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Abstract 5 

Characterizing species history and assessing the nature and extent of local adaptation is 6 

crucial in conservation, agronomy, functional ecology and evolutionary biology. The ongoing 7 

and constant improvement of next-generation sequencing (NGS) techniques has facilitated the 8 

production of an increasingly growing amount of genetic markers across genomes of non-9 

model species. The study of variation at these markers across natural populations has 10 

deepened the understanding of how population history and selection act on genomes. 11 

However, this improvement has come with a burst of analytical tools that can confuse naïve 12 

users. This confusion can limit the amount of information effectively retrieved from complex 13 

genomic datasets. In addition, the lack of a unified analytical pipeline impairs the diffusion of 14 

the most recent analytical tools into fields like conservation biology. This requires efforts be 15 

made in providing introduction to these methods. In this paper I describe possible analytical 16 

protocols and recent methods dealing with analysis of genome-scale datasets, clarify the 17 

strategy they use to infer demographic history and selection, and discuss some of their 18 

limitations.  19 
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Introduction 28 

Genetic makeup of populations is shaped by multiple historical and selective factors. The 29 

advent of Next-Generation Sequencing (NGS) in the last 20 years has enhanced our 30 

understanding on how intermingled these factors are, and how they can impact genomic 31 

variation. Important results have been gathered on model species, or species with an 32 

economical interest. Such results include, among other examples, an improved perspective on  33 

human history of migrations, admixture and adaptation (e.g. Sabeti et al., 2002; Abi-Rached 34 

et al., 2011; Li and Durbin, 2011), elucidating the origin of domesticated species (e.g. 35 

Axelsson et al., 2013; Schubert et al., 2014), or characterizing the genetic bases of local 36 

adaptation in model or near-model species (e.g. Legrand et al., 2009; Kolaczkowski et al., 37 

2011; Roux et al., 2013; Kubota et al., 2015). These studies have brought insights at an 38 

unprecedented scale on the links between genotype, phenotype and environment. Most of 39 

these studies relied on a precise knowledge of both population history and patterns of 40 

selection, together with functional validation of variants associated to selected phenotypes.  41 

Translation of these methods into non-model species is part of a shift in evolutionary sciences 42 

that aims at better understanding biological diversity at various scales (Mandoli and 43 

Olmstead, 2000; Jenner and Wills, 2007; Abzhanov et al., 2008). Recent breakthroughs 44 

brought by the study of initially non-model species (e.g. White et al., 2010; Ellegren et al., 45 

2012; Weber et al., 2013; Poelstra et al., 2014) have confirmed the value of population 46 

genomics from this perspective. These advances are needed to broaden our view about the 47 

evolutionary process and improve sampling of distant clades.  Ultimately, this process should 48 

provide a more balanced picture than the one brought by the study of a few model species 49 

(Abzhanov et al., 2008). Genomic approaches also have the potential to improve conservation 50 

genetic inference by scaling up the amount of data available (Shafer et al., 2015).  51 

However, the widespread use of sophisticated analytical tools remains challenged by the lack 52 

of communication between fields (Shafer et al., 2015), little user-friendliness of software and 53 

the ever-increasing amount of tools made available. Much effort has been put recently in 54 

addressing these issues, but a lack of clarity subsists and many uncertainties remain. The 55 

application of sometimes complex methods to species with little background has nonetheless 56 

become more accessible, and has the potential to bring valuable information.  57 

In this paper, I propose various methods and suggestions to deal with usual questions in 58 

population genomics and genetics of adaptation in natural populations. I begin with a succinct 59 
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review of methods available to obtain genome-wide polymorphism data before focusing on i) 60 

methods devoted to the study of population demographic history (Figure 1) and ii) methods 61 

aiming at detecting signatures of selection (Figure 2).  62 

 63 

Glossary 64 

SNP: single nucleotide polymorphism. 65 

Variant calling: identifying confidently genomic variants from alignment data (in SAM/BAM 66 

format, see Li et al., 2009). Classical SNP callers include the Genome Analysis Toolkit or 67 

GATK (McKenna et al., 2010), freebayes (Garrison and Marth, 2012), samtools (Li et al., 68 

2009) or Platypus (Rimmer et al., 2014). Other tools call large-scale variants such as 69 

inversions, translocations or copy-number variation (see main text). 70 

Phasing: a process which identifies the alleles that are co-located on the same chromosome 71 

copy.  72 

Pooled sequencing: a protocol where tens or hundreds samples are pooled in a single library 73 

prior sequencing (Futschik and Schlötterer, 2010). This prevents any individual identification 74 

of each sample. 75 

 76 

Obtaining genetic markers and linking them to a genome 77 

Common sequencing methods 78 

I consider here two main ways of dealing with genomics in non-model species: reduced 79 

representation (Davey et al., 2011) and whole-genome resequencing. Reduced representation 80 

allows sampling homogeneously variants across the genome by sequencing DNA fragments 81 

flanking restriction sites. Some of the best-known reduced representation techniques include 82 

