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Abstract

In this work, we study the effects of demographic structure on
evolutionary dynamics, when selection acts on reproduction, survival,
or both. In contrast with the previously discovered pattern that the
fixation probability of a neutral mutant decreases while population be-
comes younger, we show that a mutant with constant selective advan-
tage may have a maximum or a minimum of the fixation probability in
populations with an intermediate fraction of young individuals. This
highlights the importance of life history and demographic structure in
studying evolutionary dynamics. We also illustrate the fundamental
differences between selection on reproduction and on survival when age
structure is present. In addition, we evaluate the relative importance
of size and structure of the population in determining the fixation
probability of the mutant. Our work lays the foundation for studying
also density and frequency dependent effects in populations when de-
mographic structures cannot be neglected.
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1 Introduction

The emergence and subsequent dynamics of mutants play important roles in
determining the trajectory of evolution (Crow and Kimura, 1970). The fate
of a mutant is strongly influenced by its relative fitness. The fitness of a
mutant, or rather, the fitness landscape of the whole population is not static,
but ever changing under influences of many factors, including density and
frequency dependent effects (Nowak and Sigmund, 2004).

Depicting the trajectories of survival and reproduction along the lifespan,
life history is well known to have great influence on evolution in general
(Vindenes et al., 2009; Charlesworth, 2001; Nunney, 1991, 1996). It has been
recognised being of fundamental importance in determining the trajectory of
evolutionary dynamics (Wahl and DeHaan, 2004; Lambert, 2006; Hubbarde
et al., 2007; Parsons and Quince, 2007a,b; Wahl and Dai Zhu, 2015). In
addition, life history also modulates the actual effect that an increase in
survival or reproduction has on the growth rate of the population, and it
accounts for part of the effective size of the population (Charlesworth, 1994;
Engen et al., 2005). For the frequency dependent case, it has been shown
that life stage dependent strategic interactions can promote diversity and
push strategic behaviours away from the equilibrium determined by game
theoretic interactions alone (Li et al., 2015a). However, it is not obvious if
certain demographic structures of the population would help or hinder the
spread and fixation of a beneficial mutant. This is the problem of our interest
in the present work, which may be the first step towards further studies of
stochastic effects of the frequency dependent case.

Pioneer work on this topic includes seminal papers by Felsenstein (1971)
and Emigh (1979a,b). One major goal of this previous work was to un-
derstand the evolutionary dynamics in populations with overlapping genera-
tions. Overlapping generation models are biologically more relevant to many
species of interest including humans, but they are inevitably associated with
increased complexity, due to age or stage structure of the population. To fully
capture the demographic architecture of age-structured populations, not only
the absolute number and frequency of the mutant matter, but also its distri-
bution across different age classes. One important concept to note here is the
reproductive value. The reproductive value of an individual was originally
defined by Fisher (1930) as “to what extent will persons of this age (or sex),
on average, contribute to the ancestry of future generations". It does so by
accounting for the remaining number of offspring an individual will produce,
discounted by the increase of population size at the time of reproduction of
this offspring. Fisher discovered that in a linear model, the total reproduc-
tive value in a population grows exactly exponentially regardless of whether
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the population age distribution has reached the demographically stable state.
Thereafter, in population genetics models of age structured populations, it is
of great importance to look at the dynamics of reproductive value weighted
frequencies of alleles (Crow, 1979; Engen et al., 2005, 2009b; Vindenes et al.,
2009). This reduces the typically highly dimensional problem of dealing
with alleles flowing through multiple age classes to the lesser dimensional
problem of tracking allele frequencies with the appropriate weights and es-
sentially neglecting explicit age structure. More comprehensive explanations
and examples are presented in the book of Caswell (2001). In populations
with demographic structure, individuals of different age have different re-
productive value. The evolutionary fate can be summarized by the fixation
probability of a mutant, i.e. the probability that it ultimately takes over the
entire population. This fixation probability can vary greatly in populations
with overlapping generations with the fraction of young individuals in the
population.

The pioneer researchers have made great analytical contributions under
various simplifying assumptions, such as large population size (Felsenstein,
1971; Emigh, 1979a,b), neutral (Emigh, 1979a) or weak selection (Emigh,
1979b), and extreme demographic structures (Felsenstein, 1971; Emigh, 1979a,b),
etc. Under these conditions, good approximations can be made to facilitate
mathematical analysis. For example, if the sizes of subsequent age classes
differ greatly or are very close to each other, it is cogent to approximate
hypergeometric sampling with binomial sampling in order to capture the
process of individuals entering the next age class. With impressive ana-
lytical dexterity, the pioneers successfully summarized the vast complexity
into a few easily understood parameters, such as the “effective population
number" (Felsenstein, 1971) and the “average reproductive value" (Emigh,
1979a). They used these parameters to describe and analyze evolutionary
dynamics.

Despite the beautiful analysis, the original work did not achieve the
impact it deserves in our opinion. This is probably due to the inevitable
mathematical complexity or somewhat limited applications, dictated by the
stringent underlying assumptions. With the help of current increased com-
putational power, we show that there are still surprises left uncovered in the
original model first described in Felsenstein (1971), even in the simplest case
with only two age classes in a well-mixed population under constant selection.

In the following, we first describe the model and recall the fixation prob-
ability of a neutral mutant in the first age class as a benchmark. Then we
analyze the pattern of fixation probability of a beneficial mutant in pop-
ulations with diverse demographic structures. We explore one by one the
evolutionary consequences of selecting on reproduction, survival and both.


https://doi.org/10.1101/050914
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/050914; this version posted April 28, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Further, we evaluate the relative importance of population structure and size
in determining the fixation probability of a beneficial mutant. Finally, we
show that unexpected non-monotonic patterns of fixation probability hold in
populations with multiple age classes.

