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Abstract

The effective population size (Ne) is a major factor determining allele frequency changes

in natural and experimental populations. Temporal methods provide a powerful and sim-

ple approach to estimate short-term Ne. They use allele frequency shifts between temporal

samples to calculate the standardized variance, which is directly related to Ne. Here we

focus on experimental evolution studies that often rely on repeated sequencing of samples

in pools (Pool-Seq). Pool-Seq is cost-effective and outperforms individual-based sequenc-

ing in estimating allele frequencies, but it is associated with atypical sampling properties:

additional to sampling individuals, sequencing DNA in pools leads to a second round of

sampling increasing the estimated allele frequency variance. We propose a new estimator

of Ne, which relies on allele frequency changes in temporal data and corrects for the vari-

ance in both sampling steps. In simulations, we obtain accurate Ne estimates, as long as

the drift variance is not too small compared to the sampling and sequencing variance. In

addition to genome-wide Ne estimates, we extend our method using a recursive partitioning

approach to estimate Ne locally along the chromosome. Since type I error is accounted for,

our method permits the identification of genomic regions that differ significantly in Ne. We

present an application to Pool-Seq data from experimental evolution with Drosophila, and

provide recommendations for whole-genome data. The estimator is computationally efficient

and available as an R-package at https://github.com/ThomasTaus/Nest.
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INTRODUCTION

During experimental evolution studies, populations are maintained for many generations

under specific laboratory conditions (Kawecki et al. 2012; Schlötterer et al. 2015; Long

et al. 2015). For sexual organisms, such as Drosophila, the founder population is derived

from a natural population and maintained in a new environment, typically at a census size of

less than 2000 individuals. With such small population sizes genetic drift causes stochastic

fluctuations in allele frequencies. Under neutrality, the level of random frequency changes

is determined by the effective population size (Ne) (Wright 1931). Furthermore, under

certain conditions, the efficacy of deterministic forces, such as selection, is controlled by

the population size (Charlesworth 2009). For weakly selected alleles the probability of

fixation is directly proportional to the product of Ne and intensity of selection (Fisher 1930;

Kimura 1964; Kimura 1964). Since changes in allele frequency are greatly affected by the

population size, it is fundamental to estimate Ne in order to understand molecular variation

of experimental evolution studies.

Krimbas and Tsakas (1971) estimated Ne using the standardized variance of allele

frequency (F) from longitudinal samples in natural populations of olive flies. The underlying

idea is that under neutral Wright-Fisher evolution, the variance of allele frequency after t

generations is well described by the starting allele frequency and the drift level, which is

inversely proportional to Ne (see also Falconer and Mackay (1996)). However, the fre-

quencies are estimated from a sample, such that F must be corrected for the random errors

due to sampling from the entire population. Nei and Tajima (1981) derived Ne estimates

under two different sampling plans. Nei and Tajima (1981) and Pollak (1983) developed

improved measures of F with reduced variance. Finally, Waples (1989) introduced a gen-

eralized framework that unified the different sampling plans introduced by Nei and Tajima

(1981). Using their framework Jorde and Ryman (2007) proposed an alternative estimator

of Ne that weights alleles differently and reduces the bias of the previous estimators.

With the advent of powerful computers, maximum likelihood-based methods became in-
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creasingly popular (Williamson and Slatkin 1999; Anderson et al. 2000; Wang 2001;

Hui and Burt 2015) in addition to the moment-based approaches discussed above. Likeli-

hood methods have the advantage that they can be extended beyond examining neutrally

evolving isolated populations. For example, they permit to include migration (Wang and

Whitlock 2003) and selection (Bollback et al. 2008; Malaspinas et al. 2012; Math-

ieson and McVean 2013). Although, these methods show less bias than the moment-based

approaches (Wang 2001), they are still computationally demanding, in particular for the

large numbers of markers typically obtained with novel sequencing technologies (Foll et al.

2015).

Estimating Ne with temporal methods requires samples collected at least at two time

points. Alternative methods that use only a single time point are based on linkage dis-

equilibrium (LD) (Hill 1981; Waples and Do 2008; Waples and Do 2010; Waples

and England 2011), heterozygote excess (Pudovkin et al. 1996), molecular co-ancestry

(Nomura 2008), sibship frequencies (Wang 2009; Wang 2013) or combination of sum-

mary statistics using approximate Bayesian computation (Tallmon et al. 2008). LD-based

methods require haplotype data, which limits their applicability to large-scale population

studies.

Although the cost for sequencing has dropped considerably, the separate sequencing of

thousands of individuals in replicate populations in experimental evolution studies is still

out of reach. Sequencing samples in pools (Pool-Seq) can provide a cost-effective alternative

(Schlötterer et al. 2014). Pool-Seq has also been shown to outperform individual-based

sequencing in estimating allele frequencies and inferring population genetic parameters under

several conditions (Futschik and Schlötterer 2010; Zhu et al. 2012; Gautier et al.

2013). For these reasons Pool-Seq has become the basis of many experimental evolution

’Evolve and Resequence’ (E&R) studies (Turner et al. 2011; Schlötterer et al. 2015).

