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 19 

Abstract  20 

Perceptual decisions depend on coordinated patterns of neural activity cascading across 21 

the brain, running in time from stimulus to response and in space from primary sensory 22 

regions to the frontal lobe. Measuring this cascade and how it flows through the brain is 23 

key to developing an understanding of how our brains function. However observing, let 24 

alone understanding, this cascade, particularly in humans, is challenging. Here, we report 25 

a significant methodological advance allowing this observation in humans at 26 

unprecedented spatiotemporal resolution. We use a novel encoding model to link 27 

simultaneously measured electroencephalography (EEG) and functional magnetic 28 

resonance imaging (fMRI) signals to infer the high-resolution spatiotemporal brain 29 

dynamics taking place during rapid visual perceptual decision-making. After 30 

demonstrating the methodology replicates past results, we show that it uncovers a 31 

previously unobserved sequential reactivation of a substantial fraction of the pre-response 32 

network whose magnitude correlates with decision confidence. Our results illustrate that 33 

a temporally coordinated and spatially distributed neural cascade underlies perceptual 34 

decision-making, with our methodology illuminating complex brain dynamics that would 35 

otherwise be unobservable using conventional fMRI or EEG separately. We expect this 36 

methodology to be useful in observing brain dynamics in a wide range of other mental 37 

processes.  38 

 39 

 40 
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Introduction 41 

The detailed spatiotemporal brain dynamics that underlie human decision-making are 42 

difficult to measure. Invasive techniques with sufficient temporal or spatial resolution, 43 

such as depth electrodes or cortical arrays used with epilepsy patients, are only feasible in 44 

rare cases and, in addition, do not capture activity from the entire brain.  In comparison, 45 

non-invasive measures such as electroencephalography (EEG) and 46 

magnetoencephalography (MEG) suffer from poor spatial resolution, and blood oxygen 47 

level dependent functional MRI (BOLD fMRI) from poor temporal resolution and 48 

indirect coupling to neural activity (e.g. fMRI)1.  In spite of this, EEG, MEG, and fMRI 49 

have been used individually to study perceptual decision-making in the human brain, 50 

although, by themselves they provide a limited view of the underlying brain dynamics 2.   51 

Recently, methods enabling simultaneous acquisition of EEG and fMRI 52 

(EEG/fMRI) have led to varied analytic approaches aimed at integrating the 53 

electrophysiological and hemodynamic information contained in the joint measurements.  54 

Such approaches offer the potential to provide a comprehensive picture of global brain 55 

dynamics, and will likely offer new insights into how the brain makes rapid decisions 3,4. 56 

Some of the techniques that have been proposed for combining multi-modal brain signals 57 

have separately analyzed the EEG and fMRI data and subsequently juxtaposed the 58 

results5,6, while others attempt for a truly integrated approach in order to fully exploit the 59 

joint information contained in the data sets 7. In general, simultaneous EEG/fMRI and the 60 

associated analysis techniques have been used to identify neuronal sources of EEG trial-61 

to-trial variability, linking them to cognitive processes such as attention 8 and inhibition 9.  62 
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Many previous studies have used known EEG markers (P1, N2, N170, P300, α-63 

rhythm) or data driven approaches such as Independent Component Analysis (ICA) to 64 

combine EEG with fMRI data 4,8-16. One promising approach has been to use supervised 65 

machine-learning techniques (e.g. classifiers) to find relevant projections of the EEG 66 

data, where single-trial variability of the electrophysiological response along these 67 

projections can be correlated in the fMRI space. Goldman, et al. 17,  Walz, et al. 18 and 68 

Fouragnan, et al. 19 have demonstrated this technique on visual and auditory paradigms. 69 

This methodology has been shown to localize cortical regions that modulate with the task 70 

while preserving the temporal progression of task-relevant neural activity. 71 

Here we combine a classification methodology with an encoding model that 72 

relates the trial-to-trial variability in the EEG to what is observed in the simultaneously 73 

acquired fMRI. Encoding models have become an important machine learning tool for 74 

analysis of neuroimaging data, specifically fMRI 20. In most cases encoding models have 75 

been used to learn brain activity that encodes or represents features of a stimulus, such as 76 

visual orientation energy in an image/video 21-23, acoustic spectral power in sound/speech 77 

24, or visual imagery during sleep 25. In the method presented here, we employ an 78 

encoding model to directly relate the simultaneously collected data from the two 79 

neuroimaging modalities—instead of features derived from the stimulus, they are derived 80 

from EEG component trial-to-trial variability. Specifically, we learn an encoding in the 81 

spatially precise fMRI data from the temporally precise trial-to-trial variability of EEG 82 

activity predictive of the level of stimulus evidence. This approach leverages the fact that 83 

the level of stimulus evidence, as measured via EEG, persists across the trial 26,27, and 84 
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that by discriminating this information in a time-localized way, one can temporally “tag” 85 

specific cortical areas by their trial-to-trial variability.  86 

Using our framework for learning the BOLD signal encoding of task-relevant and 87 

temporally precise EEG component variability, we unravel the cascade of activity from 88 

the representation of sensory input to decision formation, decision action, and decision 89 

monitoring.  A particularly novel finding is that after the activation of decision 90 

monitoring regions (i.e. ACC), we see a reactivation of pre-response networks, where the 91 

strength of this reactivation correlates with measures of decision confidence. This 92 

specific reactivation, as well as the entire spatio-temporal cascade, is completely 93 

unobservable using conventional fMRI-only or EEG-only methodologies. 94 

 95 

Results 96 

In this study, we used a visual alternative forced choice (AFC) task where 97 

subjects were shown brief presentations of pictures corrupted by noise and instructed to 98 

rapidly discriminate between object categories. On any given trial, the level of noise, or 99 

stimulus evidence, was varied randomly. The task itself, as well as similar visual 100 

decision-making tasks 28, is believed to engage an extensive set of cortical areas in a 101 

coordinated fashion, including regions that are responsible for sensory encoding, 102 

evidence accumulation, decision formation, and response and decision monitoring.  103 