RAD-sequencing ( Baird et al., 2008) and Genotyping by Sequencing or GBS (Elshire et al., 83 

2011). Their main interest is their relatively low cost and that they do not require any 84 

reference genome (see Davey et al., 2011 for details). The amount of SNPs ranges from 85 

thousands to millions, which is most of the time enough to retrieve substantial information 86 

about demography and sometimes selection (see Puritz et al., 2014 for a detailed summary of 87 

reduced-representation techniques). 88 
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Whole-genome resequencing requires a reference (at least at a draft stage) and is much more 89 

expensive, especially for species with long and complex genomes. However, this approach 90 

gives a complete overview of structural and coding variation, and allows some of the most 91 

powerful methods currently available to track signatures of selection (see below). Pooled 92 

sequencing (Futschik and Schlötterer, 2010) can be an option to reduce the costs, but restricts 93 

the analysis to methods focusing on allele frequencies, losing most of the information 94 

provided by variation in Linkage Disequilibrium (LD).  95 

Shallow sequencing (1-5X per individual) may be a way to partly overpass this last issue for a 96 

similar cost (Buerkle and Gompert, 2013), but should not be used for methods requiring 97 

phasing and unbiased individual genotypes. Shallow shotgun sequencing also allows 98 

retrieving complete plastomes, due to the representation bias of mitochondrial or chloroplast 99 

sequences. Plastome sequences can provide insightful information about the evolutionary 100 

history of populations or species. Recent work has successfully used shallow sequencing to 101 

reconstruct mitochondrial or chloroplast sequences in plants (Malé et al., 2014), animals 102 

(Hahn et al., 2013) or old and altered museum samples (Besnard et al., 2016). Methods such 103 

as MITObim (Hahn et al., 2013) provide an automated and relatively user-friendly way to 104 

reconstitute plastome sequences, which can then be analyzed as a single non-recombining 105 

marker for phylogeny or population genetics. 106 

Obtain positional information for markers 107 

Whole-genome resequencing requires at least a draft genome, and reduced representations 108 

methods can also benefit from a reference, either to order markers or retrieve information 109 

about the nearest gene of a focal SNP. Methods inferring selection from haplotype extension 110 

and patterns of LD (described further below) require that the relative order of markers on 111 

genome sequence is known. A reference also allows analyzing separately sex chromosomes 112 

(that can be haploid) and autosomes to correct for variation in ploidy between males and 113 

females in gonochoric organisms. Obtaining a draft reference from deep Illumina sequencing 114 

is now relatively common, but requires a good knowledge of assembly methods to choose the 115 

tool adapted to the focal species. Initiatives such as Assemblathon (Bradnam et al., 2013) 116 

have provided valuable insights and advices from this regard. Once a draft is produced, 117 

annotation of features is recommended since it allows linking variation at a locus to its 118 

putative function. This requires either RNA-seq data to be mapped back on the reference or at 119 

least that an annotation from a relatively close species is available.  120 
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It is possible to avoid these steps for species having a close relative already sequenced. Short-121 

reads alignment algorithms like BWA (Li and Durbin, 2009) generally assume relatively low 122 

divergence between reads and reference. For species having less than 3% divergence, reads 123 

may be directly mapped back onto the nearest genome. For more distantly related species, a 124 

possible strategy would be using RAD-seq or GBS, build contigs for each locus with methods 125 

like Stacks (Catchen et al., 2011) or PyRAD (Eaton, 2014), and map those loci on the 126 

reference with BLAT (Kent, 2002) or LASTZ (Schwartz et al., 2003). Using a related 127 

reference requires that synteny is conserved between species. While this assumption is 128 

reasonable in, e.g., birds (Derjusheva et al., 2004), it becomes more doubtful in other clades, 129 

like in plants (Molinari et al., 2008; Soltis et al., 2015). Before conducting a NGS study, it is 130 

therefore important to know how genomes vary in their structure across related species. Some 131 

methods do not even require any reference sequence to call SNPs from raw reads, like kSNP2 132 

(Gardner and Hall, 2013). It is however advised to cautiously filter reads prior calling, since 133 

the method does not distinguish between sequencing errors and actual variants. 134 

Checking for the presence of large structural variants can be informative when performing 135 

whole-genome resequencing. Structural variants include duplications and copy number 136 

variation (CNV), deletions, inversions or translocations. Neglecting this variation can lead to 137 

call spurious SNPs, for example in regions which are single copy in the reference but display 138 

CNV in some individual. This can distort estimates of nucleotide diversity or homozygosity, 139 

biasing analyses based on LD or allele frequencies. These variations can be partly masked by 140 

filtering SNPs on the basis of Hardy-Weinberg equilibrium or sequencing depth. However, 141 

more quantitative methods are available that allow to precisely characterize the nature and the 142 

position of this type of variation, like Delly (Rausch et al., 2012) or Lumpy (Layer et al., 143 