Following the emergence of E&R, many population genetic estimators have been adjusted to

handle the properties of Pool-Seq data (Futschik and Schlötterer 2010; Kofler et al.
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2011; Kofler et al. 2011; Kolaczkowski et al. 2011; Ferretti et al. 2013; Boitard

et al. 2013). To the best of our knowledge, no Ne estimators have been used so far which

account for the peculiarities of Pool-Seq.

In this article, we present a novel temporal method to estimate Ne from pooled samples.

We show that previously proposed estimators can lead to substantial biases, as they neglect

the variance component due to pooled sequencing. We introduce a new model accounting

for the two stage sampling process associated with Pool-Seq data. In the first sampling step

individuals are drawn from the population to create pooled DNA samples. In the second

step, pooled sequencing is modeled as binomial sampling of reads out of the DNA pool. We

show on simulated data that our method outperforms classical temporal Ne estimators. We

then extend our estimators to heterogeneous effective population sizes along a chromosome.

Partitioning DNA sequences into a number of segments is used to obtain separate Ne esti-

mates for each segment. Finally, we present an application to a genome-wide experimental

evolution data set from Drosophila melanogaster (Franssen et al. 2015).

MATERIALS AND METHODS

Two sampling schemes Nei and Tajima (1981) pointed out that our ability to accu-

rately estimate the population size depends on assumptions about the method of sampling

individuals for genetic analyses. They proposed two different sampling schemes. Under the

first scheme (plan I), individuals are either sampled after reproduction, or returned to the

population after examining their genotypes. Nei and Tajima (1981) used the hypergeomet-

ric distribution to model draws of individuals from a starting population. This restricts the

analysis to the assumption that actual size of the population is equal to the effective size. In

contrast, under the second scheme (plan II) sampling takes place before reproduction and

the sampled individuals are permanently removed form the population and their genotypes

do not contribute to the next generation. The authors applied plan II assuming that the

ratio between census and effective population size is large, so that sampling does not have
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an effect on the underlying allele frequency dynamics. In such situations binomial sampling

can be used as an approximation.

Waples (1989) considered binomial sampling out of an infinitely large parental gamete

pool for both sampling schemes. He concluded that the measure of variance under the two

sampling plans differs only in a covariance term. For plan I, there is a positive correlation

between allele frequencies sampled t generations apart because they are both derived from the

same population at generation 0. In contrast, for plan II, the initial sample and individuals

contributing to the next generation can be considered as independent binomial samples, thus

sample frequencies at generation 0 and t are uncorrelated.

Contrary to the previous approaches, we consider two distinct sampling steps at each

time point (Fig. 1). In the first step, we sample individuals out of the population to create

pooled samples for sequencing. Sampling individuals can take place according to either plan

I or plan II. In the second step, we model drawing reads out of the pooled DNA sample.

The estimated allele frequency variance is then corrected for the additional variance coming

from both sampling steps.

For a typical E&R study, outbred experimental populations are created by mixing a large

number of inbred lines (Turner and Miller 2012; Bastide et al. 2013; Huang et al. 2014;

Franssen et al. 2015). The populations are then propagated under the desired experimental

conditions while keeping the census size of the population (N) controlled through time

(Fig. 1). However, the experimenter has no direct influence on the effective populations

size, which is in general, lower than the census size. In E&R studies with Drosophila the

census size rarely exceeds some hundreds of individuals, and sampling usually takes place

after reproduction according to plan I. For organisms maintained at larger sizes, such as

yeast, the sample for genetic analysis is not returned to the population (Burke et al. 2014).

Plan II applies to such cases. Sampled individuals are subsequently pooled together. The

size of the pool can be as large as the whole population. Depending on the experimental

design, it is also possible that only a fraction of the population is sequenced, for instance,
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only females (Tobler et al. 2014; Franssen et al. 2015). Pooled individuals are used to

create DNA libraries, which are in turn, subjected to high throughput sequencing. Sequenced

reads are mapped to a reference genome and filtered for subsequent analyses. Randomness

in sequencing and local structures in the genome lead to a variable coverage level, which we

also take into account when estimating Ne.

[Figure 1 about here.]

Notation We use observed allele frequencies sampled t generations apart to estimate Ne

(Fig. 1). We assume that the population is propagated at constant census size N , and that

N ≥ Ne. We consider only biallelic sites. At each locus the true population allele frequency

at time T = j is denoted by pj, where j ∈ {0, t}. To obtain allele frequency estimates for the

unknown pj, the population is subjected to sampling. In contrast to previous approaches,

we consider two sampling steps (Fig. 1). At T = j, we first sample Sj individuals out of the

population to create a pooled sample for sequencing. Sampling can take place according to

either plan I or plan II, as described above (also shown in Fig. S1). For the second sampling

step, we model Pool-Seq by drawing Rij reads out of the pooled DNA sample at site i. This

permits for variation in sequence coverage. Below we denote the unknown sample allele

frequency among the S0 individuals at the first sampling time point (T = 0) by x, and

the subsequent allele frequency estimate obtained via pool sequencing from R0 reads by x̂.

