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Abstract

A requisite precondition for the application of next-generation se-
quencing to clinical medicine is the ability to confidently call genotype
at each coding/splicing position of every gene of interest. Current gold
standard technologies, such as Sanger sequencing and microarrays, allow
confident identification of the genomic origin of the DNA of interest. A
commonly used minimum standard for the adoption of new technology in
medicine is non-inferiority. We developed a metric to quantify the extent
to which current sequencing technologies reach this clinical grade report-
ing standard. This metric, the rationale for which we present here, is
defined as the absolute number of base pairs per gene not callable with
confidence, as specified by the presence of 20 high quality (Q20) bases from
uniquely mapped (mapq>0) reads per locus. To illustrate the utility of
this metric, we apply it across data from several commercially available
clinical sequencing products. We present specific examples of coverage for
genes known to be important for clinical medicine. We derive data from
a variety of platforms including whole genome sequencing (Illumina Hiseq
and X chemistry) and exome capture (including medically optimized cap-
ture from Agilent, Baylor Clinical Lab, and Personalis). We observe that
compared to whole genomes (with ˜30x average coverage), augmented ex-
omes perform far better for known disease causing genes, but less well for
other genes and in untranslated regions. Increasing whole genome cover-
age improves this discrepancy with an average coverage of ˜45x represent-
ing the cross over point where performance equals that of exome capture
for disease causing genes. A combination of some genome-wide coverage
and augmented exon coverage may offer the most cost effective solution for
clinical grade genome sequencing today. In summary, this coverage met-
ric provides transparency regarding the current state of next-generation
sequencing for clinical medicine and will inform genotype interpretation,
technology improvement, and sequencing platform choices for physicians
and laboratories. We provide an application on precision.fda.gov (Cover-
age of Key Genes app) to calculate this metric.

1 Introduction

With the rise of precision medicine, next-generation sequencing is becoming
more common in clinical practice. A requisite precondition for the application of
next-generation sequencing to clinical medicine is the ability to confidently call
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genotype at each coding position in every gene of interest. In addition, inclusion
of nucleotides relevant for splicing (the dinucleotides at a minimum) is critical
for assessment of disruptions of the open reading frame. Current gold stan-
dard technologies, such as Sanger sequencing and microarrays, allow confident
identification of the genomic origin of the DNA of interest. The current clinical
standard for DNA sequencing, Sanger sequencing, is 99.999% accurate [1]. How-
ever, Sanger sequencing does not scale (in cost or time) to a full human genome
or even exome. Meanwhile, the cost and turnaround time of next-generation
DNA sequencing technologies are now within the lower range of many medical
tests [2, 3], enabling physicians to incorporate genomic information into medical
decisions, such as disease diagnosis and treatment [4–8].

Whole exome sequencing (WES) and whole genome sequencing (WGS) offer
different advantages in the question of clinical sequencing. The major advantage
of exome sequencing is cost - capturing the ˜2% of the genome that codes for
protein prior to sequencing [9] is cheaper than sequencing the whole genome. In
addition, WES achieves higher coverage of targeted regions while still producing
less total data, and requires fewer computational resources for analysis and
storage. However, WES can suffer from reference bias (an enrichment of reads
that match with the reference at heterozygous loci due to probe design), which
can result in false negative variant calls. Additionally, some regions of the exome
are difficult to capture which can result in low or uneven coverage [10, 11]. Some
augmented exome products are specifically designed to capture these difficult
regions to ensure high coverage [12].

WGS produces more uniform coverage across the genome, and thus, the
data is more suited than WES for structural variant and copy number variant
analyses. WGS also enables the interrogation of non-coding regions that are
important for regulation, such as promoters and enhancers, and play important
roles in disease [13, 14]. However, few medical decisions are currently made
from knowledge of variants outside of the coding regions.

Clinical tests must be accurate and precise. The current standard for clinical
gene test reporting requires high quality genotypes for 100% of coding bases plus
the splice dinucleotides. Illumina next-generation sequencing machines have an
average raw error rate of ˜0.5% [15]. To achieve a lower rate of error for the final
genotype call, each genomic locus is sequenced multiple times and statistical
methods are employed to determine the final genotype. Therefore, adequate
sequencing depth is required for accurate and complete genotype calls [16, 17].