2 Model description

2.1 Life history and population updating rules

First, we describe the life history features of individuals and population up-
dating rules, as illustrated in Figure 1. In contrast to the original model of
Felsenstein (1971), we start from analyzing the simple case of only two age
classes (and then go beyond it in section 7). In addition, we include differ-
ent targets of natural selection, such as selecting on reproduction, survival
or both. Consider a haploid population in which individuals can live up to
age two at maximum. The numbers of individuals in age-one (young) and
age-two (old) are constant, denoted as N; and Ny, respectively. In each time
step, all individuals produce large amounts of offspring, proportional to their
fitness. Among them, only N; survive and become the next generation of
young individuals. Similarly, only Ny of the young individuals at the pre-
vious time step survive to enter the old age class. All old individuals die
and are removed from the population. The recruitment of young individu-
als from the pool of new born offspring is treated as a process of sampling
with replacement (similar to the classic Wright-Fisher process), while the re-
cruitment of old individuals from young ones is treated as sampling without
replacement. The fitness of the mutant is assumed to be constant and greater
than the fitness of the wild type, which is normalized to one. Selection may
act on reproduction (fitter individuals have more offspring), survival (fitter
individuals have higher probability to survive to the next age class), or a
combination of both.

2.2 Fixation probability of a selectively neutral mutant

We denote the state of the population at time t as a tuple xlxgt), in which

21 is the number of mutants in the young age class, and x5 is the number
of mutants in the old age class. The transition probability from xlxg) to

t+1) .
xlxé ) is

() (t)
pleray) — 212t = B (mﬁ””;m,ml — >H (M W), ()
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Figure 1: Population updating rules. The number of individuals in the first
and second age classes are fixed (N7 and Ny). Individuals produce large num-
bers of offspring proportional to their fitness, if selection acts on reproduction.
Otherwise they all produce the same numbers of offspring. Offspring enters
the first age class following binomial sampling, assuming that the number
of offspring is much greater than N;. Entering of the second age class of
the age-one individuals follows hypergeometric sampling. If selection acts on
survival, fitter individuals have a higher probability to survive to the next
age class. Consequently, the sampling process becomes non-central hyperge-
ometric sampling. Compared to the original model described by Felsenstein
(1971), we use only two age classes for simplicity, while the original model
has an arbitrary number of age classes w (we discuss this case in section 7).
On the other hand, we explore the difference of selection on reproduction, se-
lection on survival, and selection on both. These different sources of selective
forces have not been considered in Felsenstein’s original model.

where xl(t) is the number of mutants in age class i at time ¢, B(k;n,q) =

(Z) ¢"(1 — ¢)" % denotes the probability of obtaining k¥ mutants in n draws
with replacement, and ¢ is the frequency of mutants in the population. We
use this binomial sampling to model the process of picking /N; individuals
from the offspring pool in order to form the new young age class. Sim-
ilarly, H(k; N, K,n) = ([k() (]Xb :f)/ (]Z ) denotes the probability of obtain-
ing k£ mutants in n draws without replacement, in which N is the total
number of individuals, and K is the current number of mutants. We use
this hypergeometric sampling for drawing N, young individuals that en-
ter the old age class in the next time step. There are (N + 1)(Ny + 1)

different states of the age-structured population, therefore the state tran-
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sition matrix P (with elements p[wlx;t) — wlxgtﬂ)]) has the dimension
(N1 +1)(Na + 1) x (N + 1)(Ny + 1). The fixation probability vector p =
(P00s POL; - - 5 PONs P105 P115 - -+ 5 PLN s« - 5 PN105 PNi1s - - - s PNy N, ) contains the fix-
ation probabilities of the mutant type from each of the (N + 1)(Ny + 1)
distinct population states.

The transition matrix P is stochastic and has unique eigenvalue 1. Due
to the absence of mutation, we have pgy = 0 and py,n, = 1. In practice, we
can thus remove the first row and first column of the transition matrix P to
form a new transition matrix P which corresponds to the fixation probability
vector p, which is p having the first element 0 removed. To calculate p, we
compute the eigenvector that corresponds to eigenvalue 1 of the transition

matrix P numerically, and then normalize it by setting py,n, to 1.

0.065
0.060"

0.055

fixation probability

0.050 )
05 06 07 08 09 1.0

fraction of young individuals

Figure 2: Fixation probability of a neutral mutant in a population of total size
20. Symbols are results from numerical calculation (based on the transition
matrix), the solid line is the known analytical solution (see Appendix A).
The dashed line marks the fixation probability when age structure is absent.
There are two age classes in this example, therefore the fraction of young
individuals ranges from 0.5 to 1. The neutral mutant has higher probability
to reach fixation in populations with more old individuals than in populations
with more young individuals. A Mathematica notebook file for generating
this figure can be found in the Supplementary Information.

As a benchmark for later comparisons, we show in Figure 2 the fixation
probability of a single neutral mutant arising from the young age class. We
can see that a neutral mutant is more likely to reach fixation in populations
with more old individuals than in populations with more young individuals.

A natural explanation of this pattern is the differentiated reproductive
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values in the population. In an age-structured population, the fixation prob-
ability of a neutral mutation equals the initial frequency of the mutant sub-
population weighted by reproductive values (Emigh, 1979a). The reproduc-
tive value of an individual of a given age expresses the contribution of this
individual to the future ancestry of the population. We can use a matrix
population projection model to compute the reproductive values of different
ages (Caswell, 2001). This model is a square matrix that describes the vital
rates (i.e. fertility and survival) of the population organized by demographic
class, see Eq. 2 for example.

P F, Fy ... F,, F,
SS 0 0 ... 0 0
0 S, 0 ... 0 0
0 0 Ss 0 0 (2)
0 0 0 ... S, ¢ 0

In the case of an age-structured population, the first row of the projection
matrix contains the fertilities of each age class. The fertility Fj at the top of
the k-th column gives the number of offspring born to an individual in age
class k£ which successfully enters the first age class at the next time step. The
subdiagonal of the matrix contains the age-specific survival probabilities. Sj
stands for the fraction of individuals in age class k that will enter age class
k + 1 at the next time step. All other matrix entries are zero. The matrix
population model can be right-multiplied by the population state vector.
The result of this multiplication is the projection of the population state
to the next time step. If this operation is iterated, the vector representing
the population state eventually becomes proportional to the leading right
eigenvector of the matrix population model. At this point, the population
is in a demographically stable state and its growth rate corresponds to the
leading eigenvalue of the matrix. With appropriate scaling, the leading left
eigenvector gives the reproductive value of each age class (Caswell, 2001).
As this model only involves matrix algebra, it is entirely deterministic. In
our case, the matrix population model is a 2 x 2 matrix, since we have only
two age classes. As we assume a constant size, the leading eigenvalue of this
matrix must be one.