Similarly, at some T = t, the respective frequencies are denoted by y and ŷ. Note that under

pool sequencing only x̂ and ŷ are observed.

Estimating Ne from temporal allele frequency changes Under neutral Wright-Fisher

evolution the variance in allele frequency (σ2
p) generated by drift after t generations at a

single locus in a diploid population is well described by the following expression

σ2
p = (1− p0)p0

[
1−

(
1− 1

2Ne

)t
]
, (1)
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where p0 is the starting allele frequency (Falconer and Mackay 1996). Wright (1931)

denoted the standardized variance by F = σ2
p/p(1 − p), which leads to a convenient closed

form expression for Ne. Furthermore, if Ne is large enough, F ≈ 1− e−t/2Ne and Ne can be

calculated as

Ne ≈
−t

2 ln(1− F )
. (2)

The relation between Ne and allele frequency changes described in equation (1) was first

used by Krimbas and Tsakas (1971) in natural populations of olive flies. They estimated

the variance using

F = Fa :=
1

a

a∑
i=1

(xi − yi)2

xi(1− xi)
, (3)

where xi and yi (i = 1, . . . , a) are the observed allele frequencies in the samples collected

t generations apart and a is the number of alleles at a specific locus. To eliminate the

contribution of sampling errors to the variance, the total variance Fa was corrected for the

random sampling noise by simply subtracting the corresponding binomial variance. This

approach was further investigated and developed by a number of authors (Pamilo and

Varvio-Aho 1980; Nei and Tajima 1981; Pollak 1983; Waples 1989).

Possible sources of bias in Ne estimators were later investigated by Jorde and Ryman

(2007). The authors pointed out that the expectation over F is typically approximated

by taking the expected values separately for the numerator and the denominator (Turner

et al. 2001). They suggested a different weighting scheme of alleles leading to an alternative

unbiased estimator to measure temporal frequency change.

Correction for two stage sampling We follow the sampling approach described above,

when calculating the correction term for pooled samples. We consider a diploid, random

mating population of size N with discrete generations. Neutral evolution is assumed with

no selection, migration and mutation. Samples are drawn from the population at generation
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T = 0 and t. To model sampling variation, we assume two stage sampling for both sampling

plans as illustrated in Fig. S1. In the first step, we model drawing Sj individuals out

of N to create pooled sequencing samples. We consider diploid populations throughout the

derivation, so that a sample of Sj individuals leads to 2Sj sequences. Sampling is assumed to

be binomial with parameters 2Sj and pj (Waples 1989). In the second step, pool sequencing

a random number Rj of reads is also modeled as binomial sampling.

By calculating the variance of the observed allele frequencies in pooled samples, we are

able to correct for the variation introduced by the two-step sampling. Following Jorde and

Ryman (2007), we use the following expression as the measure for the temporal change in

allele frequency

Fc =

∑a
i=1(x̂i − ŷi)2∑a
i=1 ẑi − x̂iŷi

, (4)

where ẑi = (x̂i + ŷi)/2 and a is the number of alleles (Nei and Tajima 1981). We consider

only biallelic sites, which reduces Fc to (x̂− ŷ)2/(ẑ − x̂ŷ) for a locus. The expectation of Fc

is approximated in the following way

E(Fc) ≈
E(x̂− ŷ)2

E(ẑ − x̂ŷ)
=
V ar(x̂) + V ar(ŷ)− 2Cov(x̂, ŷ)

E(ẑ − x̂ŷ)
. (5)

For both plans, we derive expressions for the numerator and denominator in equation (5)

separately. Here we summarize our main conclusions, details on the derivation are provided

in the supplementary material. With Cj := 1
Rj

+ 1
2Sj
− 1

Rj2Sj
for j ∈ {0, t}, and p denoting

the true population allele frequency in the gamete pool at generation 0, we obtain

V ar(x̂) = p(1− p)C0 , (6)

and

V ar(ŷ) = p(1− p)

[
1− (1− Ct)

(
1− 1

2Ne

)t
]
. (7)
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Following Waples (1989) the denominator in equation (5) reduces to

E(ẑ − x̂ŷ) = p(1− p)− Cov(x̂, ŷ) . (8)

For plan II, the sample allele frequencies at generation 0 and t are uncorrelated, Cov(x̂, ŷ) = 0

and Fc corrected for the noise coming from the two stage sampling is given by

F ′c =
Fc − C0 − Ct

1− Ct

. (9)

For plan I, on the other hand, the sample allele frequency at generation 0 is positively corre-

lated to the sample allele frequency at t because both are derived from the same population

at generation 0. This requires to calculate the sample covariance Cov(x̂, ŷ) in equation (5).