2014).  Regions that display changes in genomic structure can then be excluded for analyses 144 

requiring accurate estimates of diversity (e.g. Rasmussen et al., 2014). On the other hand, 145 

these variations can be used for studying association with traits of interest. 146 

 147 

Assessing population history 148 

Exploring population structure  149 

Checking for population structure is an essential step when performing analyses on genome-150 

level datasets. Neglecting it can bias demographic inferences (Chikhi et al., 2010; Heller et 151 
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al., 2013) or the detection of loci under selection (e.g. Nielsen et al., 2007); thus, checking for 152 

outlier individuals and assessing the global structure is required prior any more sophisticated 153 

analysis. A simple approach that does not assume any a priori grouping is the Principal 154 

Component Analysis (PCA), based on analyzing variance-covariance structure among 155 

genotypes, which can be performed on both individual and pooled data. Methods such as 156 

SMARTPCA (Patterson et al., 2006) or EIGENSTRAT (Patterson et al., 2006) emerged from 157 

this framework. There are many software solutions and packages allowing to perform this 158 

type of analysis, such as SNPRelate (Zheng et al., 2012), implemented in Bioconductor 159 

(Huber et al., 2015), PLINK (Purcell et al., 2007) or GenAbel (Aulchenko et al., 2007). For 160 

large whole-genome data or high-density RAD-seq, reducing SNP redundancy by 161 

subsampling unlinked markers (having low LD or large physical distance between them) is a 162 

way to reduce computation time while keeping the relevant information.  163 

Taking into account the relatedness of individuals is recommended, for example to evaluate 164 

the amount of inbreeding within a population. When each individual in a study is sampled 165 

from a different location or environment, estimating relatedness also provides a way to assess 166 

the genetic distance between them, in relation with geographical or ecological distance (e.g. 167 

Fields et al., 2015). VCFTools (Danecek et al., 2011) provides two ways calculating 168 

relatedness; unadjusted Ajk (Yang et al., 2010) and a kinship coefficient also implemented in 169 

KING (Manichaikul et al., 2010). It also allows calculating Hardy-Weinberg equilibrium. 170 

Population stratification and relatedness can also be explored in PLINK based on pairwise 171 

identity-by-state (IBS) distance or identity by descent (IBD).  172 

Other approaches such as Structure (Pritchard et al., 2000) and fastSTRUCTURE (Raj et al., 173 

2014) allow determining hierarchical population structure by grouping individuals in clusters 174 

without any a priori. FastSTRUCTURE is computationally faster and more efficient with 175 

large SNP datasets. These methods are also more efficient at detecting signatures of 176 

admixture. Geneland (Guillot et al., 2012), available as a R package, allows determining the 177 

optimal number of population in a dataset by optimizing linkage and Hardy-Weinberg 178 

equilibrium within clusters, and is also able to incorporate geographic coordinates in the 179 

model to delineate their spatial organization. It can be useful to characterize the location and 180 

shape of hybrid zones. 181 

In order to properly test for the existence of hierarchical population structure, methods based 182 

on differentiation measures (like Fst) can be used to build phylogenetic trees. POPTREE 183 

(Takezaki et al., 2010) allows to use various differentiation metrics to infer relationships 184 
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between populations. TreeMix (Pickrell and Pritchard, 2012) is a method building a 185 

population tree based on the covariance matrix of population allele frequencies. It allows 186 

tracking admixture events but requires the populations to be defined a priori (e.g. by a 187 

Structure analysis). Other methods can use individual SNP data to reconstruct phylogenies, 188 

like PhyML (Guindon et al., 2010) or RAxML (Stamatakis, 2014). Splitstree (Huson and 189 

Bryant, 2006) is a user-friendly software to compute phylogenies and networks on SNP 190 

datasets and incorporate various methods for phylogeny reconstruction. Other pipelines, like 191 

SNPhylo (Lee et al., 2014), propose a complete framework from SNP filtering to tree 192 

reconstruction that might help obtaining reliable topologies.  193 

While useful to infer topologies, caution is advised when using branches lengths obtained 194 

from SNP-only datasets, e.g. to calculate divergence times between different groups or 195 

species (Leache et al., 2015). For this purpose, it might therefore be easier to extract genes or 196 

RAD contigs from the data and analyze them as DNA sequences in a software like BEAST2 197 

(Drummond and Rambaut, 2007). In RAxML, a recent correction for bias on branch length 198 

has been implemented that requires the number of monomorphic sites to be known (Leache et 199 

al., 2015) when providing only SNP alignment. Dating species or population divergence and 200 

changes in population sizes using SNP data is also possible in SNAPP (Bryant et al., 2012), 201 

although the method requires long computing times when many markers are included. For 202 

dating purpose and resolution of individual and population/species trees, BEAST2 and 203 

BEAST* can also be used on sequence data for moderate-sized datasets (Drummond and 204 

