.3x10-8), and similar effect for damaging mutations (2.9 months less YOE, P-
value=1.3x10-6). Furthermore, each additional disruptive mutation on average reduced the 
chance of going to college by 14% (odds ratio=0.86, P-value=0.0017). These results were 
consistent when using a mixed linear model approach to correct for population 
stratification in the Finnish and Estonian samples with WGS data (2.4 months less YOE; 
P-value= 0.014, N=2,702). 
 
The negative association between URVs and YOE remained consistent when we 
examined the control cohort and schizophrenia case cohort separately (Supplementary 
Fig. 2). Furthermore, the effect remained consistent when excluding individuals 
diagnosed with a neurodevelopmental disorder (i.e. schizophrenia, bipolar disorder, 
autism, mental retardation and Asperger's syndrome), as identified via linkage with the 
Swedish national inpatient registry (Supplementary Fig. 3). We did not observe any 
significant association when we restricted our analysis to synonymous variants in HC 
genes (P-value=0.62) or disruptive mutations in unconstrained genes (P-value=0.73). 
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We used gene-expression data to determine whether restricting to genes enriched for 
brain expression concentrated our URVs burden signal. Specifically, we used the 
Genotype-Tissue Expression consortium data 23 to identify the 20% top brain-expressed 
HC genes. The intersection between HC and brain-expressed genes (N. genes=683 and 
313 for disruptive and damaging URVs, respectively) more than doubled the impact on 
YOE (6.5 less months of YOE per each additional disruptive variant; P-value=3.4x10-5; 
Fig. 2). The association was not significant when considering non brain-enriched HC 
genes or all brain-enriched genes (P-value > 0.05). We further examined a subset of 
genes for which basal gene-expression was at least two fold higher in the brain compared 
to other tissues and observed similar results (6.3 less months of YOE; P-value=1x10-4; 
Supplementary Fig. 4) 
 
To place disruptive and damaging URVs into context, we also examined the impact of 
previously reported genetic influences on YOE, including a polygenic score from 
common variants 16, runs of homozygosity 6,7 and a burden of rare pathogenic copy 
number variants (CNVs) 8,9. We sought to establish if these different forms of genetic 
variation act independently on YOE. For this purpose we defined four scores: (1) a 
polygenic score including all the independent single nucleotide polymorphisms (SNPs) 
with P-value < 1 (as this threshold has been shown to maximize variance explained in 
YOE) in a large GWAS consortia of YOE 16 (2) the summed runs of homozygosity (3) 
disruptive and damaging URVs in HC genes and (4) self-curated list of pathogenic CNVs 
from the literature (Supplementary Table 4). The polygenic score was only calculated in 
the Swedish samples (N=10,644), since the other three studies were included in the 
original GWAS of YOE. 
 
To assess the relative contribution of each genetic variation class to YOE, we fit the four 
normalized scores in the same regression model. All four scores were independently 
associated with YOE (Fig. 3). The polygenic score showed the strongest association in 
standard deviations from the mean, explaining the largest proportion of the variability in 
YOE (2.9% vs 0.4% for the ultra-rare variants, 0.2% for runs of homozygosity and 0.1% 
for pathogenic CNVs).  
We further evaluated whether the association between the polygenic score and YOE 
changes in individuals with and without disruptive or damaging URVs or CNVs. We 
found that the polygenic score was more strongly associated with YOE in individuals 
without disruptive or damaging URVs or CNVs (8.2 vs. 6.2 more months of YOE for 1 
standard deviation increase in the polygenic score; P-value for interaction=0.007, 
Supplementary Figure 5).  
 
Apart from genome-wide burden, we sought to identify individual genes driving the 
observed association between disruptive URVs and YOE. Using a gene-based burden 
test24 implemented in SKAT 25, and using an exome-wide significance threshold of 1x10-

6, we didn’t identify any statistically significantly associated gene (Supplementary Fig 
6).  
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In this study we focused on YOE, a phenotype that is relatively easy to collect in large 
samples and which has a strong genetic correlation with intelligence and cognitive 
function 17,26. We integrated WGS, WES and array data on more than 14,000 individuals 
and described the impact of URVs disrupting HC genes on YOE. This class of variants 
have been previously associated with autism3 and schizophrenia4, but the impact on 
cognition in the general population has not been described before. Here, for the first time, 
we show that disruptive and damaging URVs in HC genes are likely to affect cognition 
among individuals not diagnosed with neurodevelopmental disorders. Similar to the 
analyses of schizophrenia (Genovese et al, submitted) and autism, the majority of the 
signal lies in genes highly expressed in brain. This observation does not exclude the 
existence of causal mutations outside this gene class, but suggests that strong acting 
mutations are heavily concentrated within these genes. 
 