However, the dynamic interplay of these regions has never been observed in humans. 104 

Here we exploit previously reported findings regarding the sensitivity of the EEG and 105 

fMRI signals to the level of stimulus evidence during a perceptual decision-making task.  106 

Specifically, previous work has shown differential neural responses to high vs. low 107 
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stimulus evidence in trial averaged EEG event-related potentials (ERPs), where this 108 

difference persists across the trial26,27. Similarly, fMRI studies have shown that for 109 

perceptual decision making tasks a number of spatially-distributed cortical areas 110 

significantly correlate with the level of stimulus evidence29,30. We leverage the fact that 111 

the level of stimulus evidence is expressed temporally in the EEG and spatially in the 112 

fMRI to “tag” voxels with a time. Specifically, using a classification methodology (i.e. 113 

discriminative components) we identify temporally precise expressions of the level of 114 

stimulus evidence that then can be spatially localized through an encoding model of the 115 

fMRI BOLD data.  116 

We collected simultaneous EEG/fMRI data from 21 subjects as they performed a 117 

3-AFC task discriminating between faces, cars, and houses (Fig. 1A). Subjects were 118 

instructed to discriminate the object class after briefly viewing an image corrupted by 119 

varying levels of noise (Fig. 1B) and respond by pressing one of three buttons.  Overall, 120 

subjects responded with accuracies of 94 ± 5% and 58 ± 12% and with response times of 121 

634 ± 82ms and 770 ± 99ms for high and low stimulus evidence trials, respectively (Fig. 122 

1 C, D). Subject accuracies and response times across stimulus types (faces, cars, houses) 123 

for low stimulus evidence trials were similar; however, for high stimulus-evidence trials 124 

subject accuracies were higher and response times were shorter for faces than for cars or 125 

houses (See Supplemental Information Fig. S1).  126 

 127 

GLM based analysis of BOLD fMRI shows superposition of cortical areas correlated 128 

with stimulus evidence  129 
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A traditional general linear model (GLM) analysis of the fMRI (see Methods) 130 

revealed differences in BOLD activation between the two stimulus evidence conditions 131 

(Fig. 1F, SI Table 1). Brain regions showing greater BOLD activation to high vs. low 132 

stimulus evidence trials included areas associated with early visual perception and the 133 

default mode network26, such as fusiform gyrus, parahippocampal gyrus, lateral occipital 134 

cortex, superior frontal gyrus, and posterior cingulate cortex. Regions with greater BOLD 135 

activation to low vs. high stimulus evidence trials included areas in the executive control 136 

and difficulty networks, such as dorsal lateral prefrontal cortex, anterior cingulate cortex, 137 

intraparietal sulcus, and insula. Overall, these GLM results for the BOLD data 138 

reproduced previous results in the literature where similar stimuli and paradigms were 139 

used 29(Fig. S2A).  140 

 141 

Extracting temporally localized EEG signatures of stimulus evidence variability 142 

The traditional fMRI results showed multiple brain regions correlated with the 143 

difficulty, or stimulus evidence, of the trial; however, this traditional approach does not 144 

enable one to infer the relative timing of these fMRI activations. To infer timing at a 145 

scale of tens of milliseconds, we used linear classification31,32 of the EEG to extract trial-146 

to-trial variability related to stimulus evidence at specified post-stimulus time points.   147 

The basic idea is illustrated in Figure 2, where hypothetical neural activity is 148 

shown for two different regions that are constituents of the perceptual decision-making 149 

network.  Averaging over trials would clearly reveal a difference in the mean neural 150 

activity between high and low stimulus evidence. However, the two regions contribute 151 

differentially to the network, with one region encoding the stimulus evidence (Region 1) 152 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 5, 2016. ; https://doi.org/10.1101/050856doi: bioRxiv preprint 

https://doi.org/10.1101/050856
http://creativecommons.org/licenses/by-nc-nd/4.0/


8	

and the other integrating it over time (Region 2); both are sensitive to the level of 153 

stimulus evidence, though varyingly so at different times in the trial.  By taking 154 

advantage of this sensitivity to the stimulus evidence, we can learn EEG discriminant 155 

components, i.e. spatial filters, that best classify trials at different time windows given the 156 

neural data.  We used the trial-to-trial variability along these component directions as 157 

features to uniquely tag fMRI voxels with the specific time window of the component. 158 

This tagging is done by building an encoding model of the features, given the BOLD 159 

signal, details of which are described in the following section.  160 

We constructed EEG components by learning linear classifiers at 25ms steps, 161 

starting from stimulus onset to 50ms past the average low stimulus evidence response 162 

time. We chose a time step of 25ms due to an empirical analysis showing a half width of 163 

50ms in the temporal autocorrelation of the EEG data, though in principle this 164 

methodology allows for temporal resolution up to the EEG sampling rate. Each classifier 165 

was associated with a set of discriminant values, which can be represented as a vector yτ; 166 

each element of the vector is the distance of a given trial to the discrimination boundary 167 

for the classifier at time step τ (Fig. 2). This distance can be interpreted as a measure of 168 

the EEG classifier's estimate of the level of stimulus evidence for that trial17,18,31-34.   169 

Results of the EEG analysis show discriminating information for stimulus 170 

evidence spanning the trial (see Fig. 4A), beginning roughly 175ms post-stimulus to past 171 

the average response times.  A dip occurs around 300ms, indicating stimulus evidence is 172 

less discriminative at this time and serves to demarcate early and late cognitive processes. 173 

The early process corresponded to the time of the D220 ERP component, which has been 174 

shown to modulate with the degree of task difficulty, whether via stimulus noise or task 175 
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demands35. The later and more prolonged component is likely related to more complex 176 

cognitive and motor preparatory processes that differ between high and low stimulus 177 

evidence trials.  Importantly, although the early and late EEG components were both 178 

discriminative, we found their trial-to-trial variability to be uncorrelated (Figs. 4B and 179 