Rambaut, 2007).  205 

As a general word of caution, it is important to remind that RAD-sequencing and related 206 

methods display specific properties that can bias genome-wide estimates of diversity, like 207 

allelic dropout (Arnold et al., 2013). However, this type of markers remains valuable for 208 

phylogenetic estimation, even for distantly related species (Cariou et al., 2013).  209 

To assess how diversity is partitioned across the different groups inferred by the methods 210 

described previously, it is advisable to perform an Analysis of Molecular Variance 211 

(AMOVA). Arlequin (Excoffier and Lischer, 2010) is particularly suited for this task. More 212 

generally, investigating patterns of nucleotide diversity, inbreeding, Fst or variation in LD 213 

between populations and across the genome is useful to have a preliminary idea of the amount 214 

of gene flow, admixture and variation in population sizes. These statistics can be easily 215 

retrieved with VCFTools or PopGenome (Pfeifer et al., 2014). 216 
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Investigating population history with coalescent methods 217 

The coalescent has first emerged to provide population geneticists a way of modeling alleles 218 

genealogy from a sample taken from a large population. Going backward in time, alleles 219 

merge (coalesce) in a stochastic way until reaching their most recent common ancestor 220 

(Kingman, 1982). A variety of methods used and enriched this theoretical framework to 221 

resolve complex population histories and their associated demographic parameters, such as 222 

divergence times, effective population sizes or gene flow. These parameters are usually scaled 223 

by mutation rate per generation. Converting those parameters into demographic estimates 224 

(e.g. time in years) requires that mutation rate and generation time be known or at least 225 

reasonably well estimated, for example from other close species with similar life history. 226 

Most well-known coalescent-based tools dedicated to population genetics include IMa (Hey 227 

and Nielsen, 2007), Migrate-n (Beerli and Palczewski, 2010) or Lamarc (Kuhner, 2009). 228 

Lamarc is the only one taking into account recombination in the model, the other ones 229 

requiring non-recombining blocks of sequence or markers to be used. Although they are 230 

powerful, these methods tend to be computationally slow (Excoffier et al., 2013), since they 231 

require a full evaluation of the likelihood function associated to the model, a procedure that 232 

can be complex with hundreds or thousands of markers. 233 

A way to bypass this issue has been the use of Approximate Bayesian Computation (ABC) 234 

methods, which compare to the actual data a set of simulated data produced by coalescent 235 

simulations under predefined scenarios. By measuring the distance between carefully chosen 236 

summary statistics describing each simulation with those from the observed dataset, it is 237 

possible to infer which scenario explains the data the best. DIYABC (Cornuet et al., 2008) is 238 

a popular and user-friendly software allowing to perform a full ABC analysis (from 239 

simulations to model comparison), although it does not allow yet to model continuous gene 240 

flow between populations. Another approach, which provides more control to the user, 241 

consists in using coalescent simulators such as ms (Hudson, 2002) or fastsimcoal2 (Excoffier 242 

and Foll, 2011). A pipeline allowing to perform all these steps is also available in 243 

ABCToolbox (Wegmann et al., 2010). Fastsimcoal is a bit slower to simulate data, but is 244 

more user-friendly than ms, and more effective when simulating recombination for sequence 245 

data. Once simulations are done, one can compute summary statistics for the simulated 246 

datasets (e.g. with Arlequin when using fastsimcoal2), then use packages like abc in R 247 

(Csilléry et al., 2012) to perform model choice, cross-validation, estimate model 248 

misclassification and demographic parameters. More information on how to perform a proper 249 
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ABC analysis can be found in the work by Csilléry et al. (2010). The main advantage of ABC 250 

is that it allows handling arbitrarily complex models, unlike methods like IMa where the 251 

model is predefined. However, using summary statistics leads to the loss of potentially useful 252 

information. 253 

More recently, new methods based on the allele frequency spectrum (AFS) emerged to 254 

facilitate and speed up the analysis of large SNP datasets. Different patterns of gene flow and 255 

demographic events all shape the AFS in specific ways (e.g. more alleles are likely to be 256 

found at similar frequencies in two recently diverged or highly connected populations). ∂a∂i 257 

(Gutenkunst et al., 2009) does not rely on computationally intensive coalescent simulations 258 

but rather on a diffusion approximation of alleles, and computes likelihoods for the alternative 259 

models provided by the user. However, its current implementation does not handle more than 260 

three populations. More recently, another likelihood-based approach has been implemented in 261 

fastsimcoal2 (Excoffier et al., 2013), that uses coalescent simulations and handles arbitrarily 262 

complex scenarios while not being limited by the number of populations included. These two 263 

methods assume that SNPs are under linkage equilibrium. Including SNPs in strong LD 264 

should not particularly bias model comparison, but can be an issue when estimating 265 

parameters (see fastsimcoal manual for more details). Note that the AFS can also be used as a 266 

set of summary statistics for ABC inference. Using allele frequencies estimated from pooled 267 

datasets should be feasible, although no study explored this possibility to my knowledge. 268 