Existing metrics to describe depth of coverage typically report genome-wide
averages and are therefore insufficient for clinical purposes. A typical statement
on a clinical report might be ”the genome was covered at a mean fold coverage
of 30x” or ”90% of each gene was covered at a mean fold coverage of 10x or
more”. These global measurements are inadequate for clinical medicine where
a confident call at every coding base pair could mean a difference in a critical
medical decision. In exome capture, and to a lesser extent genome sequencing,
depth of coverage across the sequenced region is highly variable — as much
as 100-fold difference [18]. Additionally, normalizing coverage to a percentage
belies the enormous diversity in the size of genes (75 to 2,308,000 coding bps).
The field is in need of a standard for the adequacy and quality of data defined
as relevant for a given locus to allow confident calling. We present a per-gene
metric for evaluating short-read next-generation DNA sequencing datasets to
address these issues.
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The American College of Medical Genetics and Genomics (ACMG) recom-
mends review and reporting of likely pathogenic or pathogenic variants in spe-
cific genes with potentially actionable consequences as part of every clinical
exome or genome test [19]. This set of 56 genes represents a particularly impor-
tant focus for a sequencing standards metric. The Clinical Variation Database
(ClinVar) and its NHGRI funded partner the Clinical Genome resource (Clin-
Gen) aspires to define the clinical relevance of genes and variants for use in
precision medicine. In this study, we evaluated quality-coverage for five clinical
sequencing approaches including WGS and three WES platforms. We also com-
pare to a standard (non-clinical) exome sequencing platform. We present data
in 3 groups: i) the 56 ACMG genes, ii) all genes with annotations in ClinVar
and, iii) all coding genes in RefSeq.

2 Materials and Methods

2.1 Sequencing approaches and datasets

We obtained sequencing data from one standard exome sequencing platform
(Nimblegen (N=2)) and three clinical exome sequencing platforms: Person-
alis ACE (N=4), Agilent Clinical Research Exome (N=4), and Baylor Clinical
Exome (N=3). We also obtained sequencing data from two whole genome se-
quencing platforms: HiSeq X (including public data from the Garvan Institute
(N=2)1 and data from Macrogen (N=1)), and HiSeq 2500 (N=4).

Read lengths varied by approach. Nimblegen datasets contained 50 bp
paired end reads. Personalis ACE, Agilent Clinical Research Exome, HiSeq
2500 datasets, and Baylor Clinical Exome datasets contained 100 bp paired end
reads. HiSeq X datasets contained 150 bp paired end reads [20].

2.2 Gene definitions

The genomic coordinates for the 56 ACMG genes, ClinVar genes, and all coding
genes were obtained from the RefSeq annotation. Note that only genes on
autosomes were considered for the ClinVar and coding gene sets. We examined
two regions of clinical interest (1) coding bases plus the splice dinucleotides and
(2) all exonic bases (including the UTRs). Note that the coding bases are a
subset of all exonic bases.

2.3 Methodology

We aligned all sequence data using BWA MEM [21] version 0.7.10 to hg19.
We calculated the depth of coverage at each position within the regions of
interest using GATK DepthOfCoverage [22–24], version 3.1.1 with parameter
mbq set to 20 or 30 to specify minimum base quality (Q20 or Q30) and -
mmq set to 1 to specify a minimum mapping quality of 1. The analytical
pipeline is available on precision.fda.gov (Coverage of Key Genes app) and
github (https://github.com/rlgoldfeder/coverageOfKeyGenes).

1https://dnanexus-rnd.s3.amazonaws.com/NA12878-xten/mappings/NA12878J HiSeqX R1.bam
and https://dnanexus-rnd.s3.amazonaws.com/NA12878-xten/mappings/NA12878D HiSeqX R1.bam
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Sequencing Approach N Mean (GB) Read Length(bp)
Nimblegen Exome 2 3.87 50

Personalis ACE Exome 4 12.78 100
Baylor Clinical Exome 3 11.18 100

Agilent Clinical Research Exome 4 13.46 100
HiSeq 2500 Whole Genome 4 124.07 100

HiSeq X Whole Genome 3 114.00 150

Table 1: Average Sequencing Yield

3 Results

3.1 Determining a clinically relevant coverage threshold

We present a metric for evaluating the coverage of medically relevant genes: the
absolute number of positions in each gene with depth of coverage lower than a
given threshold (see below).