S3E), indicating that while the discriminating information (level of stimulus evidence) 180 

persists across the trial, it couples differently to processes across time.  181 

 182 

An encoding model links fMRI activations with temporally distinct EEG trial-to-trial 183 

variability 184 

After extracting the trial-to-trial variability from the EEG discriminant 185 

components, feature vectors yτ are collected across time steps, τ, along with a response 186 

time vector to construct a matrix Y. This matrix is the temporally precise representation 187 

of the trial-to-trial EEG variability that reflects high vs. low stimulus evidence. An 188 

encoding model is then fit, namely a model in which weights are estimated for each time-189 

localized EEG window, to predict the trial-to-trial variability of the BOLD response for 190 

each fMRI voxel. Figure 3 shows a schematic of the encoding model framework we used 191 

and compares it to a traditional encoding model constructed by using features derived 192 

directly from the stimulus. Rather than constructing a map that directly relates each voxel 193 

to a type of stimulus feature, such as whether it encodes edges, motion or some semantic 194 

concept such as “animal” 21-23,36-38, our model is used to construct maps that label voxels 195 

by the time window of the variability they encode – i.e. it “tags” each voxel with a 196 

“time”, or set of times, when it encodes the variability in the given EEG discriminant 197 

component(s). 198 
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It is important to note that this approach does not attempt to improve source 199 

localization typically done for EEG/MEG studies. Our approach instead provides the 200 

temporal resolution of EEG (ms) and the spatial resolution of fMRI (mm) without the 201 

need to solve the ill-posed inverse solution and make the many associated assumptions 202 

required for reliable source-localization results39.  203 

An example of the quality of the encoding model is shown in Fig. 4C (see also 204 

Fig. S2B) where significant voxels from the encoding model are shown in yellow. Fig. 205 

4D shows the trial-to-trial variability of BOLD signal at a specific voxel, comparing it to 206 

the variability predicted by the encoding model. Additional validity of the encoding 207 

model and single subject results are presented in the Supplemental Information (Fig. 208 

S4A/B). The encoding model was also evaluated as a decoding model (see Methods) with 209 

the BOLD activity used to predict the trial-to-trial variability in the EEG for unseen 210 

data—data on which the encoding model was not trained. Fig. 4E shows these results, 211 

expressed as the correlation between the measured and predicted EEG trial-to-trial 212 

variability across the 800ms epoch. The shape of the curve is highly consistent with that 213 

observed for the EEG data itself (comparing Fig. 4A and Fig. 4E) (additional analysis of 214 

the fidelity of the model is provided in the SI, Fig. S3). 215 

Given the encoding model, we unwrap the BOLD activity across time by 216 

identifying weights that are consistent across subjects in space and time (see Methods). 217 

Fig. 5 shows these results for a group level analysis. We observe a progression of activity 218 

(see Movie S1), at 25ms resolution, which proceeds simultaneously down the dorsal and 219 

ventral streams of visual processing for the first 250ms. After that the cascade becomes 220 

more complex with activation in the IPS at 425ms and 750ms (see Fig. 6A), reactivation 221 
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of the SPL at 675ms and activation of ACC at 600ms along with other regions found in 222 

the traditional fMRI results. (see Fig. S5, Tables S2 and an additional analysis using 223 

dynamic causal modeling 40). The reactivation pattern is particularly significant since it 224 

would not be observable via a traditional fMRI general linear model (GLM) analysis, 225 

which integrates over time and thus superimposes these activities. For example, the 226 

changing sign of the middle temporal gyrus (MT) encoding weights in Fig. 6A 227 

manifested as no activity in the MT for the traditional fMRI GLM analysis—the change 228 

in sign canceled the effective correlation in the GLM (see Fig. 1F and Fig. S1). The areas 229 

of activation we find are consistent with previous reports in the literature for human 230 

subjects29,30 ; however, here we are able to link activations across time in a way that was 231 

previously only possible with invasive techniques.  232 

 233 

Cortical reactivation correlates with decision confidence 234 

Further analysis of the spatiotemporal dynamics (see Fig. 6B), shows that the 235 

reactivation pattern in the network occurs after decision-monitoring areas become 236 

engaged (i.e. after ACC).  Spontaneous reactivation, or “replay”, of neural activity in the 237 

human brain has been observed and believed to be important for memory consolidation41 238 

and more recently has been hypothesized to play a role in perceptual decision-making by 239 

enabling the formation of decision confidence42. To test the hypothesis that the 240 

reactivation activity we see is in fact related to decision confidence, we used a 241 

hierarchical drift diffusion model (DDM)43,44 to fit the behavioral data for high and low 242 

stimulus evidence conditions (see Methods).  Specifically, our model enables us to define 243 

a proxy for decision confidence based on the DDM fits to the behavior45.  Correlating the 244 
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reactivation level to this confidence proxy shows a strong and significant monotonic 245 

relationship between confidence and the level of reactivation (high stimulus evidence-246 

slope=0.037±0.008, t=4.657, p=3.2x10-6; low stimulus evidence-slope=0.062±0.008, 247 

t=7.754, p=8.88x10-15), with low stimulus evidence trials reactivated more strongly than 248 

high stimulus evidence trials (difference in slopes=-0.025±0.011, t=2.189, p=0.029)(see 249 

Fig. 7 and Fig. S7). Additionally, reactivation amplitude correlates with behavioral 250 

accuracy (Fig. S8) (high stimulus evidence, slope=0.0115±0.0047, t=2.41, p=0.016; low 251 

stimulus evidence, slope=0.0104±0.0047, t=2.19, p=0.028).  252 

 253 

 254 

Discussion 255 

We have shown that linking simultaneously acquired EEG and fMRI using a novel 256 

encoding model enables imaging of high-resolution spatiotemporal dynamics that 257 

underlie rapid perceptual decision-making — decisions made in less than a second. This 258 

method, which resolves whole-brain activity with EEG-like temporal resolution, was 259 

shown to uncover reactivation processes that would otherwise be masked by the temporal 260 

averaging and slow dynamics of traditional fMRI. More broadly, our results 261 

demonstrated a general non-invasive data-driven methodology for measuring high 262 

spatiotemporal latent neural processes underlying human behavior.   263 

 This approach temporally “tags” the BOLD fMRI data by encoding the trial-to-264 

trial variability of the temporally precise task relevant components in simultaneously 265 

acquired EEG. In effect, the EEG discrimination indexes the activity of interest at high 266 

temporal resolution, defining a feature space, and the trial-to-trial variability of these 267 
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discriminant components becomes the specific feature values used in the encoding model. 268 