One drawback when using SNP data without considering monomorphic sites is that the 269 

mutation rate per generation is not directly taken into account. For example, in DIYABC, it 270 

does not matter when a mutation appears in the simulated genealogy, as long as it happens 271 

only once before coalescence, a reasonable assumption for SNP markers. However, this 272 

prevents any conversion of parameters into demographic estimates by using mutation rate. 273 

Again, it is also possible to extract the complete DNA sequence for a set of randomly selected 274 

markers and perform analyses on this dataset including monomorphic sites. Another 275 

possibility consists in a calibration of parameter estimates by including in the analysis a fixed 276 

parameter, such as population size or divergence time. This approach is also feasible when 277 

estimating parameters from the allele frequency spectrum, like in ∂a∂i or fastsimcoal2. 278 

When whole genome data are available, it is then possible to use methods such as those based 279 

on Pairwise Sequentially Markovian Coalescent (PSMC), that require only a single diploid 280 

genome (Li and Durbin, 2011). This method allows tracking changes in population size across 281 

discrete time intervals. While powerful, PSMC is sensitive to confounding factors such as 282 
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population structure (Orozco-terWengel, 2016) that leads to false signatures of expansion or 283 

bottleneck. It also does not allow studying recent demographic events. This is due to the fact 284 

that coalescence events for only two alleles from a single individual in the recent past are 285 

infrequent. However, extensions of the model allowing for several genomes have been 286 

developed to precise population history in the recent past, like MSMC (Schiffels and Durbin, 287 

2014) or diCal (Sheehan et al., 2013). As these methods require that heterozygous positions 288 

be properly called, it is required to correct for low depth of coverage (less than 8-10X) if 289 

needed. Recently an ABC framework, implemented in PopSizeABC, has been proposed to 290 

infer demographic variation from single genomes (Boistard et al., 2016). The summary 291 

statistics used describe variation in LD and the AFS, while being robust to sequencing errors. 292 

This last method does not require phasing, which should limit the impact of phasing errors. 293 

A recent extension of these methods takes into account population structure and aims at 294 

identifying the number of islands contributing to a single genome, assuming it is sampled 295 

from a Wright n-island meta-population (Mazet et al., 2015). Such developments should help 296 

increasing the amount of information retrieved from only a few genomes. However, it is 297 

essential to keep in mind that natural populations are structured and connected in complex 298 

ways, which can bias demographic inferences, even for popular markers such as 299 

mitochondrial sequences (Heller et al., 2013). 300 

Reaching a high level of precision in demographic parameters estimation can be challenging 301 

when perspective is lacking about the evolutionary history of the species considered. At larger 302 

time-scales, the lack of fossil record can make difficult the calibration of molecular clocks. 303 

Thus, for some species, only qualitative interpretation will be possible.  304 

 305 

Screening for selection and association 306 

Selection and its impact on sequence variation 307 

The impact of selection on genetic variation has been extensively studied, but still remains a 308 

central topic in evolutionary biology. Here I describe some features that are associated to 309 

different types of selection.  310 

Selection acts both on correlations i) between alleles and environment at selected loci and ii) 311 

between alleles from different loci, either directly under selection or not. This is reflected 312 
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respectively by i) variation in polymorphism within and between populations and ii) linkage 313 

disequilibrium between loci (Figure 2). A new mutation will see its frequency increase in a 314 

population where it provides a selective advantage (hard sweep). When such an allele arose 315 

recently, a large region around it can remain uniform, especially if selection is strong. As the 316 

allele rises quickly in frequency, it has too little time to recombine with other ancestral 317 

variants. This leads to an increase of linkage disequilibrium between variants associated to the 318 

advantageous mutation, as well as a decrease in nucleotide diversity around the selected locus. 319 

If selection occurs in one population but not others, it may be possible to observe a local 320 

increase in differentiation, like higher Fst values. If selection acts on standing variation or 321 

recurrent mutation, signature of selection can be less clear as several haplotypes surround the 322 

mutation under positive selection (see however Messer and Petrov, 2013; Jensen, 2014 for a 323 

discussion about the relative importance of soft selective sweeps). 324 

Another type of selection is balancing selection, an umbrella term grouping all selective 325 

processes that lead to the maintenance of genetic polymorphism at a locus and to an excess of 326 

common alleles. Such processes include divergent selection (the same allele is under positive 327 

selection in one population and selected against in another one), negative frequency-328 

dependent selection (a rare allele is preferably selected) or heterozygote advantage. In the 329 

case of recent balancing selection, the signature of selection is similar to a partial selective 330 

sweep, with the recently selected allele displaying reduced diversity and higher LD than the 331 

ancestral one. In the case of long-term balancing selection, there is an accumulation of genetic 332 

polymorphism around the selected loci, leading to the maintenance of haplotypes older and 333 

more diverse than in the rest of the genome. This increase in diversity can be associated to 334 