To determine a clinically relevant coverage minimum, we calculated the the-
oretical probability of missing a true heterozygous call at various depths of
coverage. At a heterozygous position, there are two alleles (x and y), which
are each expected to be present in half of the N reads that align to the posi-
tion. Therefore, p, the probability of observing allele x in a particular read is
0.5. The probability of observing allele x k times can be modeled as a binomial
probability mass function:

P (X = k) =

(
N

k

)
(p)k(1 − p)(N−k)

We assume that a heterozygous call would be made if x is present in 20% -
80% of reads. So, the probability of missing a heterozygous call is calculated as:∑

i=k∈ k
N <=0.2| kN >=0.8

(
N

i

)
(p)i(1 − p)(N−i)

The probability of missing a heterozygous call is displayed in Figure 1 for
depths of coverage ranging from 2x to 40x. Based on this distribution, we
propose that this threshold should be 20 high quality (Q20) bases from uniquely
mapped (mapq>0) reads. We also show results here for a threshold of 30 high
quality (Q30) bases from uniquely mapped (mapq>0) reads. Results for other
thresholds are available here: https://rlgoldfeder.shinyapps.io/coverage

3.2 Total sequencing yield varies by platform

The total yield of sequence data for each sample is described in Table 1. The
clinical exomes yielded a mean of 11.18 - 13.46 GB total sequence, the standard
Nimblegen exomes yielded a mean of 3.87 GB, and the whole genomes yielded
a mean of 111.11 - 124.07 GB.
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Figure 1: The theoretical probability of miss-calling a heterozygous position at
each depth of coverage ranging from 2x to 40x.

3.3 Performance varies across platforms

We calculated the depth of coverage for each coding position in each gene. In
the following sections we review results for a single gene, ACMG genes, ClinVar
genes, and all coding genes.

3.3.1 Examining KCNH2

Figure 2 shows the coverage of each position in an illustrative (ACMG) gene.
KCNH2 is the cause of long QT syndrome type 2, an inherited cardiovascular
disease associated with sudden death. We present data with two quality thresh-
olds, Q20 and Q30 (from reads with mapping quality >0) from one sample from
each platform. Notably, the whole genome sequencing platforms provide more
uniform coverage across this gene, while the exome platforms have more vari-
ability. In particular, positions 2,609 - 3,056 (chr 7: 150655144 - 150655591)
have low or no coverage for the standard exome and two of the clinical exome
sequencing platforms.

Sequencing Approach Positions Below 20Q20 Positions Below 30Q30
Personalis ACE Exome 33 (41) 253 (197)
Baylor Clinical Exome 274 (189) 413 (187)

Agilent Clinical Research Exome 90 (27) 122 (49)
HiSeq 2500 Whole Genome 206 (251) 2,531 (460)

HiSeq X Whole Genome 366 (215) 2,416 (424)
Nimblegen Exome 1,670 (202) 2,528 (48)

Table 2: The mean number (and standard deviation) of positions in KCNH2
below the 20 Q20 or a 30 Q30 threshold for each platform.

5

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 24, 2016. ; https://doi.org/10.1101/051490doi: bioRxiv preprint 

https://doi.org/10.1101/051490
http://creativecommons.org/licenses/by-nd/4.0/


Position

C
ov

er
ag

e

20
40
60
80

0 1000 2000 3000

Clinical Whole Genome: HiSeq X
20
40
60
80

Clinical Whole Genome: HiSeq 2500
20
40
60
80

Nimblegen Exome
20
40
60
80

Agilent Clinical Research Exome
20
40
60
80

Baylor Clinical Exome
20
40
60
80

Personalis ACE Exome

>=Q20
>=Q30

(a)

Sequencing Approach Positions Below 20Q20 Positions Below 30Q30
Personalis ACE Exome 43 332
Baylor Clinical Exome 234 310

Agilent Clinical Research Exome 102 113
HiSeq 2500 Whole Genome 130 2,392

HiSeq X Whole Genome 496 2,463
Nimblegen Exome 1,832 2,562

(b)