For the case presented here, this variability was used to tease apart the cascade of activity 269 

modulated by stimulus evidence across the trial, and this allowed us to observe, as never 270 

seen before, the spatiotemporal brain dynamics underlying a perceptual decision.  271 

 Previous studies have sought to generalize the timing diagram of a perceptual 272 

decision through multi-unit recordings in non-human primates46,47 or more broadly in 273 

humans29,30 using fMRI. Our results confirmed the general temporal ordering of 274 

activations found previously (early visual processing, decision formation, decision 275 

monitoring). However, there was a possibility the temporal order we observed using our 276 

technique was an artifact of our methodology. To assess this possibility, we performed 277 

additional analyses using dynamic causal modeling (DCM) to further validate the 278 

temporal activation sequence (see Fig. S6) and show, using a different set of assumptions 279 

and method, that the temporal sequence we observe is highly likely under a set of 280 

alternative sequences. We found that the most likely model is the one consistent with the 281 

time course inferred from our encoding model. The DCM results provide additional 282 

evidence that the temporal profile uncovered by the encoding model is a likely temporal 283 

decomposition of the superimposed fMRI activations. 284 

The approach we present requires that EEG and BOLD data be collected 285 

simultaneously and not in separate sessions in order to exploit the correlations in trial-to-286 

trial variability to “tag” the BOLD data. To show the importance of collecting the data 287 

simultaneously, we ran a control analysis that randomly permuted the trials within their 288 

stimulus evidence class, thus effectively simulating an EEG and BOLD dataset collected 289 

separately. By destroying the link between the EEG and BOLD trials, the encoding 290 
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model failed to find any consistent activation (Fig. S9/10), indicating the necessity of 291 

simultaneous acquisition.  292 

Alternative techniques for fusing simultaneous EEG-fMRI typically do not 293 

exploit EEG across the trial and instead only analyze specific ERP components or time 294 

windows of interest 4,8,10,12-19,48,49. Results from these techniques identify regions that 295 

modulate with the specific components, but yield limited information about the timing of 296 

other task-relevant regions seen in traditional fMRI contrasts. The methodology 297 

developed here extends the work of 17 and Walz, et al. 18  by combining their EEG data 298 

reduction techniques with techniques developed for encoding stimulus features onto 299 

BOLD data20-23,36,38 , ultimately providing a framework for labeling voxels in task-300 

relevant fMRI contrasts with their timing information (Fig. S2C/E/F).  301 

Clearly, other EEG components that are task-related can be isolated and could 302 

potentially be used to “tag” BOLD data. The sliding window linear classification used 303 

here acts to reduce the EEG data along a dimension that categorizes stimulus evidence; 304 

however, this could be replaced by any other data reduction technique, such as 305 

temporally windowed ICA or PCA. Variability along these component directions could 306 

then be used in the encoding model to link with the simultaneously collected BOLD data.  307 

The choice of data reduction technique (i.e. feature space) would be highly dependent on 308 

the nature of the inferences. 309 

Our methodology enabled us to observe reactivation of the pre-response network, 310 

spatiotemporal dynamics that would be masked using traditional fMRI analysis. 311 

Interestingly, the reactivation terminated in a network that included the MFG, insula, and 312 

IPS, similar areas previously reported to be reactivated in metacognitive judgments of 313 
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confidence in perceptual decisions42,50,51. Gherman and Philiastides 52 observed this 314 

network using a multivariate single-trial EEG approach, coupled with a distributed source 315 

reconstruction technique. Fleming, et al. 42 and Heereman, et al. 53 used BOLD fMRI to 316 

show that areas in this network negatively correlate with subjective certainty ratings.  317 

Unique to our findings, we saw this reactivation on a single-trial basis after engagement 318 

of the ACC, which has been shown to be involved in decision monitoring52,54, and also 319 

observed the dynamic sequence leading up to this network reactivation. Our results 320 

showed that reactivation/replay occurred on a trial-to-trial basis after a decision, was 321 

stronger for difficult decisions, and correlated with decision confidence.  322 

The encoding model we developed was able to decompose traditional fMRI 323 

activation maps into their temporal order with significant voxel overlap between the 324 

encoding model results and traditional results. The encoding model was also able to show 325 

regions that were activated at multiple time points throughout the decision, indicating 326 

temporal dynamics that were hidden previously. The regions of activation we found are 327 

consistent with earlier findings; however, the work here provided the precise temporal 328 

decomposition of these previously reported, temporally superimposed regions of 329 

activation. In general, we have shown that simultaneously acquired EEG/fMRI data 330 

enables a novel non-invasive approach to visualize high resolution spatial and temporal 331 

processing in the human brain with the potential for providing a more comprehensive 332 

understanding of the neural basis of complex behaviors. 333 

 334 

Methods 335 

Subjects 336 
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21 subjects (12 male, 9 female; age range 20-35 years) participated in the study. The 337 

Columbia University Institutional Review Board (IRB) approved all experiments and 338 

informed consent was obtained before the start of each experiment. All subjects had 339 

normal or corrected-to-normal vision. 340 

Stimuli 341 

 We used a set of 30 face (from the Max Planck Institute face database), 30 car, and 30 342 

house (obtained from the web) gray scale images (image size 512x512 pixels, 8 343 

bits/pixel). They were all equated for spatial frequency, luminance, and contrast. The 344 

stimulus evidence (high or low) of the task was modulated by systematically modifying 345 

the salience of the image via randomization of image phase (35% (low) and 50% (high) 346 

coherence)55. 347 

Experimental task 348 

 The stimuli were used in an event-related three-alternative forced choice (3-AFC) visual 349 

discrimination task. On each trial, an image -- either a face, car, or house -- was presented 350 

and subjects were instructed to respond with the category of the image by pressing one of 351 

three buttons on an MR compatible button controller. Stimuli were presented to subjects 352 

using E-Prime software (Psychology Software Tools) and a VisuaStim Digital System 353 