To illustrate our approach, let us first consider the case of a neutral
mutant, in which mutant and wild type have the same fitness. Using the
description of the life history in our population given above, our matrix
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population model is written as:

Ny Ny

(NlNlNQ Nl—(i)-Ng) ‘ (3)

N1

The right eigenvector of this matrix corresponding to the eigenvalue of one

iser = (ﬁ, NIJYFQNQ )T, This vector is already scaled to give the stable age

distribution in the asymptotic population. The corresponding left eigenvec-
N1+

tor ey, = (TIM, 1) gives the reproductive values. With these two vectors,
we can now give reproductive value weights to the initial frequency of a neu-
tral mutant of young age in our population at demographic stability. The
mutant’s reproductive value thus equals to MN;INQ The reproductive value in
the total population is the population size N multiplied by the scalar prod-
uct ey, - er, which is the total reproductive value at stability in the unit size
population, N(er - eg) = Nj + 2N, (Caswell, 2001). Taking the ratio of
the initial mutant reproductive value to the total reproductive value in the
population, we obtain N%%, which corresponds to the fixation probabil-
ity of the mutant (Emigh, 1979a). Observing that N = N; + Ny is fixed,
the derivative of this last quantity with respect to Ny is —]\?év(é%—:%i;, which
is strictly negative. Therefore, the fixation probability of a neutral mutant
decreases as the fraction of young individuals increases.

Another way to understand this pattern is to calculate the age-structure
dependent fixation probability directly (Charlesworth, 1994). With the frac-
tion of young individuals in the population f = N;/N, the fixation proba-
bility of a single mutant in a population of size N is (N f(2 — f))”", which
is identical to our result above. A derivation of the fixation probability with
this approach can be found in Appendix A.

To set the basis for later comparisons, we have first focused on the fixation
probability of a neutral mutant in the first age class. In the following, we
focus on the population dynamics and fixation probability of a beneficial
mutant that has a constant selective advantage » > 1. This corresponds
to the traditional notation of r = 1 4+ s in the classic population genetics
literature. We explore one by one the effects of selection on reproduction, on

survival and on both.

3 Selection on reproduction

If selection only acts on reproduction, the mutant produces r times more
offspring compared to the wild type. The transition probability from state
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xlxét) to xlxgﬂ) is then

p[xlxgt) — 1T

(t) (t)
B <x§t+1);N1’ — (t)r(% + 552(3 (ﬂ) H (xgt—&-l);Nl’xgt)’]\&)
r(zy’ +xy’) + N1 — a7’ + No —
(4)

It seems difficult to find a closed form of the fixation probability without
making additional assumptions, such as approximating the noncentral hyper-
geometric distribution, which arises from biased sampling, with a binomial
distribution, which requires that N;,; is either very small or close to N;
(Emigh, 1979a,b). However, we can obtain some first insights from calculat-

(t+1)
2 ]

ing E[x&tﬂ) + xétﬂ)], i.e. the expected total number of mutants in the next
time step.

Bl 4 ) = Bl + Blaf ™
r(xgt) + xgt))Nl xgt)Ng (5)
EETYRCINNG TN
(r—1) (2" +25") + Ny + Ny 1

Although E[z{"™ + 20"™)] is not a proxy of the fixation probability per se,
it illustrates an important aspect of the fixation dynamics.

Given that the total size of the population is fixed, the state of the pop-
ulation is determined by the relative numbers of young and old individuals.
Replacing Ny by N — Nj, we observe a minimum of the expected number
of mutants in the next time step, where dE[xgtH) + 28V /dNy = 0. The
corresponding number of young individuals is

N0 LW
Ny = [ oV (14 = (6)
r(ry” + )

As the expected number of mutants in the next time step depends on the
number of young individuals in a non trivial way once we depart from neu-
trality, the fixation probability of the mutant could in principle also have an
extremum in populations with an intermediate fraction of young individuals.
A numerical consideration of fixation probabilities shows that the fixation
probability indeed has a minimum for an intermediate fraction of young in-
dividuals, as shown for a population of total size 20 in Figure 3. In Appendix
B we show that also a weak selection analysis recovers the U-shaped pattern
of fixation probability, although there are foreseeable disagreements on the
exact values, especially when the selective advantage of the mutant becomes
large.
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Figure 3: Constant selection on reproduction in populations with fixed total
size of 20. Symbols represent the fixation probability of a single young mutant
with fitness r. The solid line in panel (a) represents the fixation probability
in the neutral case when r = 1. There is always a minimum of the fixation
probability for intermediate fraction of young individuals. The fraction of
young individuals at the minimum decreases when r increases (panels (b)-
(d)). A Mathematica notebook file for generating this figure can be found in
the Supplementary Information.

4 Selection on survival

If selection only works on survival, the mutant type has the same fecundity as
the wild type, but is 7 times more likely to survive to age two. Because of the
selective advantage of the mutant, the survival step follows the Wallenius’
noncentral hypergeometric distribution instead of the standard hypergeo-
metric distribution (Fog, 2008b). The stochastic process can be illustrated
conveniently with a urn model. Think of a urn with black and white balls.
We take n balls one by one from the urn without replacement. Every time, a
black ball is r times more likely to be chosen compared to a white ball. The
Wallenius’ noncentral hypergeometric distribution tells us the probability of
obtaining x black balls by the end of the experiment. Similarly, in our case,
there are Ny mutants and wild-type individuals in the first age class. Among
them, Ny will be chosen to form the next age class. At each draw, a mutant is
r times more likely to be chosen than a wild type. The Wallenius’ noncentral
hypergeometri distribution tells us the probability of obtaining xo mutants
in the next time step.

10


https://doi.org/10.1101/050914
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/050914; this version posted April 28, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Therefore, the transition probability from state xlxgt) to xlxgﬂ) is

p[xla:gt) — xlxg+1)] =

(t) (t)

B (o, 3y, 8 g (70 Ny, N, ) ")
1 3y 4V1, N1+N2 2 y 4V, 5 4V2 )

in which H" is Wallenius’ noncentral hypergeometric distribution, for which
closed form implementations are numerically cumbersome (Fog, 2008a).