Furthermore, we show that disruptive and damaging URVs in HC genes, common 
variants associated with YOE, runs of homozygosity, and CNVs implicated in monogenic 
syndromes or neurodevelopmental disorders, all act on cognitive function or personality 
traits ultimately reflected in the educational attainment of our study participants. This 
effect was not simply additive. We identified a modest, but significant interaction 
between the polygenic score and the presence of URVs or CNVs. Whether this 
observation is driven by the interplay of partially overlapping pathways between common 
and rare variants or by genotype-phenotype heterogeneity (e.g. common and rare variants 
impacting different subsets of individuals) will be a matter of future investigation. 
 
Although stronger effect sizes were observed for CNVs and disruptive and damaging 
URVs, the polygenic score from common variants still explains the largest proportion of 
the YOE variability. This is not surprising, given that common variants are expected to 
have the largest contribution to heritable variation in most complex traits 27,28. 
 
The prioritization approaches used to select variants contributing to the score from 
common variants and the score from rare variants are different. The former uses estimates 
of the association with YOE and the proportion of variance explained by the score is 
likely to improve once the sample size used to originate these estimates increases. The 
latter uses in-silico prediction of the variants’ functional effect coupled with population 
genetics expectations built on the mutation rate. As with the common variant score, we 
expect that this URV score will continue to improve in predictive validity of YOE as the 
characterization of which genes and genomic regions are associated with YOE further 
clarifies. For example, larger exome aggregation efforts would enable the calculation of 
exon-specific constraint scores or increases in exome sequencing on cohorts with YOE 
would further resolve which genes are relevant.  
 
Our study could not detect disruptive or damaging mutations in a given gene as being 
unequivocally associated with YOE; however, as sample sizes increase, specific genes 
will emerge. Nevertheless, our proof-of-concept work shows that a wide range of genetic 
variation from ultra-rare disruptive mutations to CNVs and common variants influence 
cognitive function in the population. 
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Figure legends  
 
Figure 1: Forest plot for association between number of disruptive, damaging, and 
synonymous URVs in HC genes and YOE. The size of the squares is proportional to the 
size of the study.  
 
Figure 2: Association between numbers of disruptive, damaging and synonymous 
mutations for different gene sets. Meta-analysis results. 
 
Figure 3: Association between each of the normalized scores (polygenic, runs of 
homozygosity, URVs and pathogenic CNVs) and YOE. The results presented are from 
meta-analysis of Swedish WES, Estonian WGS and Finnish WGS studies, except for the 
polygenic score, which is calculated only in the Swedish WES study. Notice that we plot 
1-polygenic score to obtain a negative association with YOE. 
 

URLs. Swedish WES data are available through dbGAP at 
http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000473 
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Online Methods 
 
Phenotype definition 
We matched the original educational categories with the International Standard 
Classification of Education (ISCED), as described in Supplementary Table 1. 
Thereafter we used the equivalent of United States years of schooling to obtain the YOE. 
Going to college was defined as having an ISCED category > 4. 
To remove potential bias introduced by uncompleted education, we excluded all the 
individuals younger than 30 years at the time of sample collection.  
 
Sequencing procedures 
Estonian WGS and Finnish WGS samples have been sequenced at Broad Institute on 
Illumina HiSeq X Ten machines run to 20x and 30x mean coverage (150bp paired reads), 
respectively. Estonian samples followed a PCR-free sample preparation. Swedish-WES 
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and Finnish-WES samples were sequenced using either the Agilent SureSelect Human 
All Exon Kit or the Agilent SureSelect Human All Exon v.2 Kit. Sequencing was 
performed at Broad institute on Illumina GAII, Illumina HiSeq2000 or Illumina HiSeq X 
Ten. Mean target coverage was 90x.  
 