It turns out (see supplementary material for details) that the covariance of x̂ and ŷ is equal

to the variance of p0

Cov(x̂, ŷ) = V ar(p0) = E(p0 − p)2 =
p(1− p)

2N
, (10)

where N is the census size of the population at generation 0. Substituting the inferred

covariance into equation (5) leads to the following corrected variance estimate, F ′c for plan I

F ′c =
Fc

(
1− 1

2N

)
− C0 − Ct + 1

N

1− Ct

. (11)

Ne is then estimated using the corrected variance estimates (equations (9) and (11)) instead

of F in equation (2).

Having long time series, often spanning hundreds of generations, has recently become

commonplace (Barrick et al. 2009; Burke et al. 2010; Burke et al. 2014). The assumption

of t being small, often made when calculating Ne (Krimbas and Tsakas 1971; Nei and

Tajima 1981), can lead to severe bias when approximating 2Ne ≈ t/F . Therefore, instead

of assuming t being small, we use the formula in equation (2) for estimating Ne.

In our genome-wide data set, we apply individual correction terms Cij (j ∈ {0, t}) for

each marker i (i = 1, . . . n) before averaging over the n biallelic loci in a window.
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Simulations We evaluate the performance of our novel estimator on simulated data. Using

the neutral Wright-Fisher model, we simulate allele frequency trajectories at n independent

loci (SNPs) in a population of Ne diploid individuals. Usually our simulations start with

uniformly distributed allele frequencies. Nevertheless, we also assess the performance of our

estimator on simulated data with a starting allele frequency spectrum skewed towards low

frequency variants resembling neutral expectations. To investigate the effect of the ratio

between census and effective population size (r = N/Ne), we increment the population

size to a desired level of N while keeping the allele frequencies unchanged before sampling

takes place. At the start and after t generations samples are taken out of the population.

Pooling individuals is modeled by sampling without replacement. Genome-wide sequence

data typically has uneven coverage among sites, which we model by a Poisson distribution

with a given mean coverage. For every biallelic genomic position, the number of reads

corresponding to the target coverage is determined by binomial sampling. Ne is estimated

between the start and after t generations for n =1000 SNPs in 100 replicate simulations. We

report summary statistics of the resulting Ne estimates across replicates.

Linkage disequilibrium between loci can reduce the number of independent SNPs, thereby

increasing the variance of the estimate. The impact of non-independence between SNPs is

evaluated using whole-genome forward simulations with recombination performed by the

software tool MimicrEE (Kofler and Schlötterer 2014). We generate a diploid founder

population consisting of 2000 simulated haplotypes that mimic a wild population of D.

melanogaster from Vienna (Bastide et al. 2013; Kofler and Schlötterer 2014) and

use the recombination rate of D. melanogaster (Fiston-Lavier et al. 2010). Forward simu-

lations are performed in 10 replicate runs. Allele counts are subjected to binomial sampling

to mimic Pool-Seq with a given sequence coverage. Ne is estimated for non-overlapping

windows, each containing a fixed number of SNPs.
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Estimating Ne on simulated data We denote our estimator corrected for the additional

sampling step, i.e. pooling, by Ne(P ). We compare the performance of Ne(P ) to meth-

ods that correct only for a single sampling step. We assume binomial sampling out of an

infinite gamete pool recommended by Waples (1989) and the weighting scheme of alleles

put forward in Jorde and Ryman (2007). Therefore we decided to compare Ne(P ) to the

estimators proposed by these authors, and denote them by Ne(W ) and Ne(JR), respectively.

We illustrate experimental sampling procedures by considering two major scenarios: (i)

the full population is sequenced as one large pool; (ii) only a subset of the population is used

to create pooled samples. Under scenario (i) we perform only a single binomial sampling

step to represent sampling reads out of the DNA pool. The pool size is set to be equal to

the census size of the population (Sj = N) for our estimators. In this case, the coverage

represents the sample size for estimators that correct only for a single sampling step. For

scenario (ii), we sample individuals without replacement to generate pools of Sj individuals

that are subjected to sequencing. Sequencing reads is modeled by binomial sampling as

before. For this scenario again the coverage is taken as the sample size for Ne(W ) and

Ne(JR) estimators. Note, however, that the latter estimators permit correction only for a

single sampling step, therefore the user has to decide on whether sampling individuals or

reads is corrected for. In general, it is recommended to correct for the sampling step that

contributes a larger extent to the sampling variance.

Genome-wide coverage differences are treated equally by subtracting correction defined

by the corresponding coverage for each site before averaging over the number of SNPs for

all methods.

Change point inference for the genome-wide estimates Selection causes change in

allele frequency at a targeted site and also affects nearby sites through linkage. Consequently,

deviation from the neutral expectation can result in a locally decreased Ne. To detect

patterns of heterogeneous Ne along the genome we partition chromosomes into windows
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of locally homogeneous Ne. To distinguish random fluctuations from systematic changes,

we applied a segmentation algorithm, which guarantees type I error control, in the sense

that the estimated number of windows will not exceed the true one except for a small error

probability α to be specified by the user. The algorithm is implemented in the stepR software

package (Frick et al. 2014). It is related to a statistical multiscale change-point estimator

(SMUCE) that has been suggested for partitioning sequences with respect to GC-content

in (Futschik et al. 2014). As this method requires homogeneous variances, we applied it

to log-transformed Ne estimates calculated genome-wide for non-overlapping windows. For

visualization we back-transformed the obtained step function.