When the selective advantage of the mutant r is small, H" can be ap-
proximated by the corresponding standard hypergeometric distribution, and
thus the fixation probability of the mutant is similar to that of the neutral
case (Figure 4a). However, when r is large, we numerically observe a remark-
able increase of the fixation probability in populations with an intermediate
fraction of young individuals (Figure 4b-d).
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Figure 4: Constant selection on survival in populations with a total fixed
size of 20. Symbols represent the fixation probability of one single mutant
in the young age class with fitness r. The solid line in panel (a) represents
the fixation probability in the neutral case, when r = 1. When r is small,
the fixation probability decreases monotonically, resembling the neutral case.
But when r becomes larger (panels (b)-(d)), there is an intermediate maxi-
mum of fixation probability. The corresponding fraction of young individuals
increase when 7 increases. A Mathematica notebook file for generating this
figure can be found in the Supplementary Information.

Although we cannot calculate the exact fixation probability analytically
due to the complexity associated with the Wallenius’ noncentral hypergeo-
metric distribution, it is still possible to understand the pattern of having a
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maximum of fixation probability in populations with intermediate fraction of
young individuals intuitively. First, we consider the change in the expected
number of mutants in the young age class, as the fraction of young individ-
uals increase. We keep in mind that selection works on survival and there
is no selection on reproduction. Therefore, the expected number of young
mutants in the next time step is simply proportional to the global fraction
of mutants in the whole population. As N; increases by 1, the expected
number of mutants in the young age class in the next time step increases by
(xgt) + xét))/ N, which is between 0 and 1. This is irrespective of the value of
Nl-

Next, we consider the change in the expected number of mutants in the
old age class, as the fraction of young individuals increase. In the limit of
very large selective advantage r, basically all mutants in the young age class
will be selected to survive into the old age class, if there is enough space,
namely, N, is greater than the total number of mutants. Otherwise, among
all the mutants in the young age class, Ny of them will survive and enter
the old age class. Therefore, the expected number of mutants in the old age
class in the next time step is the minimum between the current number of
mutants in the young age class, and the total number of old individuals in
the population. In short, if » > 1, then :Bétﬂ) ~ min{xgt), N5}. When the
fraction of young individual is small, Ny < N — xgt), the expected number
of mutants in the old age class in the next time step does not change as Ny
increase by one, as each of these mutants will survive. But when the number
of young individual is large, Ny > N — xgt), the expected number of mutants
in the old age class is limited by N,. In this case, as /Ny increases by 1, N,
and thus asg must decrease by one due to the constant population size.

Taken together, the change in the expected total number of mutants in
one time step is the sum of the change in the expected number of mutants
in the young age class and the expected number of mutants in the old age
class. As N; increases by one, on the one hand, the expected number of
mutants in the young age class in the next step should increase between 0
and 1. On the other hand, the expected number of mutants in the old age
class does not change when N; is small, but decrease by 1 when N; becomes
large. Therefore, the expected total number of mutants in the next time step
should first increase and then decrease, as Ny increases. The corresponding
fixation probabilities are explored numerically in Fig. 4.
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5 Selection on both reproduction and survival

In the two previous sections, we have shown that if selection only acts on
survival, there is a minimum of the fixation probability when the number
of young individuals is intermediate. But if selection acts on survival and
when the selective advantage of the mutant is sufficiently large, there is a
maximum of the fixation probability when the number of young individuals

is intermediate.

If selection works on both reproduction and survival, we assume that a
beneficial mutant may not only produce more offspring, but also is more
likely to survive to the next age. This double effects could result from the
fact that the mutant allocates extra payoff to both reproduction and survival.
Consider a mutant that has increased access to food resources compared to
the wild type. As a result, she may choose to (or be genetically programmed
to) consume the extra food immediately, thereby allocating most of the bene-
fits to reproduction and relatively little to improving her chance of surviving
to the next round of reproduction. On the other hand, she may choose to
save most of the food for provision, thereby has little improvement in the
current round of reproduction, but substantially improvement in the chance
of survival. There exists a well established body of allocation theory, with
different functional forms for allocating limited resource to reproduction and
survival. This further leads to different patterns of aging in different species
and populations. For a recent review, see Baudisch and Vaupel (2012). In
the case where selection acts on both reproduction and survival, and the

mutant allocates its payoff benefit to both, the transition probability from

state a:lxét) to :Elxgﬂ) Is

p[xla:gt) — mwé””] =

B[40, N Tl(xgt) + x(;))
b ® , (® (t) 0)
ri(xy’ +x3’) + Ny —xy” + No — g

HW (xét+1); N17x§t),N2’7,.2) 5
(8)

in which r; and ro represent that the mutant produces r; times offspring
compared to the wild type, and is r, times more likely to survive to the next
age.

In this study we focus on demonstrating the distinct effects of different
selective forces on the fixation probability of mutants. Therefore, we choose
arbitrarily the simple case where r; = 75 to study the model, as Altrock
and Traulsen (2009) did in studying the evolutionary dynamics of stochastic
birth-death processes. In Appendix C, we show examples of allocating fit-
ness benefits between reproduction and survival following a linear pattern,
where r; and ro are different. Following the same method, the effects of al-
locating benefits in other ways can be studied. We also show in Appendix
C that mutants taking a different life history trade-off strategy also have
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complex nonlinear patterns of fixation probabilities, depending on the popu-
lation demographic structure. We provide an example, showing that trading
for higher reproduction at the cost of reduced survival produces very different
patterns of fixation probability from the other way round. Considering the
complexity of this question and the vast diversity in the range of life history
trade-off strategies, it is better to study this in detail in a separated work.
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Figure 5: A comparison between selecting on reproduction, survival and
both. The figure shows the fixation probability of a single beneficial mutant
in the young age class. Solid lines represent the fixation probability in the
neutral case, when r = 1. The pattern of selecting on both reproduction and
survival shows a combined effect. The magnitude of the fixation probability
across different age structures is closer to the case when selecting solely on
reproduction, but the shape of having an intermediate maximum when 7 is
large is similar to selecting on survival (note the different scale on the y-axis).
Total population size N = 20. Mathematica notebook files for generating this
figure can be found in the Supplementary Information.