Figure 2: (a) The depth of coverage by minimum Q20 and minimum Q30 bases
of each coding position in KCNH2 for one sample per platform (y-axis zoomed
in to a max value of 100x). Data plotted in each case derives from the clinically
delivered product from each provider. UTRs included in Figure S1. (b) The
number of positions in KCNH2 below the 20 Q20 or 30 Q30 coverage threshold
for samples displayed in (a).
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Sequencing Approach Positions Below 20Q20 Positions Below 30Q30
Personalis ACE Exome 805 2,457
Baylor Clinical Exome 2,188 3,189

Agilent Clinical Research Exome 1,288 2,242
HiSeq 2500 Whole Genome 5,377 79,316

HiSeq X Whole Genome 5,800 82,311
Nimblegen Exome 30,353 76,281

Table 3: The mean number of coding bases in the ACMG gene set failing the
20Q20 or 30Q30 threshold for each platform.

We determined the number of coding loci in KCNH2 that were covered by
fewer than 20 Q20 bases or 30 Q30 bases for each sample. Table 2 shows plat-
form means and standard deviations. For the 20 Q20 threshold, the Personalis
ACE Exome performed the best (mean positions below 20 Q20 threshold: 33)
and the HiSeq X performed the worst of the 5 clinical sequencing platforms
(mean positions below 20 Q20 threshold: 366). The Nimblegen standard exome
performed the worst (mean positions below 20 Q20 threshold: 1,670). For the
30 Q30 threshold, Agilent Clinical Research Exome performed best (mean po-
sitions below 30 Q30 threshold: 122) and the HiSeq 2500 performed the worst
(mean positions below 30 Q30 threshold 2,531).

3.3.2 Examining gene sets

ACMG genes

We expanded this analysis to all ACMG genes, Figure 3 and Table 3. For
these genes, at the 20 Q20 threshold the clinical exome sequencing platforms
performed better than the whole genome sequencing approaches, and the stan-
dard exome performed worst. The Personalis ACE exome performed best, with
a mean of 805 positions below the coverage 20 Q20 threshold for all ACMG
genes and the HiSeq X performed worst of the clinical platforms (mean posi-
tions below 20 Q20 threshold: 5,800) and Nimblegen standard exome performed
worst of all platforms (mean positions below 20 Q20 threshold: 30,353). Several
genes consistently have a high (ie: KCNQ1, PRKAG2, RYR1, SDHD) or low
(ie: ACTA2, MUTYH, TNNI3) number of bases below the 20 Q20 threshold,
while results for other genes (ie: FBN1, PMS2, TGFBR1) were more varied
across platforms.

We also examined the number of coding loci in each ACMG gene that failed
to meet a coverage threshold of 30 Q30 bases for each sample (Figure S2). In
this case, the clinical exome sequencing platforms performed better than the
whole genome sequencing approaches. The Agilent Clinical Research Exome
performed best (mean: 2,242), and the other clinical exomes performing simi-
larly (means: 2,456 - 3,189). Notably, the number of bases below the 30 Q30
threshold was an order of magnitude higher for the whole genomes and standard
exomes (means: 68,117 - 82,311) than the clinical exomes.

Next, we evaluated the number of exonic loci (coding bases plus UTRs) in
each ACMG gene below the 20 Q20 and 30 Q30 thresholds, Table 4, Figure S3,
and Figure S4. The HiSeq 2500 genomes performed best (mean ACMG gene
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Figure 3: The number of coding loci with <20x coverage by >=Q20 bases from
reads with mapQ>0. (a) Personalis ACE Exome (b) Baylor Clinical Exome (c)
Agilent Clinical Research Exome (d) Nimblegen Exome (e) HiSeq 2500 Whole
Genome (f) HiSeq X Whole Genome. Note that five data points >2,000 omitted
from panel (d) and one data point >2,000 omitted from panel (e) for clarity.
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Sequencing Approach Positions Below 20Q20 Positions Below 30Q30
Personalis ACE Exome 9,299 19,316
Baylor Clinical Exome 78,235 82,005

Agilent Clinical Research Exome 73,937 77,172
Nimblegen Exome 113,759 162,007

HiSeq 2500 Whole Genome 9,077 110,415
HiSeq X Whole Genome 13,715 126,682

Table 4: The mean number of exonic bases in the ACMG gene set failing the
20Q20 or 30Q30 threshold for each platform.