RESULTS AND DISCUSSION

Two-step correction is vital to avoid large bias in Ne estimates for long time

series. Methods that do not correct for the additional sampling step, i.e. pooling, can lead

to substantial bias in Ne estimates. We illustrate this (Fig. 2) on simulated data where the

effective population size is inferred using allele frequency samples from the initial and evolved

populations. We compare our proposed estimator (Ne(P )) to two commonly used estimators

Ne(W ) (Waples 1989) and Ne(JR) (Jorde and Ryman 2007). Figure 2 shows that the

additional correction substantially decreases the bias for almost all data points. Methods

that account only for a single sampling step may be severely biased. For the estimator

Ne(JR) the bias becomes less pronounced with an increasing number of generations. Under

plan I, Ne(P ) is nearly unbiased, and plan II has a slight upward bias when applied on data

simulated under plan I and the samples are taken at very close time points. When samples

are collected only a few generations apart, the variance of Ne(P ) estimators tends to be

larger than that of Ne(W ) and Ne(JR) under both plans.

[Figure 2 about here.]

Plan I and II estimators differ by a factor resulting from the covariance between the

sample frequencies at generation 0 and t (equation (10)), which is inversely proportional
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to the census population size. Consequently, the difference between plan I and II becomes

smaller for increasing N . Waples (1989) investigated how the ratio between census and

effective population size (r = N/Ne) affects the accuracy of the estimators, and concluded

that the ratio of r ≥ 2 is sufficient to reach similar estimates for both sampling schemes.

We tested the performance of Ne(P ) on simulated data with Ne = 100 and N : Ne ratios of

r = 1, 2, 5 with different coverages and pool sizes (Fig. S2-S4). When N = Ne, the Ne(P )

plan I method achieves highly accurate estimates for all time points in contrast to the other

methods (Fig. S2). If, however, Ne(P ) plan II estimator is applied to data simulated under

plan I, we observe an upward bias for small t, which improves with an increasing number of

generations. This pattern is not unexpected since the missing covariance term becomes less

influential in view of the increasing drift variance with more generations. When the entire

population is sequenced as a single pool (P = 100), the plan II estimators of Waples (1989)

and Jorde and Ryman (2007) perform similarly to the Ne(P ) plan I estimator because

the correction for pooling in Ne(P ) cancels out the additional covariance term when P = N

making the term used as F approximately identical to that of Ne(JR). This is a general

pattern irrespective of r.

For r ≥ 2, Ne(P ) plan I remains highly accurate (Fig. S3 and S4). Furthermore, when

increasing the census size under a constant Ne (equivalent to increasing r), the covariance

between sample allele frequencies decreases making the difference between plan I and II al-

most negligible (Waples 1989). Also, the sampling variance becomes proportionally smaller

compared to the drift variance with increasing number of generations between the samples.

This improves our ability to accurately estimate Ne.

Correcting for the additional variance inherent to Pool-Seq leads to an improved perfor-

mance of Ne(P ) compared to the classical methods for both plans. In general, with Pool-Seq

data the extent of the bias in Ne(W ) and Ne(JR) estimates depends on the ratio between

N and P , smaller pool sizes leading to a larger bias. Since we accounted for the sequencing

step with these estimators (see section Estimating Ne on simulated data), decreasing the
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coverage at a given pool size does not change the bias to a large extent but rather increases

the variance of the estimators.

In most of the experimental studies the investigator has control over the census population

size, thus requiring the knowledge of N for Ne(P ) plan I does not restrict the analysis. We

illustrate the performance of Ne(P ) plan I only in subsequent simulations where Ne = N is

used but according to Fig. S3 and S4 Ne(P ) plan I is also highly accurate when r ≥ 2.

We show the coefficient of variation (CV) of the Ne(P ) plan I estimator in Fig. 3. CV

is defined as the ratio between the standard deviation and the mean (CV = σ/µ, where

both σ and µ are estimated from the sample). It measures the relative dispersion of the

distribution of the estimated values. Ne(P ) estimators are highly precise in nearly all cases,

except when the drift variance is negligible compared to the sampling variance (Fig. 3 see

also Fig. S6 and S8 where Ne = 1000, t < 30, P ≤ 100 and c = 50). The bias is coming from

a few oulier estimates, but the median shows more robust results (Fig. S10 and S11). For

plan II estimators, the behavior of the method is similar (Fig. S5 and S7,S9). Note that the

simulations underlying Fig. S5 and S7,S9 have been done under plan I sampling scheme.

[Figure 3 about here.]