From the numerical calculation results (for the special case that r =
ro = r) show in Figure 5, we see the pattern of fixation probability of a sin-
gle mutant in the young age class has combined effects from both selecting on
reproduction and on survival. On one hand, the value of the fixation proba-
bility is more similar to the case that selection works solely on reproduction
(Note that the end points in the first and the third panel are identical, as
in these points the effect of age structure disappears.) On the other hand,
the pattern of having an apparent maximum of the fixation probability in
populations with intermediate fraction of young individuals, is more similar
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to the case when selection works solely on survival.

6 Effects of population size

Up to now we have shown the effects of demographic population structure
on the fixation probability of mutants. It is important to study how the
magnitude of the effects scale with the strength of selection and population
size. In the following, we show that the relative importance of population
size and demographic population structure depends crucially on the strength
of selection, in this case, it depends on the relative fitness of the mutant
compared to the wild type.

If the relative fitness of the mutant is small (e.g. r = 1.005, shown in
Figure 6, a-c), population size has a larger effect, and it does not matter too
much if selection works on reproduction, survival or both. Because in this
limit, instead of demographic structure, the size of population plays the most
important role in determining the fixation probability. Fixation or extinction
are mainly driven by drift. Therefore the general pattern is that the fixation
probability decreases with population size. But if the fitness of the mutant
is large (e.g. r = 1.2, shown in Figure 6, d-f), the demographic structure of
the population plays an essential role. Note that symbols of different colours
represent different population sizes. In this case, the symbols correspond
to population size 80 and 100 almost overlap, for selecting on reproduction,
survival and both. Therefore, the effect of demographic structure on the
fixation probabilities does not diminish with population size, but there is
convergence for large populations to a certain effect size. The pattern of
having an intermediate minimum of fixation probability when selecting on
reproduction is preserved irrespective to population size. The intermediate
maximum of the fixation probability when selecting on survival exists when
the relative fitness of the mutant is not too small.

Another interesting observation is that the fixation probability of a single
mutant is higher in larger populations compared to smaller populations, when
r is large, and when selecting on reproduction or both reproduction and
survival. This is similar to a feature of the Wright-Fisher process (Details in
Appendix D).

We also assume that population size is fixed over time. It would be inter-
esting also to study how population size fluctuation may change the dynam-
ics. In general, although the Markov approach we used in the manuscript
allows us to calculate the exact fixation probability and it has lead us to
find the interesting non-monotonic patterns, it does have limitations in nu-
merically handling large or analysing fluctuating population sizes. In that
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case we need to update the population state transition matrix dynamically,
depending on the detailed population updating processes. Every time the
population change its size, the state space is updated. Consequently, the
transition probabilities from one state to another also have to change. Al-
though the fixation probability can still be obtained from simulations, it
would be challenging to derive analytical results. Compared to the Markov
approach, the branching process approach and the diffusion approximation
approach may be more suitable modelling frameworks for analysing the ef-
fects of population size fluctuation. See Patwa and Wahl (2008) and Wahl
(2011) for comprehensive reviews on different approaches of studying the
fixation probability of mutants.

In Appendix B, the results we derived from weak selection analysis only
require the assumption that the resident population has size N when the
initial mutant is first introduced, but they do not require this census size
to be kept constant thereafter. The diffusion approximation is meant to
work when the population size fluctuates over time, despite having unity
geometric growth in the limit of infinite size. In populations of finite size, as a
result of demographic stochasticity, the total numbers of individuals fluctuate
with time. The smaller the population size, the greater the fluctuations.
This is because random independent variation in survival and reproduction
between individuals is hard to average out when population size is very small
(Vindenes et al., 2009). This suggests, qualitatively, the result of having
a U-shaped pattern of fixation probability when selecting on reproduction
should not be restricted to the situations in which the population size is kept
constant over time.

Besides the classic works of Ewens (1967); Kimura and Ohta (1974); Crow
(1979), and Otto and Whitlock (1997), there are a number of recent works
that study the effects of population size fluctuation on the fixation probability
of mutants, including Parsons and Quince (2007a), Orr and Unckless (2008),
Engen et al. (2009a,b), Parsons et al. (2010), Uecker and Hermisson (2011)
and Waxman (2011). Important insights from the recent developments in-
clude the great importance to study the detailed processes of population
dynamics, and to distinguish and examine the effects of selection, drift, and
the interactions of both. For example, Waxman (2011) pointed out that the
changes in population size are not equivalent to the corresponding changes in
selection, for it can result in less drift than anticipated. Uecker and Hermis-
son (2011) showed that even for the same logistic growth of the population,
depending on whether it results from the reduction of fertility while keeping
mortality constant or the increase of mortality while keeping fertility con-
stant, the fixation probability can be very different, due to stronger effects
of drift in the second scenario.
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7 Beyond two age classes

So far, we have only considered the case of two age classes. In this section,
we give a proof-of-principle that the results shown in previous sections are
not artifacts of the assumption of two age classes. Instead, the non-trivial
effects of population demographic structure on the fixation probability of a
mutant are preserved also in populations with multiple age classes.

In a demographically stationary population with w age classes and a total
size N, assuming the average survival probability v € [0, 1] is constant from
one age class to the next, the number of individuals in each age class is
determined by the equations

N]:’yN]_lz’y]_lNl for j:273,...,w
S N=N Y
j=1

As we are only considering integer NN;, the number of individuals in each
age class has to be rounded. We do this by calculating the N; under the
condition of a fixed integer N first and perform the rounding afterwards. We
only show simulations where the N; add up to our choice of N.

The choice of a constant v corresponds to species such as the freshwater
hydra (Hydra magnipapillata and Hydra vulgaris) living under controlled lab
conditions (Martinez, 1998; Schaible et al., 2015). In field studies, approxi-
mately constant survival probability after the age of reproductive maturity
has also been observed in birds, frogs, invertebrates and plants (Baudisch
et al., 2013; Jones et al., 2014).

For other species, the survival (mortality) rate can differ widely over
different ages or life stages. For example, most mammals including humans
have decreasing survival rates after adulthood (v decreases with age). On the
other hand, for the desert tortoise the survival probability increases mono-
tonically with age; see Jones et al. (2014) for a review of the diverse patterns
of age/life-stage dependent mortality rates.