Sequencing Approach ACMG Genes ClinVar Genes All Genes
Personalis ACE Exome 805 119,200 3,139,544
Baylor Clinical Exome 2,188 159,557 2,800,442

Agilent Clinical Research Exome 1,288 167,235 2,374,639
HiSeq 2500 Whole Genome 5,377 213,232 1,305,055

HiSeq X Whole Genome 5,800 294,598 1,803,807
Nimblegen Exome 30,353 1,405,371 8,560,901

Table 5: The mean number of coding loci below the 20 Q20 threshold for
ACMG Genes (N=56), ClinVar Genes (N=3,062), and All Genes (N=18,380)
for each platform.

loci below the 20 Q20 coverage threshold: 9,077), followed by Personalis ACE
exomes (mean: 9,299) and HiSeq X genomes (mean: 13,715). The other (clini-
cal and standard) exome platforms performed worse (means: 73,937 - 113,759).
Meanwhile, for the 30 Q30 threshold, Personalis ACE performs best (mean:
19,316), followed by the other clinical exomes (means: 77,172 - 82,005), the
clinical genomes (means: 110,415 -126,682), and the standard exome (mean:
162,007).

ClinVar and RefSeq genes

Next, we examined the coding loci in larger gene sets: i) ClinVar genes and
ii) all genes (Table 5 and Figure 5). The augmented exome platforms outper-
formed the whole genomes approach for ClinVar genes. However, when this
analysis was expanded to include genes that currently have no known disease
association, the whole genomes performed best. For all three gene sets, the
standard exomes performed significantly worse than the genomes or augmented
exomes.

3.4 Increased overall coverage for WGS improves perfor-
mance in clinically relevant genes

We showed above that augmented exome sequencing outperforms WGS (with
standard sequence yields) for the coding bases of clinically relevant genes. We
sought to determine how much sequencing is required for WGS to perform
as well as augmented exomes for the coding bases in clinically relevant genes.
To do this, we downsampled (using Picard DownsampleSam) one 300x whole
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Figure 5: The number of positions below the 20 Q20 threshold (from reads
with mapQ >0) for (a) ACMG Genes (N=56), (b) ClinVar Genes (N=3,062),
and (c) All Genes (N=18,380) for each sample in each platform. Datapoints
represent the mean, bars show the range.
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Figure 6: The number of positions below the 20 Q20 threshold (from reads with
mapQ >0) for (a) ACMG Genes (N=56), (b) ClinVar Genes (N=3,062), and(c)
All Genes (N=18,380) as WGS sequencing coverage increases. Red dotted line
shows the mean number of coding positions below the 20 Q20 threshold for the
Agilent Clinical Research Exome for comparison.

genome from the Genome in a Bottle Consortium2 to the following average
genome-wide coverages: 40x, 45x, 50x, 55x, 60x, 65x, 70x, 75x. Then, for
each downsampled dataset, we calculated the number of coding positions that
fail the 20 Q20 threshold in each gene set. As overall coverage increases, the
number of positions below the threshold decreases. In ACMG genes, WGS
performs similarly to the augmented exomes once genome-wide average coverage
reaches 45-50x, Figure 6a. The WGS performance in ClinVar genes is similar
to the augmented exomes at a genome-wide average coverage between 40x and
45x, Figure 6b. For average coverage WGS levels between 40x and 75x, WGS
performs better than augmented exomes, Figure 6c.

2from ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/NIST\_NA12878\

_HG001\_HiSeq\_300x/NHGRI\_Illumina300X\_novoalign\_bams/HG001.hs37d5.300x.bam
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4 Discussion

We present a quality-coverage metric to help evaluate the technical validity of
next-generation DNA sequencing for clinical medicine. We use this metric to
assess the performance of six sequencing approaches for three gene sets: (1)
the 56 most ”actionable” genes as described by the ACMG, (2) genes with
annotations in ClinVar, and (3) all coding genes.

We observed variability across platforms in the number of loci failing to meet
the clinical threshold of 20 Q20 bases from uniquely mapped reads. None of
the sequencing approaches met coverage thresholds for all bases in any gene
set. The augmented exome sequencing approaches performed better than whole
genome approaches in the coding regions of medical genes (ACMG and ClinVar).
Meanwhile, the whole genome approaches outperform the augmented exomes
across all coding genes. The standard (non-clinical) exome sequencing approach
performed much worse in comparison to the clinical approaches.