Increasing the number SNPs reduces the variance of Ne(P). We test how the number

of loci used to infer Ne affects the accuracy and the precision of the estimates by gradually

increasing the number of independent SNPs from 100 to 10000 (Fig. 4). We observe a larger

variance and a slight downward bias for a small number of SNPs (100 SNPs). Both the

bias and the variance become smaller with a larger the number of SNPs. Some further

improvement is obtained when more than 10K SNPs are used (not shown), but the benefit

of additional independent SNPs levels off. We conclude that n = 1000 independent SNPs

usually provide sufficient precision and accuracy. However, when linkage disequilibrium is

present in a genome-wide data set, the number of truly independent SNPs per window is

reduced and a larger number of loci is recommended.
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[Figure 4 about here.]

Skew towards low frequency variants only moderately increases the variance

of Ne(P). In natural populations, the neutral site frequency spectrum is skewed towards

low frequency variants. Ne(P ) uses a weighting scheme that is not very sensitive to this

skew, see also Jorde and Ryman (2007). This makes it robust with respect to the shape

of the starting allele frequency distribution. We illustrate this with a simulated data set

having a starting allele frequency distribution that is skewed towards low frequency variants

(exponential) as predicted under neutrality. The estimates of Ne from such data sets are

compared to simulated data with matching parameters but uniform starting allele frequency

distribution (Fig. 5). We observe a very slight upward bias with neutral starting allele

frequencies compared to uniform, and a moderate increase in the variance given t ≥ 15.

With increasing number of generations the difference becomes negligible.

[Figure 5 about here.]

The presence of linkage disequilibrium does not severely bias the estimate. We

investigated the sensitivity of our estimator to linkage disequilibrium between loci using

genome-wide neutral simulations with recombination (Kofler and Schlötterer 2014).

To estimate the effect of linkage disequilibrium, we simulated three different rates of recom-

bination: high, normal and no recombination. For the first case, the recombination rate is

set to mimic the behavior of almost independent SNPs. In the normal recombination rate

scenario, we use D. melanoagster recombination rates (Fiston-Lavier et al. 2010). The

effective population size was estimated in non-overlapping windows with a fixed number of

n = 5000 SNPs (Fig. 6). Different levels of linkage disequilibrium affect the number of inde-

pendent loci per window. Nevertheless, we observe only a slight increase in the precision of

the Ne estimates with increasing recombination rate (Fig. 6).

[Figure 6 about here.]
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Genome-wide heterogeneity of Ne is recovered in real data of D. melanogaster.

We analyzed data of a recent E&R study in D. melanogaster (Orozco-terWengel et al.

2012; Tobler et al. 2014; Franssen et al. 2015). In this experiment replicate populations

of 1,000 individuals were subjected to a fluctuating hot environment for 59 generations.

Allele frequency estimates were obtained for founder and evolved populations using Pool-

Seq. Ne was estimated based on the allele frequency changes between founder and latest

evolved populations using Ne(P ) under plan I. We considered non-overlapping windows of

10000 SNPs. To determine statistically significant changes in Ne along the genome we use the

software provided by Frick et al. (2014). This method requires homogeneity of variances.

Since, the variance of estimates obtained with Ne(P ) increases with Ne, the estimates were

log-transformed before applying the partitioning procedure. The obtained step function was

back-transformed to the original scale and is shown for four biological replicates (Fig. 7).

The mean estimates for each chromosome arm as well as across the genome is stable

across replicates (see table 1). As experimental evolution studies often aim to find signals

that are consistent across replicates, this can be an important check of the experimental set

up. On the other hand, we see differences between chromosome arms. For example, the

mean is clearly lower for 3R, emphasizing the added value of spatial analysis compared to

genome-wide estimates.

All estimators mentioned above assume neutrality. Directional selection, however, leads

to deterministic allele frequency changes that generate a larger deviation from the expected

frequency than it would be due to random genetic drift alone. Consequently, estimates of

Ne will be lower in the presence of directional selection. In the D. melanogaster example, Ne

ranges from around 50 to almost 400. Around the centromere of chromosome 2, the estimated

Ne decreases by two-third in replicates 1, 2 and 4. Even more striking, the estimated Ne is

low on the entire chromosome arm 3R and also parts of 3L. Overall, these patterns can be

attributed to strong LD, caused either by low recombination rates around the centromeres

(Chan et al. 2012) or segregating inversions (Kapun et al. 2014) in combination with
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selection potentially on rare variants. These results are consistent with Tobler et al. (2014),

who observed a massive amount of outlier SNPs around the centromere of chromosome 2 and

on 3R. Strong LD, potentially due to selection on rare variants, could explain this inflated

number of hitchhikers. Interestingly, certain regions of the genome show extensive differences

in Ne between the replicates, which might be reflecting different selection histories possibly

due to distinct genomic paths of adaptation.

[Figure 7 about here.]

[Table 1 about here.]

Recommendations for genome-wide data sets Most of the methods proposed previ-

ously are not designed for genome-wide high density SNP data sets. However, the method of

Jorde and Ryman (2007) was successfully used for genome-wide data by Foll et al. (2014).