(Resonance Technology) with 600x800 goggle display. Over four runs, a total of 720 354 

trials were acquired (240 of each category with 120 high coherence trials) with a random 355 

inter-trial interval (ITI) sampled uniformly between 2-2.5s. Each run lasted for 560 356 

seconds.  357 

fMRI acquisition 358 
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Blood-oxygenation-level-dependent (BOLD) T2*-weighted functional images were 359 

acquired on a 3T Philips Achieva scanner using a gradient-echo echo-planar imaging 360 

(EPI) pulse sequence with the following parameters: Repetition time (TR) 2000ms, echo 361 

time (TE) 25ms, flip angle 90°, slice thickness 3mm, interslice gap 1mm, in-plane 362 

resolution 3x3mm, 27 slices per volume, 280 volumes. For all of the participants, we also 363 

acquired a standard T1-weighted structural MRI scan (SPGR, resolution 1x1x1mm).  364 

EEG acquisition 365 

We simultaneously and continuously recorded EEG using a custom-built MR-compatible 366 

EEG system56,57, with differential amplifiers and bipolar EEG montage. The caps were 367 

configured with 36 Ag/AgCl electrodes including left and right mastoids, arranged as 43 368 

bipolar pairs. Bipolar pair leads were twisted to minimize inductive pickup from the 369 

magnetic gradient pulses and subject head motion in the main magnetic field. This 370 

oversampling of electrodes ensured data from a complete set of electrodes even in 371 

instances when discarding noisy channels was necessary. To enable removal of gradient 372 

artifacts in our offline preprocessing, we synchronized the EEG with the scanner clock by 373 

sending a transistor– transistor logic pulse at the start of each image volume. All 374 

electrode impedances were kept below 20 kΩ, which included 10 kΩ resistors built into 375 

each electrode for subject safety. 376 

Functional image pre-processing. 377 

Image preprocessing was performed with FSL (www.fmrib.ox.ac.uk/fsl/). Functional 378 

images were spatially realigned to the middle image in the times series (motion-379 

correction), corrected for slice time acquisition, spatially smoothed with a 6mm FWHM 380 

Gaussian kernel, and high pass filtered (100s). The structural images were segmented 381 
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(into grey matter, white matter and cerebro-spinal fluid), bias corrected and spatially 382 

normalized to the MNI template using ‘FAST’ 58. Functional images were registered into 383 

MNI space using boundary based registration (BBR)59. 384 

 385 

EEG data preprocessing. 386 

 We performed standard EEG preprocessing offline using MATLAB (MathWorks) with 387 

the following digital Butterworth filters: 0.5 Hz high pass to remove direct current drift, 388 

60 and 120 Hz notches to remove electrical line noise and its first harmonic, and 100 Hz 389 

low pass to remove high-frequency artifacts not associated with neurophysiological 390 

processes. These filters were applied together in the form of a zero-phase finite impulse 391 

response filter to avoid distortions caused by phase delays. We extracted stimulus-locked 392 

1500 ms epochs (-500:1000) and subtracted the mean baseline –  -200 ms to stimulus 393 

onset – from the rest of the epoch. Through visual inspection, we discarded trials 394 

containing motion and/or blink artifacts, evidenced by sudden high-amplitude 395 

deflections. 396 

Sliding window logistic regression. 397 

 We used linear discrimination to associate each trial with the level of stimulus evidence 398 

represented in the EEG. We considered high stimulus and low stimulus evidence trials 399 

irrespective of behavioral accuracy. Regularized logistic regression was used as a 400 

classifier to find an optimal projection for discriminating between high and low stimulus 401 

evidence trials over a specific temporal window. A sweep of the regularization 402 

parameters was implemented using FaSTGLZ60. This approach has been previously 403 
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applied to identify neural components underlying rapid perceptual decision-making 404 

17,18,31,33,34,45,49,61.  405 

Specifically, we defined 50ms duration training windows centered at time, τ, 406 

ranging from stimulus onset to 800ms following the stimulus in 25ms steps. We used 407 

logistic regression to estimate a spatial weighting, on N EEG channels, vector (wτ which 408 

is N x 1) that maximally discriminated between EEG sensor array signals E for each class 409 

(e.g., high vs. low stimulus evidence trials):  410 

      (1) 411 

In eqn. 1, Eτ is an N x p vector (N sensors per time window τ by p trials). For our 412 

experiments, the center of the window (τ) was varied across the trial in 25ms time-steps. 413 

We quantified the performance of the linear discriminator by the area under the receiver 414 

operator characteristic (ROC) curve, referred to here as AUC, using a leave-one-out 415 

procedure. We used the ROC AUC metric to characterize the discrimination performance 416 

as a function of sliding our training window (i.e., varying τ). For each subject, this 417 

produced a matrix Y where the rows corresponded to trials and the columns to training 418 

windows, i.e. Y is the combination of the calculated yτ for each time window. 419 

Traditional fMRI analysis. 420 

 We first ran a traditional general linear model (GLM) fMRI analysis in FSL, using 421 

event-related (high and low stimulus evidence) and response time (RT) variability 422 

regressors. The event-related regressors comprised boxcar functions with unit amplitude 423 

and onset and offset matching that of the stimuli. RT variability was modeled using the z-424 

scored RT as the amplitude of the boxcars with onset and offset matching that of the 425 

stimulus, and these were orthogonalized to the event-related regressors. 426 

yτ = wτ
TEτ
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Orthogonalization was implemented using the Gram-Schmidt procedure62 to decorrelate 427 

the RT regressor from all other event-related regressors. All regressors were convolved 428 

with the canonical hemodynamic response function (HRF), and temporal derivatives 429 

were included as confounds of no interest. An event-related high versus low stimulus 430 

evidence contrast was also constructed. A fixed-effects model was used to model 431 

activations across runs, and a mixed-effects approach was used to compute the contrasts 432 