We show in Figure 7 the patterns of fixation probability of a single mutant
from the first age class in a population of three age classes with constant ~
(m = 3). When selection is absent, the fixation probability of the mutant
decreases monotonically as the survival rate v decreases. In the boundary
case where v = 0, all individuals in the population are in the first age class.
Therefore N; = N, and the fixation probability of the mutant reduces to
1/N. In the case where selection works on reproduction or survival, we show
that the intermediate minimum or maximum of the fixation probability still
persists.
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8 Discussion and conclusion

Although it is clear that the likelihood of incorporating a beneficial mutation
in the gene pool is a function of the life history architecture of the pop-
ulation, little has been done to pinpoint the direct effects of different life
history patterns on promoting or hindering adaptive evolution. In this work,
we approach this problem building on the basis of the seminal Felsenstein
model of populations with overlapping generations (Felsenstein, 1971). We
explore the effects of different sources of evolutionary forces, including se-
lecting on reproduction, survival and a combination of both numerically. We
also study the relative importance of the size and demographic structure of
the population.

First, our work reveals fundamental differences between selection on re-
production and survival in populations with demographic structures. The
differences are remarkable even in the simple case where the population is
spatially well-mixed, and neither density nor frequency affects the relative
fitness of the mutant. It is known that in well-mixed populations under
constant selection, selecting on reproduction or survival is equivalent when
mutation is absent (Ewens, 2004; Kaiping et al., 2014). In spatial structured
populations, selecting on reproduction and survival are different in general,
but it is possible to produce the same effects (Zukewich et al., 2013; Kaveh
et al., 2015; Hindersin and Traulsen, 2015). For example, under the Moran
process scheme, selecting on reproduction with a birth-death updating rule
is still equivalent to selecting on survival with a death-birth updating rule,
in any populations with “homogeneous” structures (e.g., lattices, cycles, and
island models) and symmetric dispersal (Taylor et al., 2011). It is worth-
while to note that in degree-heterogeneous graphs, the fixation probability
of an advantageous mutant depends crucially on if selection works on re-
production or survival (Antal et al., 2006; Hindersin and Traulsen, 2015;
Kaveh et al., 2015). Even when selection works only on reproduction, the
sequence of birth and death events can lead to completely different evolu-
tionary dynamics (Zukewich et al., 2013; Kaveh et al., 2015). For almost any
random graph, a selectively advantageous mutant almost always has higher-
than-neutral fixation probability if birth takes places before death, but has
lower-than-neutral fixation probability if death happens first (Hindersin and
Traulsen, 2015). Although the differences of selecting on reproduction and
survival is relatively well recognized and studied in spatially structured pop-
ulations, less is known in populations with demographic structure.

Even under constant selective advantage, life history of individuals in the
population makes the evolutionary dynamics differ drastically with different
sources of selective forces (Caswell, 2001; Houston and McNamara, 1999). In
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the future, it would be interesting to go beyond the simple case of constant
selection and investigate the effects of density and frequency dependent fit-
ness of the mutants. In the well-mixed case, low density favors individuals
who direct their efforts towards exploring the ecological environment and
thereby maximising their reproduction rates. But under high density condi-
tions, since most resources have already been absorbed into the population,
it is more efficient to direct one’s effort towards exploiting other population
members through interactions (Blute, 2011). Usually, the successfulness of
a strategy is not determined by its nature alone, but on the presence and
frequency of other strategies in the population. Density and frequency ef-
fects are hardly disconnected from each other in natural populations, and it
is often necessary to take both into account in order to capture the impor-
tant features of evolutionary dynamics, especially when there is substantial
change in population size (Novak et al., 2013; Li et al., 2015b; Huang et al.,
2015). Under the framework of Evolutionary Game Theory, elegant condi-
tions such as the 1/3 rule have been obtained (Nowak et al., 2004; Imhof and
Nowak, 2006; Lessard and Ladret, 2007), which determine if strategies such
as cooperation can evolve in the first place. But it is unclear if such con-
ditions still hold in populations with demographic structures. Therefore, it
seems interesting to study the coevolution between population demography
and game theoretic strategies in future work.

In natural populations, species display an enormous variety of different
life history patterns (Jones et al., 2014). Often mutations affect the fitness
of individuals in both reproductive and survival aspects. A classical exam-
ple is the throughly discussed ornamented trains of male peacocks, which
are sublimely beneficial in terms of mating success, but at the same time
tremendously costly when it comes to the chance of escaping from preda-
tors. Another beautiful example is the shape of wings in migrating birds.
Pointed wings are aerodynamically desirable for fast and long-distance flights
(Mo6nkkonen, 1995; Berthold, 1996; Hedenstrom, 2002; Bowlin and Wikelski,
2008; Minias et al., 2015). But on the other hand, they reduce the manoeu-
vrability that help birds with foraging and courtship displays (Alatalo et al.,
1984; Swaddle and Lockwood, 2003). Precisely due to the high benefits and
high costs of pointed wings, the change of selective pressure leads to the
change of wing morphology in bird populations. This has been observed in
many passerine species, e.g. the fast evolution of stonechats Saxicola torquata
in response to changing environmental conditions (Baldwin et al., 2010). It
is interesting also to note that evolution can go to great detail in balancing
the cost and benefits of a single morphological trait, and life history serves
as a channel through which evolutionary forces fine tune the balance. As an
example and also a demonstration of its plastic potential, it is found that
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the juveniles of migrating birds have less pointed wings compared to adults.
This could be due to the fact that juveniles are more naive and thus more
vulnerable to predators. Under elevated predation pressure, improved ma-
noeuvrability is more important than migration performance, particularly in
the early stage of life (Pérez-Tris and Telleria, 2001). For more examples
of the amazing variety in survival and reproduction trajectories over the life
course across species, Jones et al. (2014) provides a recent review.