Reed et al. (2014) also used a similar approach to estimate Ne for whole genome data using

sliding windows. We estimated Ne in windows with a fixed number of SNPs. Using windows

of fixed lengths in base pairs, would affect the variance of the estimator (Fig. 4) but does

not distort the mean. All these approaches however, do not account for the ruggedness of

the recombination landscape and can lead to windows with different levels of linkage dise-

quilibrium in them. To overcome this problem it would be possible to define windows based

on recombination distance. Unfortunately, the lack of haplotype information in the Pool-Seq

data makes it difficult to infer linkage disequilibrium. It is possible however to infer linkage

information from the pooled sequence data using the software LDx (Feder et al. 2012).

For model organisms, such as Drosophila readily available recombination maps can also be

used as a proxy (Przeworski et al. 2001; Kulathinal et al. 2008; Fiston-Lavier et al.

2010). If only a single genome-wide Ne estimate is required, one can alternatively use a set

of randomly distributed SNPs over the genome to obtain Ne estimate.

For our simulations, we considered only effective population sizes that are constant over

time. Fluctuating Ne is a frequent phenomenon in natural populations and can be an im-
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portant component of an experimental design. For example, in repeatedly bottlenecked

populations, the smallest population size dominates the Ne estimate (Luikart et al. 1999;

Charlesworth 2009). But even in strictly controlled populations the experimental regime

can induce changes in Ne. When the population changes in size the estimated Ne is gen-

erally interpreted as the harmonic mean of the effective population sizes over the genera-

tions (Wright 1938; Nei and Tajima 1981; Waples 1989). However, if time series allele

frequency data is available such changes can be detected by estimating Ne from pairwise

comparisons between consecutive time points.

To estimate Ne we used theoretical expectations of the variance in allele frequency af-

ter t generations of neutral evolution. All evolutionary forces (selection, demography, etc.)

that lead to deviations from the neutral expectations will affect our estimate. Neverthe-

less, systematic forces that result in a localized reduction in Ne, can be detected with the

sliding window approach. The Drosophila melanogaster data set illustrates this point, i.e.,

the hypothesized region under selection exactly coincides with the region with reduced Ne

(Orozco-terWengel et al. 2012; Tobler et al. 2014; Franssen et al. 2015).

Using a small number of generations can lead to outlier estimates. In general,

Ne(P ) has a lower bias but larger variance, especially when t is small. We observe outlier

estimates among replicates at early generations (generation 5, Fig. 2 and S2-S4) for Ne(P ).

The deviation from the true Ne is especially large when the sampling variance is large

compared to the drift variance (Ne = 1000, P≤ 100 and c=50, Fig. S8,S9). As pointed

out by Jorde and Ryman (2007) our weighting scheme leads to an increased variance but

a smaller bias compared to other schemes. With this weighting design the signal for the

Ne estimation is predominantly coming from the intermediate frequency variants. Having a

large number of low frequency alleles thus has a similar effect as decreasing the number of

SNPs.

To eliminate potential outliers and an inflated variance we recommend to increase the
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signal to noise ratio by pooling sufficient number of individuals. Using later generations or

increasing the number of SNPs in the analysis also helps to avoid outlier estimates. When

none of these strategies can be applied on the data, we suggest to use the genome-wide

median taken across the estimates from individual windows because it is robust to outliers

(Fig. 6). We also do not observe ouliers when Ne(P ) is applied on the genome-wide data set

of Drosophila melanogaster (table 1).

CONCLUSIONS

Effective population size an important parameter for describing evolutionary dynamics mak-

ing its accurate estimation essential for population genetic studies. Several methods have

been designed to estimate Ne for this purpose and their performance was comprehensively

evaluated on simulated as well as real data (Gilbert and Whitlock 2015; Barker 2011;

Serbezov et al. 2012; Baalsrud et al. 2014; Holleley et al. 2014). These studies mainly

focused on genetic data collected from natural populations, which usually differs from exper-

imental studies in terms of the census population size and sampling scheme. We designed

a method that accurately infers the effective population size in genome-wide data from ex-

perimental populations sequenced in pools. Our approach improves temporal methods by

explicitly correcting for two stages of sampling introduced by pooling and sequencing. Our

results on simulated data confirm that methods that fail to properly account for the two

stages of sampling inherent to Pool-Seq can lead to severely biased Ne estimates.

Pool-Seq data are often considered to be over-dispersed, i.e., displaying more variability

than is predicted by the binomial sampling model (Yang et al. 2012). However, Zhu et al.

(2012) and Futschik and Schlötterer (2010) validated that the error in allele frequency

estimates is well approximated by binomial sampling given that a large enough number of

individuals is pooled. We do not model over-dispersion in our correction term for pooling,

nevertheless, it would be possible to introduce a parameter that accounts for the additional

between-pool variation causing over-dispersion.
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We illustrate the applicability of our method for estimating Ne from experimental data of

Drosophila melanogaster and show that in combination with a recursive partitioning method

we can infer patterns of local variation in Ne along the genome. Additionally, it is possi-

ble to calculate confidence intervals based on χ2 distribution (Nei and Tajima 1981) or

alternatively apply non-parametric bootstrap approach and infer confidence limits based on

sampling SNPs out of the original data set.