All samples have been aligned against the GRCh37 human genome reference and BAM 
processing was carried out using BWA Picard. Genotype calling was done using GATK 
Haplotype Caller and was performed at Broad Institute for all studies. 
 
Hail software 
To overcome the growing computational challenge of learning from large genomic 
datasets, we utilized Hail, an open-source software framework for scalably and flexibly 
analyzing such data (https://github.com/broadinstitute/hail). Hail, under active 
development, includes support for data import/export, quality control, analysis of 
population structure, and methods for performing both common and rare variant 
association. Hail is written in Scala (a Java virtual machine language) and builds on 
open-source software for scalable distributed computing including Hadoop 
(http://hadoop.apache.org/) and Spark (http://spark.apache.org/). Hail achieves near-
perfect scalability for many tasks and can run on thousands of nodes. Hail automates 
fault-tolerant distribution of data and compute, greatly simplifying distributed pipeline 
execution compared to traditional HPC job schedulers like LSF and Grid Engine. 
Pipelines written in Hail's high-level language typical require orders-of-magnitude fewer 
lines of code than comparable pipelines written in general purpose languages. 
 
Samples and variants QC  
Quality control was performed independently for each study using Hail. We excluded 
individuals with high proportion of chimeric reads (>5%), high contamination (>5%) or 
an excessive number of singletons variants not observed in ExAC (> 100 for WES and > 
20,000 for WGS). We included only unrelated individuals (IBD proportion < 0.2) and 
those for whom the sex predicted from genetic data matched the self-reported gender.  
We kept only ‘PASS’ variants, as determined by The Genome Analysis Toolkit 29 
Variant Quality Score Recalibration (VQSR) filter, are set to missing variants with GQ < 
20 and allele balance > 0.8 or < 0.2. We further excluded variants with call rate < 0.8. In 
WGS data, we excluded low complexity regions as defined by Li 30. In the burden test 
analysis we excluded variants with both Hardy-Weinberg equilibrium test P-value < 
1x10-6 and negative inbreeding coefficient (expected heterozygosity less than observed 
heterozygosity).  
 
Annotation and URVs scores definition 
Annotation was performed using SnpEff 4.2 (build 2015-12-05) 31 using Ensemble gene 
models from database GRCh37.75. We further annotated variants with SnpSift 4.2 (build 
2015-12-05) 32 using annotations from database dbNSFP 2.9 33. In Supplementary Table 
3 we have provided a detailed description of the criteria used for selecting variants in 
each score. The set of HC genes was defined separately for disruptive and damaging 
variants. For disruptive and synonymous mutations we defined HC genes those having a 
probability of being loss_of_function intolerant (pLI) > 0.9 (N genes=3,488). For 
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missense damaging mutation we used a missense z-score > 3.09 (N genes=1,614) 5. Both 
measures have been previously described 5 and available online at 
ftp://ftp.broadinstitute.org/pub/ExAC_release/release0.3/functional_gene_constraint. We 
used a version derived from The Exome Aggregation Consortium without cases of 
psychiatric disorders.  
  
Principal component analysis and mixed models 
We used a subset of high confidence SNPs to calculate principal components. We 
selected variants with minor allele frequency larger than 5%, call rate > 90%, Hardy-
Weinberg equilibrium test P-value > 1x10-6 and we pruned for variants in linkage 
disequilibrium using plink with command line ‘--indep 50 5 2’. 
 
We used a similar approach to filter variants used to generate the genetic relationship 
matrix (GRM). We then fit a liner mixed model including the GRM as random effect and 
age, sex, year of birth, (year of birth – 1950)2, (year of birth – 1950)3, the number of 
singletons synonymous variants not in ExAC and the number of URVs in HC genes as 
fixed effects. 
 
Association between URVs and educational attainment 
We fit a linear regression model where the dependent variable was YOE and the 
independent predictors were: age, sex, year of birth, (year of birth – 1950)2, (year of birth 
– 1950)3, the 10 first principal components, the number of singletons synonymous 
variants not in ExAC, schizophrenia status (only in studies including schizophrenic 
patients) and the URV score (count of disruptive, damaging or synonymous URVs). We 
adjust for the number of all singleton synonymous variants to correct for potential 
technical artifacts.  
 