In this work, we focus mostly on the simple case of two age classes. But
it is possible to extend our results to cases with multiple age classes, as
demonstrated in Section 7. We have shown how the fixation probability of a
mutation with effect on certain components of the life history is influenced by
the demographic structure of the resident population, i.e. the relative fraction
of young versus adult individuals. We note that a natural interpretation
of the same results can also be given in terms of the rate of aging that
characterizes the resident population. In fact, the relative abundances of
young and adult individuals depend on the probability of newborn survival
to young age and the probability of surviving from young age to old age.
Aging is defined as an age related deterioration in survival. Aging features
in a large number of species and is one of the most salient life history traits.
It follows from the definition of aging that, in our model, populations that
are composed by a higher fraction of young individuals are characterized
by a higher rate of aging (i.e. stronger deterioration in survival with age).
Conversely, populations with a higher representation of old individuals may
possess no aging at all or even negative aging (i.e. survival does not decline
but it may even increase with age, see Baudisch and Vaupel (2012) and Jones
et al. (2014)).

In this way, our results can be directly linked with the effect that an
important life history trait exerts on adaptive evolution. If natural selec-
tion acts on reproduction, for any beneficial mutant, intermediate rates of
aging always reduce the fixation probability, although the chance of fixation
may be higher in populations with low or negative rates of aging, depend-
ing on the difference in fitness between the mutant and the wild type. If
natural selection acts on survival and the fitness difference between the ben-
eficial mutant and the wild type is not too small, there is a maximum of
fixation probability in populations with intermediate rates of aging, while
in populations with extreme positive or negative rates of aging, the fixation
probability of the beneficial mutant is reduced. In this regard, it would be
of interest to study variation in the rate of adaptation in those systems that
have already been established for within-species comparison of the rate of
aging across populations. For example, populations of guppies living un-
der different environmental conditions have proven to be a valuable model
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to understand ecologically-induced variation in aging within a single species
(Reznick et al., 2004; Bronikowski and Promislow, 2005). Similarly, different
life-history ecotypes of the garter snake show different aging patterns (Spark-
man et al., 2007; Robert and Bronikowski, 2010). If natural selection acts
on both survival and reproduction, depending on how fitness advantages are
allocated and the magnitude of the fitness difference between mutant and the
wild type, complex patterns with multiple extrema of the fixation probability
with respect to the rate of aging can emerge.

9 Summary

To summarize, in this work we have studied the direct effects of population
demographic structures on stochastic evolutionary dynamics, under the con-
stant selection regime. Using a model with two age classes and constant
population size, we have compared the fixation probability of mutants under
different population demographic structures. Different targets of selective
forces, as well as the relative impacts of the size and structure of the pop-
ulations are also evaluated in our analyses. Through this work, we hope to
call attention to the importance of considering life history when studying
evolutionary dynamics. Facilitated by modern computational power, now
we have the opportunity to delve into many interesting questions that were
technically difficult to approach a few decades ago. Our work opens up new
directions for future research, including the coevolution of population struc-
ture, resource allocation and strategic dynamics, the impacts of demography
on the rate of adaptive evolution, and the density/frequency dependent fit-
ness effects in populations with different life history patterns.
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A Fixation probability of a single mutant in
the young age class

Fisher’s reproductive value v, of an individual in age class k£ in an age-
structured population with pre-breeding census is (Charlesworth, 1994):

U = szk Zl Fo A~ (10)

in which X is the asymptotic growth rate of the population, I, = 5155...5; 1
is the probability of an individual surviving at least to age class k with [; = 1,
Fy. is the expected number of offspring to an individual in age class k, T is
the generation time in the stable population, b is the birth rate in the stable
population, and w is the maximum attainable age.

In our specific model of two age classes (w = 2) the parameter values
are, A\ = 1 (constant population size), [ = 1, [y = 32, and F} = F, = N;/N,
where N = Ny + N,.

We have v; = 1 and vy = N;/N. Following Emigh (1979a), the fixation
probability of a selectively neutral mutant is

1
ke - — (11)
U1N1+U2N2 N1(2— Wl)
In the case of multiple age classes as in Section 7, [, = v*71, in Which v is

the survival probability to the next age class, F, = N;/N =1/ ZZ o 7 for
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all k. The size of the k-th age class is Ny = Nv*~1/ 3% ' 4. Therefore, the
reproductive value of the k-th age class in a stationary population is

w—k _;
dico Y

v = ———— . 12
Ty -
The fixation probability of a single mutant in the first age class is then
1 w L k=1)2
U1 _ (Zkfl Y ) (13)

Z::l orNg N Z?izl feyh—t

In the case of two age classes, w = 2, 7 = Ny/N;. Denote the fraction of
young individuals f = Ny /N, the fixation probability recovers (N f(2 — f)) .

B Weak selection analysis for selecting on re-
production

Following Kimura (1957, 1962); Emigh (1979a,b) and Vindenes et al. (2009),
in an age-structured population of haploid individuals, the fixation proba-
bility of a single mutant with selective advantage s in age class ¢ can be
approximated by

1 — exp [—2sv;/0?]
1 —exp[—2sN/o?|’

(14)

where N is the resident population size, o2 is the expected variation in ge-
ometric growth of the wild-type population, and v; is the reproductive value
of a wild-type individual in the same age class as the initial mutant. The
selective advantage s of a beneficial mutation is computed as the absolute
value of the difference between the stable growth rate of the wild-type, which
is the leading eigenvalue of its projection matrix (Caswell, 2001), and the sta-
ble growth rate that would be observed in a population composed entirely by
mutants (i.e. the leading eigenvalue of the mutant Leslie matrix). Following
Engen et al. (2005) in assuming no covariances between matrix elements, the
demographic variance o2 can be approximated by

o2~ ZUZ [v7,,5: (1= S;) + v Var(F)], (15)
In this expression, S; is the (i + 1) element of column i of the (pre-breeding

census) Leslie matrix, representing the survival rate of an individual in age
class i; F; is the i'" element of the first row of the matrix, representing the
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numbers of offspring produced by an individual currently in age class ¢; u; and
v; are the i" elements of the right and left leading eigenvectors, respectively,
of the Leslie matrix and are scaled so that > w; =1 and > u;v; = 1.