across subjects. Activated regions that passed a family-wise error (FWE) 63 corrected 433 

cluster threshold of p < 0.01 at a z-score threshold of 2.57 were considered significant. 434 

fMRI deconvolution. 435 

 Associating fMRI data to each trial is challenging for two main reasons: (a) the temporal 436 

dynamics of the hemodynamic response function (HRF) evolve over a longer time-scale 437 

than the mean ITI of the event-related design, resulting in overlapping responses between 438 

adjacent trials; and (b) the ITI was random for each trial so that the fMRI data was not 439 

acquired at a common lag relative to stimulus onset. To overcome these issues, we 440 

employed the `least squares - separate' (LS-S) deconvolution64 method to estimate the 441 

voxel activations for each trial. For every trial, the time series of each voxel was 442 

regressed against a “signal" regressor and a “noise" regressor. The “signal" regressor was 443 

the modeled HRF response due to that trial (a delta function centered at stimulus onset 444 

convolved with a canonical HRF), while the “noise" regressor was the modeled HRF 445 

response due to all other trials (superimposed linearly). The resulting regression 446 

coefficients of the “signal" regressor represented the estimated voxel activations due to 447 

that trial. These voxel activations were then organized into a single brain volume per trial. 448 

We extracted 58697 voxels from a common gray matter group mask at 3 mm3 spatial 449 
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resolution that excluded white matter and CSF and assembled the resulting voxel 450 

activations into rows of the data matrix F. 451 

Single subject encoding model. 452 

 All encoding model analyses were performed in MATLAB. To relate the EEG data with 453 

the fMRI, we devised a subject-wise spatio-temporal decomposition using singular value 454 

decomposition (SVD). Let F be an m x p matrix denoting m-voxels and p-trials that is the 455 

deconvolved high and low stimulus evidence fMRI data for each trial. Let Y be the r x p 456 

matrix denoting r-windows (33 EEGτ windows and response time (RT)) and p-trials. For 457 

each trial, the first row of Y is the response times while subsequent rows are the y values 458 

at each window time. Let W be an m x r matrix that is the weights on Y that solve for F. 459 

      (2) 460 

 Normally, if we solve for W using the least squares approach, we get: 461 

W=(FYT)(YYT)-1      (3) 462 

However, each time point might be highly correlated with its neighbors, which reduces 463 

the stability of the least-squares regression. We can use SVD to reduce the feature space 464 

and improve our estimation of W (the weights on each window). Then for a leave-one-465 

out cross validation, we hold out a single trial from the EEG Y matrix and the 466 

corresponding volume from the fMRI data F and train on the remaining trials. We 467 

repeated this for all trials.  468 

YTrain=UΣVT      (4) 469 

Where U is an r x r orthonormal matrix, Σ is a r x p diagonal matrix and V is a p x p 470 

orthonormal matrix. After SVD on YTrain, we reduced the feature dimensions on YTrain  to 471 

retain 75% of the variance by only keeping v components. To do this, we selected the 472 

F =WY
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first v rows of Σ and zeroed the other rows. We now have  as our reduced spaced 473 

matrix. If we now recalculate our least squares solution where we have replaced Y by its 474 

reduced form  in equation 3: 475 

      (5) 476 

So for each leave one out fold, we first calculated the SVD of the training set. We then 477 

calculated the number of components to keep and then solve for , the weight estimate 478 

per fold. To test, we then applied the weights to the left-out test data YTest to estimate the 479 

encoded fMRI data  for the encoding part: 480 

      (6) 481 

While for the decoding model using the left out test data FTest: 482 

       (7) 483 

 Here,   is not invertible, and so we used the pseudo-inverse. 484 

At this point, we have , a m x p matrix with m voxels by p trials. For each voxel 485 

j, we calculated the correlation of  with Fj, resulting in the matrices RfMRI (Pearson 486 

Correlation Map) and PfMRI  (p-value map of the Pearson Correlation) that are m x 1. The 487 

PfMRI was then converted to a z-score map. We constructed the m x r weight matrix W by 488 

taking the average of all the trained Ŵ matrices. To test which time windows were 489 

significant, we also calculated, , the correlation between Ŷτ and Yτ. 490 

Group level spatio-temporal analysis. 491 

For group level statistics, we first analyzed the vectors across all subjects. The  492 

vectors were converted into their p-values, and for each time window (τ), used to 493 

Σ

U ΣVT

Ŵ = (FTrainV ΣT )(ΣΣT )−1UT

Ŵ

F̂

F̂ = ŴY Test

Ŷ = Ŵ TFTest (Ŵ TŴ )+

Ŵ TŴ

F̂

F̂j

Rτ
EEG

Rτ
EEG Rτ

EEG

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 5, 2016. ; https://doi.org/10.1101/050856doi: bioRxiv preprint 

https://doi.org/10.1101/050856
http://creativecommons.org/licenses/by-nc-nd/4.0/


23	

compute combined Stouffer p-values 65. These group level results were then false 494 

discovery rate corrected (FDR) for multiple comparisons66. To identify group level 495 

voxels where our model predictions were significant, each subject's p-value maps for the 496 

leave-one-out correlation were converted into their respective z-values, and voxel-wise 497 

significance was calculated using threshold-free cluster enhancement (TFCE) using a 498 

non-parametric randomization procedure implemented in FSL67. Voxels were considered 499 

significant if they passed a conservative false discovery rate threshold of p<0.01.  500 

These significant voxels were then used as a mask to temporally localize 501 

activations by computing the voxels that were consistent in their direction ( positive (high 502 

stimulus evidence) or negative (low stimulus evidence) ) and timing (τ window). To this 503 

end, we implemented a spatio-temporal TFCE (stTFCE) in both space (neighboring 504 

voxels) and time (neighboring time windows - response time window not included) and 505 

computed significance through a randomization procedure. 33000 permutations (1000 506 

permutations per window) were run by randomly altering the sign of each subject and the 507 

temporal ordering of the windows, as we were testing whether the weights were 508 

consistent in sign, voxel space, and temporal window. P-values were calculated by 509 

comparing the true stTFCE value with the distribution of permuted values. Again, voxels 510 

were considered significant if they passed FDR correction at p<0.05 (high stimulus 511 

evidence: FDR-Corrected p<0.0019, low stimulus evidence: FDR-Corrected p<0.00036). 512 