Brain-enrichment and brain-expression analysis 
Using the Genotype-Tissue Expression consortia (GTEx) data 23, we ranked gene-
expression levels (in RPKM) in brain tissues and defined the top 20% HC genes as 
“brain-expressed” (N. genes=683 and 313 for disruptive and damaging, respectively). 
Conversely, we defined “non brain expressed” the bottom 20% of the HC genes (N. 
genes=683 and 313 for disruptive and damaging, respectively). 
We also compute estimated fold-change in the brain as follows. Suppose samples 1, 2, … 
, Nb are brain samples and samples (Nb+1), (Nb+2), … , N are the samples from other 
tissues. Denote with xij the expression of gene j and sample i, in reads per kilobase of 
transcript per million (RPKM). We compute fold-change (FC): 
 
 

 
We label the genes j, such that  as “brain-enriched genes” and  as “non-brain-enriched 
genes”. The number of brain-enriched HC genes was 447 and 287 for disruptive and 
damaging mutations, respectively. The number of non brain-enriched HC genes was 
2,225 and 935 for disruptive and damaging mutations, respectively. 
 
Polygenic score, CNVs and runs homozygosity 

FCj =

1
Nb

xij
i=1

Nb

∑

1
N

xkj
k=1

N

∑
=

mean(x j | brain)

mean(xk )
FCj > 2FC j < 0.5
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The polygenic score for YOE was obtained from array data in the Swedish WES study 
(quality control for the array data have been previously described 34) and directly from 
WGS data in the Finnish-WGS and Estonian-WGS studies. We included all the 
independent markers with P-value < 1 in largest GWAS of educational attainment 16 and 
obtained the polygenic score as weighted sum of risk alleles using the --score command 
in Plink 35. 
CNVs for the Swedish WES study were called as part of a separate project 36 using a 
composite pipeline comprising the CNV callers PennCNV, iPattern, Birdsuite and C-
Score organized into component pipelines. We considered only rare CNVs by filtering 
out all CNVs that present at  ≥ 1% allele frequency. CNVs < 20kb or having fewer than 
10 probes were also excluded. We used the plink --cnv-intersect function with a value of 
0.5 to determine the overlap between detected CNVs and the list of pathogenic CNVs 
reported in Supplementary Table 4. 
 
CNVs in Finnish WGS and Estonian WGS were genotyped according to the methods 
described in 37 and implemented in Genome STRiP 2.0. Briefly, read depth information 
was collected from WGS data, excluding regions of the genome that are not uniquely 
alignable or have low sequence complexity, and adjusted for GC content bias. Each CNV 
reported in Supplementary Table 4 was directly genotyped using Genome STRiP's 
genotyping module, which examines the read depth across all samples and fits a 
constrained Gaussian mixture model with components representing each possible diploid 
copy number and sample-specific variance terms to account for differences in sequencing 
depth. 
 
The summed runs of homozygosity were determined using the same pipeline described in 

7. Specifically we used plink with command line ‘--homozyg --homozyg-window-snp 35 
--homozyg-snp 35 --homozyg-kb 1500 --homozyg-gap 1000 --homozyg-density 250 --
homozyg-window-missing 5 --homozyg-window-het 1’. 
 
Gene-based burden test 
We first extracted from each dataset variants falling within UCSC known genes and 
merged the four datasets using plink. If a variant was not present in all cohorts, we forced 
it as homozygous reference across the remaining cohorts (using “--fill-missing-a2” option 
in plink). We then computed principal components for the combined dataset after further 
merging with 1000 Genomes project samples as described in (Genovese et al, jointly 
submitted). To test the hypotheses that disruptive URVs in individual genes were 
associated with YOE and college status, we performed a burden test using the SKAT 
software 38

 using default parameters (method=davies, impute.method=bestguess, 
r.corr=1.0), adjusting for age, sex, year of birth, (year of birth – 1950)2, (year of birth – 
1950)3, the first 10 principal components, schizophrenia status and number of URVs 
identified in coding regions. We used a python wrapper to run the SKAT software 
(available at https://github.com/freeseek/gwaspipeline). 
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Figure 1 
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Figure 2 
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