Software availability Our proposed estimators along with other methods from the liter-

ature are implemented within the R-package Nest. The package is currently available at

https://github.com/ThomasTaus/Nest.
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Figure 1: Two-step sampling in experimental evolution with Drosophila. In E&R studies,
populations are propagated at a census size (N) defined by the experimenter, which is, in
general, larger than the effective population size Ne. Using temporal methods Ne can be
estimated from the variance in allele frequency in samples taken t generations apart. To get
an accurate representation of allele frequencies in population genetic studies, a large number
of individuals Sj (j ∈ {0, t}) are sampled and pooled. Sampling can take place according to
sampling plan I or II based on the mode of reproduction. Pooled samples are then subjected
to high throughput sequencing. We represent random variation in sequence coverage (Rj,
j ∈ {0, t}) with an additional sampling step (called sampling step 2). We correct for both
sampling steps when estimating Ne in pooled samples. Additionally, we take into account
variable coverage levels across the genome (coverage Rij for site i at T = j) when correcting
for the variance coming from sequencing.
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Figure 2: Performance of different methods to estimate Ne based on simulated data. Sixty
generations of Wright-Fisher neutral evolution with Ne = 100 diploid individuals were sim-
ulated for 1000 unlinked loci (SNPs). Prior to sampling, the population was increased to
a census size of N = 500 individuals at each generation. At the starting population (G0),
and at each indicated time point a sample was taken to create a pool of P=100 individuals.
Sequencing was modeled with an additional subsequent binomial sampling step of a random
number of reads (50 on average) for each SNP. Then Ne was estimated on the resulting data
set by separately contrasting G0 with each of the generations G5, G10, G15, G20, G40 and
G60. We considered the estimators Ne(W ) (Waples 1989), Ne(JR) (Jorde and Ryman
2007) and our Ne(P ). Each box represents results from 100 simulations with identical pa-
rameters. The dashed grey line shows the true value of Ne. Data is simulated under plan I
assumptions and the results of plan I and II estimators are shown in the left and right panel,
respectively.
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Figure 3: Coefficient of variation of Ne(P ) for plan I for various parameter values. Neu-
tral Wright-Fisher simulations were performed with various combinations of the parameters
effective population size (Ne = 100, 500, 1000 diploid individuals), pool size (P = 100, 50)
and coverage (c = 150, 100, 50). P = N indicates scenarios when the whole population is
sequenced as a single pool. For all simulations, N = Ne was used as census size of diploid
individuals. Each value is calculated over 100 simulations. Negative estimates were ex-
cluded when calculating summary statistics. The frequency of negative estimates is listed in
table S1. In situations where the coefficient of variation exceeds one, an inset figure shows
the actual value.
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Figure 4: Effect of the number of SNPs used on the Ne estimates. The effective population
size is estimated using Ne(P ) plan I on simulated data with Ne = N = 100. A total of
P = 100 individuals is pooled and sequenced at a mean coverage of c = 50. Based on 100
simulation runs, Ne is estimated using different numbers of SNPs at multiple time points.
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Figure 5: Influence of the starting allele frequency distribution on Ne(P ) plan I estima-
tor. A comparison between uniform and exponentially distributed (neutral) starting allele
frequencies is shown.
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Figure 6: Effect of linkage disequilibrium. The effect of linkage disequilibrium on our es-
timators was evaluated based on a whole-genome forward simulation with recombination
using the software MimicrEE (Kofler and Schlötterer 2014). Three sets of simulations
were performed with different rates of recombination: high, normal and no recombination.
For each parameter setup, a genome-wide simulation is replicated ten times. The effective
population size was estimated with Ne(P ) plan I in non-overlapping windows of 5000 SNPs
for each replicate. The distribution of Ne estimates across replicates and locations is shown
in the box-plots.
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Figure 7: Genome-wide Ne estimates from an E&R study in D. melanogaster. Ne is estimated
based on the allele frequency changes between founder and evolved populations at generation
59 (Franssen et al. 2015). In the top panel genome-wide estimates calculated with Ne(P )
plan I using non-overlapping windows of 10000 SNPs are shown. Chromosome-wide mean
estimates are shown in table 1. Statistically significant changes in Ne is determined after
log-transformation of the data (bottom panel). Chromosome arms are separated by vertical
bars. Interestingly, the estimates on the X chromosome do not reflect the expectation of Ne

values reduced by three-quarters compared to autosomes.
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Mean Median
X 2L 2R 3L 3R Genome-wide X 2L 2R 3L 3R Genome-wide

R1 257 235 250 193 139 200 256 232 253 186 139 191
R2 284 202 293 215 200 223 274 221 292 207 190 216
R3 312 293 270 192 203 237 333 291 269 191 191 237
R4 266 243 216 165 138 187 252 256 207 160 136 164

Table 1: Genome-wide mean and median Ne estimates from an E&R study in D.
melanogaster. The effective population size is estimated with Ne(P ) plan I in windows
of 10000 SNPs (Fig. 7). The mean and median estimates across windows are shown for
the major chromosome arms. Genome-wide mean and median is taken over the autosomes
excluding chromosome 4.
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