Note, that now our number of multiple comparisons was the number of voxels in the 513 

FDR-mask (20256) times the number of time windows (33). We analyzed the response 514 

time separately with a standard TFCE randomization procedure implemented in FSL 515 

(Fig. S2D). 516 
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Dynamic causal modeling. 517 

To validate the encoding model timing, we implemented single-state linear 518 

dynamic causal modeling (DCM) using DCM10 in SPM8 68, and applied this to the 519 

BOLD data to test the hypothesis that the temporal sequence of BOLD activations we 520 

found in our EEG-fMRI encoding method was most likely, relative to other possible 521 

sequences of these same activations, given only the BOLD data. We used the results of 522 

the encoding model to select seven regions of interest that spanned the entire trial. For the 523 

first region (labeled 175 in our figures), we computed the union of activations during the 524 

175ms and 200ms windows. Activations of the 225ms (225) and 250ms combined with 525 

275ms (250) windows become the second and third regions. We computed the union of 526 

activations during the 325ms and 350ms windows to create the fourth (325). For the fifth 527 

region (400), we computed the union of the activations during the 400ms-450ms 528 

windows. For the sixth region (650), we computed the union of the activations during the 529 

650ms and 675ms windows. Finally, the union of the activations during the 725-800ms 530 

windows was computed to create the seventh region (725). We removed any overlapping 531 

voxels between any of the regions and then extracted time series from individual 532 

subjects’ preprocessed functional data in MNI space by estimation of the first principal 533 

component within each region.  534 

We constructed 11 models (Figure S6) to investigate the directed connectivity of 535 

these regions and validate the temporal ordering found by the encoding model. Each 536 

model was feed-forward with first node in each model as the input region. The first 537 

model was the temporal ordering of the regions inferred from our EEG-fMRI encoding 538 

model analysis. For five of the models, we randomized the temporal ordering of the early 539 
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regions (175, 225, 250) and the late regions (325, 400, 650, 725) separately. For the other 540 

five models, we fully randomized the temporal ordering of all the regions.  541 

We used fixed-effects Bayesian model selection (BMS) to compare these 11 542 

models both on a single-subject level and at the group level. BMS balances model fit and 543 

complexity, thereby selecting the most generalizable model. It estimates the relative 544 

model evidence and provides a distribution of posterior probabilities for all of the models 545 

considered. We also compared families of similar models69; the model space was divided 546 

into two families (early/late or fully randomized).  547 

 548 

Drift Diffusion Model (DDM) and Confidence Proxy. 549 

The DDM models decision-making in two-choice tasks. Here, we treated the decision 550 

(correct vs. incorrect) as our two choices. A drift-process accumulates evidence over time 551 

until it crosses one of two boundaries (upper or lower) and initiates the corresponding 552 

response68. The speed with which the accumulation process approaches one of the two 553 

boundaries (a) is called drift-rate (v) and represents the relative evidence for or against a 554 

particular response. Recently, Philiastides, et al. 45 showed that for conditions in which 555 

the boundary (a) does not change, a proxy for decision confidence for each trial (i) can be 556 

computed by  . 557 

 We used Hierarchical Bayesian estimation of the Drift-Diffusion Model in Python 558 

(HDDM) to calculate the drift rate (v), decision boundary (a) and non-decision time Tnon 559 

for each subject 43. Specifically, we modeled high and low stimulus evidence response 560 

time data separately. This was to ensure our confidence proxies were consistent within 561 

trial types. We included the response time and whether the subject got the trial correct. 562 

1/ RTi −Tnon
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HDDM obtains a sequence of samples (i.e., a Markov chain Monte Carlo; MCMC) from 563 

the posterior of each parameter in the DDM. In our model, we generated 5000 samples 564 

from the posteriors, the first 1000 (burn-in) samples were discarded, and the remaining 565 

samples were thinned by 5%.  566 

 After modeling the DDM process, each trial's (i) confidence proxy (CP) for each 567 

subject (j) was computed by  and then z-scored across trials where 568 

Tnon,j was varied for high or low stimulus evidence trials, separately. Therefore, CP was a 569 

measure of relative trial confidence within difficulty levels.  570 

 571 

Confidence Proxy and Decision Replay. 572 

 Trial to trial reactivation amplitude was defined as  for each 573 

subject (j) and trial (i), where WpostACC is the weight matrix from the encoding model 574 

thresholded by voxels that were significant in the group results from the 675-800ms 575 

windows. The mean of the  across time becomes a measure of  “decision replay” 576 

strength for that trial (more negative y's indicate more replay activation, more positive y's 577 

indicate less replay activation).   was quintiled for high and low stimulus evidence 578 

and the average confidence proxy was calculated within each quintile (Fig. 7). A linear 579 

mixed effects model70 was used to test if the slope of confidences across quintile 580 

grouping, , were significantly different from 0 while including stimulus evidence as a 581 

condition. Separate similar analyses with non-replay windows (175-250ms) and testing 582 

for behavioral accuracy were also performed (Fig. S7-8). 583 

 584 

CPi, j =1/ RTi −Tnon, j

Yj,i
R =Wj,PostACC

T Fj,i

Yj,i
R

Yj,i
R

Yj,i
R
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 819 
Figure Captions 820 

Figure 1. Paradigm and traditional EEG and fMRI results 821 

A, 3-AFC task where stimulus evidence for each category is modulated by varying the 822 

phase coherence in the images. B, Example of face images with high stimulus evidence 823 