Notably, when whole genome coverage is globally boosted, performance can
approximate the augmented exomes in medically relevant genes. Choice of se-
quencing approach for a clinical lab will depend not just on effectiveness but
also cost-effectiveness. For instance, the right approach may be a combination
of low coverage WGS with exon augmentation.

Additionally, we examined the exonic regions (including UTRs) of ACMG
genes, and the whole genome approaches outperform two of the three augmented
exome approaches. This discrepancy is explained by absence of probes for UTR
regions or non-clinical genes in some exome sequencing approaches. For the 30
Q30 coverage threshold, the augmented exomes outperform the whole genomes
for the coding and exonic loci in ACMG genes. This is likely due to overall
lower coverage of the whole genome sequencing approaches compared to exome
approaches.

In clinical practice, variants discovered by next-generation DNA sequencing
are still routinely confirmed with Sanger sequencing before results are returned
to patients and incorporated into care. False positives are therefore easier to
catch and discard, however, it is much more difficult to detect false negatives,
which will arise at loci with inadequate coverage. Therefore, identifying areas
with inadequate coverage is of the utmost importance. Our metric can be ap-
plied to any gene set of interest, and is useful for choosing a platform to use for
sequencing or for evaluating the quality of the sequencing results for an individ-
ual patient. While minimum coverage thresholds may change as technologies
evolve, assessing and reporting the number of bases per gene that fail coverage
thresholds will remain vital.

We recently reported that approximately 8% of 100bp reads are not uniquely
mapped to the human reference genome [25]. Approaches to handling multi-
ply mapped reads range from excluding the read entirely, to placing the read
in all equally-likely locations. Reads that are not uniquely mapped can there-
fore lead to incorrect variant calls. In our analysis, we included only reads
with unique alignments (ie: mapping quality >0), but other applications may
require different quality minimums or gene sets different to those presented
here. We have made available a browser to interact with the data; users can
vary thresholds according to their needs (https://rlgoldfeder.shinyapps.
io/coverage). The pipelines to generate this data are also available on pre-
cisionFDA (Coverage of Key Genes app) and github (https://github.com/
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rlgoldfeder/coverageOfKeyGenes) for users to examine their own genes of
interest, their own datasets, and any mapping quality, base quality, or coverage
thresholds.

5 Conclusions

Making a confident call at every coding position of every gene of interest is
a sine qua non clinical genetic testing. Confident calling requires adequate
read depth and read quality. Here, we present metric to allow comparison
across clinical sequencing products with the aim of non-inferiority with current
technology. What the clinician needs to know is how many base pairs of the gene
of interest are not callable. Thus, the metric describes a sequencing dataset’s
coverage as a function of the absolute number of loci with read quality-depth
below a given threshold in each gene of interest. As exemplar, we evaluate the
coverage of three gene sets by six different sequencing platforms. We hope the
methods and results presented will aid clinical sequencing centers in selecting
sequencing approaches. Our coverage metric sheds light on the limitations of
the next-generation DNA sequencing, which is critical for interpreting results
and informing improvements in chemistry and technology.
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Figure S2: The number of coding loci with <30x coverage by >=Q30 bases from
reads with mapQ>0. (a) Personalis ACE Exome (b) Baylor Clinical Exome (c)
Agilent Clinical Research Exome (d) Nimblegen Exome (e) HiSeq 2500 Whole
Genome (f) HiSeq X Whole Genome. Note that one data point >11,000 omitted
for clarity from panel (e).
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Figure S3: The number of exonic loci with <20x coverage by >=Q20 bases from
reads with mapQ>0. (a) Personalis ACE Exome (b) Baylor Clinical Exome (c)
Agilent Clinical Research Exome (d) Nimblegen Exome (e) HiSeq 2500 Whole
Genome (f) HiSeq X Whole Genome.
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Figure S4: The number of exonic loci with <30x coverage by >=Q30 bases from
reads with mapQ>0. (a) Personalis ACE Exome (b) Baylor Clinical Exome (c)
Agilent Clinical Research Exome (d) Nimblegen Exome (e) HiSeq 2500 Whole
Genome (f) HiSeq X Whole Genome. Note that one data point >11,000 omitted
for clarity from panel (e).
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