higher local estimates of effective population sizes and effective recombination rates. As 335 

alleles are older, coalescence times tend to be higher and can sometimes predate speciation, 336 

leading to trans-species polymorphism (see Charlesworth, 2006 for a detailed review). In 337 

some cases, an allele under balancing selection is stabilized at a single equilibrium frequency 338 

across populations, which can lead to a signature of lower differentiation compared to 339 

genomic background. There is still a lack of methods aiming at detecting specifically 340 

balancing selection compared to positive selection and recent hard sweeps (but see Fijarczyk 341 

and Babik, 2015). 342 

In the following parts I present tools that can be used to detect signatures of selection. The 343 

methods that these tools implement fall into three main categories (partly reviewed in Vitti et 344 

al., 2013), corresponding to the signature they try to target: i) study of variation in allele 345 
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frequencies and polymorphism, ii) study of variation in linkage disequilibrium and iii) 346 

reconstruction of allele genealogies using the coalescent. Most of these methods assume that 347 

markers are ordered along a genome; although they can also be used to extract individual 348 

markers under selection that can be then be aligned (except for most LD-based methods). 349 

Methods focusing on polymorphism 350 

While demographic forces such as drift and migration will affect the whole genome in a 351 

similar way, local effects of selection should produce discrepancies with genome-wide 352 

polymorphism (Lewontin and Krakauer, 1973). Selection affects allele frequencies and 353 

polymorphism in predictable ways at the scale of single populations. Several statistics 354 

summarize them, like π, the nucleotide diversity (Nei and Li, 1979), Tajima’s D (Tajima, 355 

1989) or Fay and Wu’s H (Fay and Wu, 2000). They are sensitive to population demographic 356 

history, that they allow characterizing as summary statistics in, e.g., ABC analyses. They have 357 

nonetheless the potential to highlight genomic regions displaying clear signatures of selection, 358 

or to confirm selection at candidate genes. For example, balancing selection should lead to an 359 

excess of common polymorphisms, similar to a recent bottleneck, leading to high Tajima’s D 360 

and π values. Purifying selection leads to an opposite pattern, similar to a recent population 361 

expansion, with an excess of rare variants and low diversity. More sophisticated methods 362 

using allele frequency spectrum have been developed to detect positive selection, such as the 363 

recent improvement of the composite likelihood ratio (CLR) test (Nielsen et al., 2005) 364 

performed in SweepFinder2 (Degiorgio et al., 2016).  365 

PopGenome (Pfeifer et al., 2014) is a powerful R package that allows calculating AFS 366 

statistics (including the CLR test) across many genomes, as well as a variety of statistics on 367 

linkage disequilibrium and diversity. It also allows performing coalescent simulations to 368 

contrast observed polymorphism to neutral expectations. It is probably one of the most 369 

comprehensive tools to perform genome-wide analyses. Other possibilities include VCFTools, 370 

POPBAM (Garrigan, 2013) or Biopython libraries. For pooled data, Popoolation (Kofler, 371 

Orozco-terWengel, et al., 2011; Kofler, Pandey, et al., 2011) provides ways to calculate 372 

Tajima’s D and nucleotide diversity, as well as measures of differentiation between 373 

populations. 374 

Understanding the origin of genomic regions under selection highlights the evolutionary 375 

history of adaptive alleles (e.g. Abi-Rached et al., 2011). Advantageous alleles can migrate 376 

from one population to another, or resist introgression from other populations (genomic 377 
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islands of speciation/adaptation). The relative importance of these islands resisting gene flow 378 

after secondary contact has been recently discussed (Cruickshank and Hahn, 2014). Methods 379 

aiming at characterizing heterogeneity in introgression rates are in this context useful and can 380 

also refine the demographic history. A recent ABC framework has been developed to 381 

characterize this heterogeneity  (Roux et al., 2014). Methods such as PCAdmix (Brisbin et al., 382 

2012) can also be used to estimate the relative contributions of putative sources to a given 383 

sink population across the genome. A common test for introgression, available in 384 

PopGenome, is the ABBA-BABA test, summarized by Patterson’s D (Durand et al., 2011). 385 

Another possibility lies in the comparison of absolute and relative measures of divergence 386 

(Cruickshank and Hahn, 2014), such as dxy and Fst, which can be calculated in PopGenome. 387 

Absolute measures of divergence are correlated to the time since coalescence. In the case of 388 

local introgression, both statistics should be reduced. For balancing selection, the decline in 389 

Fst is due to an excess of shared ancestral alleles, which should not impact dxy, or should even 390 

make it higher than genomic background. However, these methods do not prevent false 391 

positives and results should (as usual) be interpreted with caution (Martin et al., 2015). 392 