In our model, when selecting on reproduction, a mutant produces r times
of offspring compared to the wild-type. Hence, the selective advantage s of
the mutant can be calculated as the absolute value of the difference between
the leading eigenvalue of the Leslie matrix of the wild-type (which is unity in
our case of constant size) and the leading eigenvalue of the same matrix with
the first row multiplied by r, that is, the leading eigenvalue of the following
matrix,

(7" N)\];INQ erjj‘lNz) (16)
5 0
Ny

In order to compute the demographic variance, we calculate Var(F;) by
treating first row elements of the resident Leslie matrix as averages of Poisson
distributions. Figure 8 (corresponding to Figure 3 in the main text) and
Figure 9 (corresponding to panels (a) and (d) in Figure 5 in the main text)
show the results of using Eq.(14) with the same r and N values used in our
numerical solutions.

Despite the foreseeable quantitative disagreements especially when the
selective advantage becomes large, the weak selection approximation results
preserve the U-shaped pattern of fixation probability, under different selec-
tion intensities and at different population sizes.

C Allocation and trade-off of fitness benefits

In Section 5 we show the combined effects of selecting on reproduction and
survival at the same time. There we use an arbitrary example of r; =7y =1
for simplicity. In this case, the mutant type not only produces r times more
offspring than the wild type, but also is r times more likely to survive to
the next age class. This of course is a very special case. It corresponds to
the scenario that the mutant happens to split its payoff increment “equally”
on improving reproduction and survival. In nature, mutants can in principle
allocate the payoff increment in any combination of improving reproduction
and survival. The mutant can even commit so much to improving one of
them at the cost of reducing the other. This leads to the life history trade-off.
Depending on the physiological nature of the species and social interactions
in the population, the consequence of putting more weight on one aspect at
the cost of reducing the other can be very complex. To illustrate this, in the
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following we gave examples of allocating an increment of benefit in different
ways, and their consequences on the fitness probability of the mutant.

First, imagine that the mutant allocates its extra benefit in a linear way.
Relative to wild types, the mutant has an extra payoff s. She allocates
a fraction of it to increase her reproduction, and use the rest to improve
survival. Therefore her relative fitness for reproduction r; = 1+ as, and her
relative fitness for survival 7 = 14+ (1 —a)s. In Figure 10 we show the effects
of this particular way of allocating extra benefits on the fixation probability
of mutants.

It is also very interesting to consider the reproduction/survival trade-off.
Considering the great variety in life history and different ways of resource
allocation, here we present very briefly an example in Figure 11, that trading
on reproduction or trading on survival have very different influences on the
fixation probability. Given the apparent complexity in the result, it seems
challenging to analyse in its whole breadth.

D The fixation probability increases with pop-
ulation size in the Wright Fisher process when
r is large

As we are interested in small populations, we explore the fixation probability
in the Wright Fisher process here numerically directly from the associated
transition matrix. When r is small, the fixation probability of a beneficial
mutant decreases with increasing size of the population, approaching 2s =
2(r—1). But when r is large, the fixation probability first decreases and than
increase again, although the magnitude of this effect is small, see Figure 12.
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Figure 6: (a-c) Population size has a larger effect on the fixation probability if
the relative fitness advantage of the mutant is small, in this case, r = 1.005.
(d-f) Demographic population structure has a larger effect on the fixation
probability if the relative fitness advantage of the mutant is large, in this
case, r = 1.2. Symbols of different colours represent different population
size. Color coding is consistent in all panels. Mathematica notebook files for
generating this figure can be found in the Supplementary Information.
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Figure 7: Fixation probability of a single mutant from the first age class in
a population of three age classes, depending on the size ratio between age
classes, v = % = % Circles and crosses represent results from numerical
solution (by calculating the corresponding eigenvector of the eigenvalue 1 of
the population state transition matrix) and simulation, respectively. The
solid line represents theanalytical result (Details in Appendix A). Each of
the data point in the simulation results is calculated from 107 realizations.
The dotted line marks 1/N, the fixation probability of a single mutant in
a well-mixed age-homogeneous population when selection is absent. (a) For
a population size of N = 30, we show results from both numerical solution
and simulations. The slight wriggles of the fixation probability curves are
due to rounding errors when constructing three age classes. These diminish
when population size increases. (b) For N = 100, we only show results from
simulations, because it is computationally costly to calculate the eigenvectors

for large matrices.
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Figure 8: Weak selection approximation to the fixation probability of a mu-
tant with reproductive advantage r.
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Figure 9: Weak selection approximation to the fixation probability of a mu-
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advantage. Note that in the right panel, when selective advantage of the
mutant is relatively large (r = 1.2), the symbols representing different pop-
ulation sizes overlap with each other (especially from N=40 to N=100).
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Figure 10: Effects on fixation probability of a mutant that has an extra fitness
benefit of s = 0.2. (a) The fixation probability increases monotonically with
the fraction of benefits allocated to reproduction. In the older population,
the fraction of young individual is 0.55, and in the younger population, the
fraction of young individual is 0.95. (b) If the fraction of benefits that can
be allocated to reproduction is fixed, the fixation probability varies in a
non-linear way in populations with different demographic structures. a is
the fraction of extra benefits that is allocated to reproduction (N = 20, a
Mathematica notebook file for generating this figure can be found in the
Supplementary Information).
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Figure 11: The effects of trading on reproduction or survival. When selec-
tion works on both reproduction and survival, a beneficial mutant may have
an increase in both of them (the trade-on scenario), or an increase in one
of them at the cost of decreasing the other (the trade-off scenario), or the
maintenance of the other (zero trade-off scenario). We use r; to denote the
selective advantage on survival and 7, to denote the selective advantage on
reproduction. (a) Keep selective advantage on reproduction fixed, we change
the selective advantage on survival, with two trade-on scenarios, two trade-off
scenarios and the zero trade-off scenario. (b) Keep the selective advantage
on survival fixed, we change the selective advantage on reproduction, also
with two trade-on scenarios, two trade-off scenarios and the zero trade-off
scenario.
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Figure 12: Fixation probability of a single beneficial mutant in the Wright-
Fisher process, calculated numerically from the transition matrix. In the left
panel when the selective advantage of the mutant is small, as population size
grows, the fixation probability approaches the classic result of 2(r—1). In the
right panel, when the conditions of diffusion approximation are not satisfied,
the fixation probability first decreases and then increase again as population
size increases (A Mathematica notebook file for generating this figure can be
found in the Supplementary Information).
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