(high  coherence: 50%) and low stimulus evidence (low coherence: 35%). C, Behavioral 824 

performance shows significant differences, as a function of stimulus evidence, in 825 

accuracy (p< 10-12, paired t-test) and D, response time (p< 10-8, paired t-test) across the 826 

group. E, Grand average stimulus-locked event related potentials (ERPs) for electrode Pz 827 

show that differences in stimulus evidence span the time from stimulus to response. F, 828 

fMRI analysis showing cortical areas correlated with high (red) vs. low (blue) stimulus 829 

evidence across the entire trial (Z> 2.57 with  p< 0.01 Family-Wise Error cluster 830 

corrected). 831 

Figure 2. Temporally precise trial-to-trial EEG variability tags brain regions during 832 

decision-making 833 

A, Illustration of how trial-to-trial variability of neural activity in spatially distinct 834 

cortical areas can be used to tag brain regions. In this hypothetical example Region 1 is 835 

involved in sensory encoding while Region 2 integrates sensory evidence to form a 836 

decision (in NHP literature, Region 1 might represent MT, while Region 2 LIP). Neural 837 

activity across the trial is shown for two stimulus types, one with high sensory evidence 838 

for the choice (red curves) and one with low sensory evidence (blue curves).    Also 839 

shown are two temporal windows (τ1 and τ2) that represent different times during the 840 

trial. B, Linear classifiers are trained to separate trials based on the two levels of stimulus 841 

evidence at specific temporal windows.  Shown are classifiers (parameterized by weight 842 
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vectors w1 and w2) for two temporal windows (τ1 and τ2) with respect to two EEG sensors 843 

(for simplicity only two dimensions of the full N=43 sensor space are shown.  Though 844 

the component hyperplane is optimal for the full 43 dimensions, when projected to a line 845 

in two dimensions for illustration, it may appear that the separation is sub-optimal). This 846 

yields an EEG discriminant component for each temporal window. Variability along 847 

these components serves as a unique feature vector for temporally tagging the BOLD 848 

data—e.g. variability along an EEG component trained with data from τ1 tags BOLD 849 

voxels with time τ1 while variability along an EEG component trained with data from τ2 850 

tags them with τ2.    851 

 852 

Figure 3. Encoding models based on stimulus derived features versus EEG 853 

variability 854 

 A, A traditional encoding model used in fMRI analysis extracts a set of features from the 855 

stimulus that are potentially representative of low level structure and high level semantics 856 

(green box).  Weights are learned to model how these stimulus features are encoded in 857 

the fMRI BOLD signal.  The resulting encoding model is used to make predictions based 858 

on how well different voxels predict the features from novel stimuli.  For example, one 859 

can create maps of the brain that are labeled based on the stimulus features that each 860 

voxel represents. B, The same encoding model concept applied to EEG variability (EEG 861 

encoding model).  Instead of features being estimated from the stimulus, they are derived 862 

from EEG component trial-to-trial variability (as in Fig 2a) with each temporal window 863 

representing a different feature (green box).   Weights are learned so as to model how the 864 

EEG variability at a given time window is encoded in the fMRI BOLD.  As in the 865 
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traditional encoding model, predictions on novel stimuli can be done to test the model 866 

and results can be used to construct a map —in this case a map of the brain that shows 867 

the timing of the EEG component variability that each voxels represents. 868 

 869 

Figure 4. EEG discrimination and encoding model results 870 

 A, Group average area under the receiver operating curve (AUC) for the sliding window 871 

logistic regression EEG discrimination analysis, comparing high versus low stimulus 872 

evidence trials; standard error across subjects is shown with shading. B, A single subject's 873 

discriminating y-value distributions for high (red) and low stimulus evidence (blue) trials 874 

for two EEG time points (225ms and 600ms). C, Significant fMRI voxels resulting from 875 

the group level analysis for the encoding model (p< 0.01 TFCE-False Discovery Rate 876 

(FDR) corrected). Activity is seen encompassing early visual processing regions, 877 

attention networks, and the task positive network. D, A random subset of 100 (50 for 878 

each stimulus evidence condition) from 700 total trials of the actual (circle) and predicted 879 

(diamond) BOLD responses from the encoding model, for an example subject at a single 880 

voxel (MNI X/Y/Zmm: -27/-54/-15, r=0.206, p<10-6). High and low stimulus evidence 881 

trials are shown separately for clarity. E, The averaged correlation of the predicted y-882 

values with the true y-values across the trial duration. Blue shading represents the 883 

standard error across subjects. Grey shading indicates significant time windows (p< 0.05 884 

FDR-corrected). 885 

 886 

Figure 5. Group-level encoding model weights results show neural activation cascade  887 
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 Subset of thresholded (p< 0.05 FDR-Corrected, k=10) group level statistical parametric 888 

maps created by stTFCE randomization procedure on the encoding model weight 889 

matrices show the progression of spatial activity across the trial. Activation can be seen 890 

early in the trial in the occipital regions while progressing more anteriorly later in the trial 891 

to executive control areas. Activations in red indicate areas where high stimulus evidence 892 

trials had larger activations than low stimulus evidence trials, and blue the inverse.  893 

 894 

Figure 6. Spatial-temporal event-related activations show coordinated reactivations. 895 

A, Union across time windows of significant voxels for high (red) and low (blue) 896 

stimulus evidence activations. Voxels with activations for both high and low conditions 897 

(at different time windows) are displayed in green. Also shown are the encoding model 898 

weights for specific voxels, including fusiform gyrus (FG-R):36/-51/-18, (FG-L):-42/-899 

42/-18, superior lateral occipital cortex (sLOC):24/-63/36, superior parietal lobule 900 

(SPL):27/-51/54, anterior cingulate cortex (ACC):-6/24/30, intraparietal sulcus (IPS):-901 

30/-60/39, middle frontal gyrus (MFG):-45/27/30, middle temporal gyrus (MT):-57/-902 

60/0. Asterisks indicate significant windows. B, Sequence of significant weights showing 903 

a “replay” of the network after the onset of ACC activation (shaded ellipse). “Replay” is 904 

faster than the initial stimulus driven sequence and strongest for low evidence trials.  905 

 906 

Figure 7. Trial-to-trial reactivation correlates with decision confidence.  907 

 Trial-to-trial reactivation amplitude ( – see Methods) of “replay” correlates with 908 

confidence proxy for both high and low stimulus evidence conditions. Error bars 909 

represent standard errors across subjects.   910 
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