When an allele is under positive selection in a population, its frequency tends to rise until 393 

fixation, unless gene flow from other populations or strong drift prevents it. It is therefore 394 

possible to contrast patterns of differentiation between populations adapted to their local 395 

environment to detect loci under divergent selection (e.g. displaying a high Fst). However, it is 396 

essential to control for population structure, as it may strongly affect the distribution of 397 

differentiation measures and produce high rates of false positive. First attempts to take into 398 

account population structure and variation in gene flow included FDIST2 (Beaumont and 399 

Nichols, 1996), which modeled populations as islands and aimed at detecting loci under 400 

selection by contrasting heterozygosity to Fst between populations. An extension of this 401 

model, able to take into account predefined hierarchical population structure, is implemented 402 

in Arlequin. More sophisticated methods are now available, dedicated to the detection of 403 

outliers in large genomic datasets. Most of them correct for relatedness across samples, and 404 

are reviewed extensively in the work by Francois et al.(2015). Some methods, like LFMM 405 

(Frichot et al., 2013), aim at detecting variants correlated to environmental factors. 406 

Association methods may help targeting variants undergoing soft sweeps, weak selection or 407 

involved in polygenic control of traits (Pritchard et al., 2010), for which signatures of 408 

selection are subtle and sometimes difficult to retrieve from allele frequencies data. 409 
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Other methods perform a “naïve scan” for outliers on the basis of differentiation, like 410 

BAYESCAN (Foll and Gaggiotti, 2008) which considers all populations to drift at different 411 

rates from a single ancestral pool. Most recent methods, like BAYENV (Günther and Coop, 412 

2013) and its recent improvement, BAYPASS (Gautier, 2015), model demographic history by 413 

computing a kinship matrix between populations. Contrasting allele frequencies for each 414 

locus to the ones expected given this matrix allows testing deviation from neutrality. Those 415 

two last methods also include Bayesian tools to test for association with environmental 416 

features, facilitating further interpretation. BAYENV and BAYPASS also allow using pooled-417 

sequencing data, making these methods polyvalent and possibly useful to many research 418 

teams. However, detecting association between environment and allele frequencies does not 419 

necessarily imply a role for local adaptation. For example, in the case of secondary contact, 420 

intrinsic genetic incompatibilities can lead to the formation of tension zones that may shift 421 

until they reach an environmental barrier where they can be trapped (Bierne et al., 2011). 422 

Again, characterizing population history is required to conclude about the possible 423 

involvement of a genomic region in adaptation to environment.  Sampling strategy must take 424 

into account the particular historical and demographic features of the species investigated to 425 

gain power (Nielsen et al., 2007). The sequencing strategy has also to be carefully picked. 426 

Reduced representation methods do not cover all mutations in the genome and are thus more 427 

likely to miss those actually under selection. Special care in the choice of the restriction 428 

enzyme and determining the expected density of markers is needed to retrieve enough 429 

mutations close to genes under selection. 430 

The methods described above focus on allele frequencies at the population scale, but do not 431 

allow characterizing properly association with a trait varying between individuals within 432 

populations (e.g. resistance to a pathogen, symbiotic association, individual size or flowering 433 

time). For this task, methods performing Genome-wide association analysis (GWAS) are 434 

better suited. Methods such as GenAbel in R (Aulchenko et al., 2007) or PLINK (Purcell et 435 

al., 2007) are powerful tool. Taking into account relatedness between samples and population 436 

history (e.g. using EIGENSTRAT or PC-adjustment corrections in GenAbel or stratified 437 

analyses in PLINK) is required to correct for false positives. This is especially recommended 438 

for species that undergo episodes of selfing or strong bottlenecks, for which sampling 439 

unrelated individuals may be unfeasible.  440 

It is important to keep in mind that uncovering the genetic bases of complex, polygenic traits 441 

remains challenging, even in model species (Pritchard and Di Rienzo, 2010; Rockman, 2012). 442 
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It may be unavoidable in a first step to focus only on traits that are under a relatively simple 443 

genetic determinism. This can however lead to an overrepresentation of loci of major 444 

phenotypic effect, a fact that should be acknowledged when discussing the impact of selection 445 

on genome variation. The fact that loci of major effect are easier to target does not imply that 446 

they are the main substrate of selection (Rockman, 2012). 447 

Detecting selection with methods focusing on LD 448 

LD is increased and diversity is decreased in the vicinity of a selected allele, especially after 449 

recent selection. A class of methods aims at targeting those regions that display an excess of 450 

long homozygous haplotypes, such as the extended haplotype homozygosity (EHH) test 451 

(Sabeti et al., 2002). It is also possible to compare haplotype extension across populations, 452 

with the XP-EHH test (McCarroll et al., 2007) or Rsb (Tang et al., 2007). Individuals 453 

included in the analysis should be as distantly related as possible to improve precision and 454 

avoid an excess of false positives. These approaches are more powerful with a relatively high 455 

density of markers, such as the ones obtained from whole-genome sequencing or high-density 456 

RAD-seq. They also require data to be phased in order to reconstruct haplotypes. This 457 

procedure can be performed with fastPhase (Scheet and Stephens, 2006), BEAGLE 458 

(Browning and Browning, 2011) or SHAPEIT2 (O’Connell et al., 2014). The R package rehh 459 

(Gautier and Vitalis, 2012) allows  calculating these statistics, as well as Sweep 460 

(http://www.broadinstitute.org/mpg/sweep/index.html). Statistics dedicated to the detection of 461 

soft sweeps are also available, like the H2/H1 statistics (Garud et al., 2015), although further 462 

studies are still needed to understand to what extent hard and soft sweeps can actually be 463 

distinguished (Schrider et al., 2015). This last statistics does not require data to be phased. 464 

When the relative order of markers is not known, as it can be the case in RAD-seq studies 465 

without a reference genome, LDna (Kemppainen et al., 2015) can be used to target sets of 466 

markers displaying strong linkage disequilibrium. This approach can be useful not only to 467 

detect selection but also structural variation such as large inversions. 468 

Even hard selective sweeps can be challenging to detect with LD-based statistics (Jensen, 469 

2014). It is advisable to combine several approaches to reach a better confidence when 470 

pinpointing candidate genes for selection. Methods based on LD alone can sometimes miss 471 

the actual variants under selection due to the impact of recombination on local polymorphism 472 

that can mimic soft or ongoing hard sweeps (Schrider et al., 2015).  473 

Detecting and characterizing selection with the coalescent 474 
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When a candidate locus has been identified, it is possible to use coalescent simulations to 475 

evaluate the strength of selection and estimate the age of alleles. A software such as msms 476 

(Ewing and Hermisson, 2010), which is also available in PopGenome, can then be used. This 477 

requires that the neutral history of population be known in order to properly control for, e.g., 478 

population structure and gene flow.  479 

An advantage of full coalescent methods is that they provide a relatively complete picture of 480 

individual loci history, by modeling coalescence, recombination and taking into account 481 

variation in mutation rate. They are however computationally intensive, and thus difficult to 482 

apply to whole genomes. However, recent computational improvements make this procedure 483 

feasible, as illustrated by ARGWeaver (Rasmussen et al., 2014). This method uses ancestral 484 

recombination graphs to model the genealogy of each non-recombining block in the genome. 485 

It allows extracting genealogies for these blocks and provides estimates for local 486 

recombination rate, coalescence time and local effective population size for each block. This 487 

approach is promising to characterize positive, purifying or balancing selection while taking 488 

into account variation in recombination and mutation rate. However, the high stochasticity in 489 

parameters estimation can limit resolution when targeting single genes.  490 

Other methods use the theoretical framework of the coalescent to target sites under positive 491 

selection. A recent method (SCCT) using conditional coalescent trees (Wang et al., 2014) 492 

claims to be faster and more precise in targeting selective sweeps. BALLET (DeGiorgio et al., 493 

2014) is a promising method to characterize ancient balancing selection. Most of those 494 

methods are designed for medium-to-high depth whole-genome resequencing, and require that 495 

individual genotypes be phased and well characterized. 496 

Variants annotation 497 

Characterizing the amount of synonymous or non-synonymous mutations is another way to 498 

detect whether a specific gene undergoes purifying or positive selection. An excess of non-499 

synonymous mutations can signal positive or balancing selection, or a relaxation of selective 500 

constraints on a given gene. This requires that an annotated genome is available. Annotation 501 

of mutations can be done with SNPdat (Doran and Creevey, 2013), or directly in PopGenome, 502 

which can also perform at the genome scale tests of selection such as the MK test (McDonald 503 

and Kreitman, 1991). The MK test compares the amount of fixed and polymorphic mutations 504 

relative to an outgroup, according to their synonymous/non-synonymous state. Another 505 

popular test of selection is the comparison of non-synonymous and synonymous mutations 506 
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between orthologs from different species and can be performed in packages such as PAML 507 

(Yang, 2007).  508 

To recover information about the putative function of a gene or a genomic region, it may be 509 

useful to perform a genome ontology (GO) enrichment analysis. BLAST2GO (Conesa et al., 510 

2005) allows annotating genes by using a database of related species. It also allows 511 

performing GO enrichment analysis. These analyses must be carefully interpreted, depending 512 

on the level of divergence from the closest annotated species. It is important not to jump to 513 

the conclusion that orthologous genes must share the same function. When interpreting the 514 

link between selection and genetic variation, a careful review of literature can fruitfully 515 

complete the conclusions made using GO enrichment analyses.  516 

 517 

Concluding remarks 518 

In this contribution I highlighted different methods currently available to investigate how 519 

history and selection shape diversity in natural populations. It is important to understand that 520 

this dichotomy between selection and demography, while practical, remains artificial, and that 521 

the study of one benefits from studying the other. With the decreasing cost of sequencing it 522 

has been suggested that NGS should broaden quickly our perspective on complex 523 

evolutionary processes, from biogeography (Lexer et al., 2013) to genetic bases of traits 524 

(Hohenlohe, 2014) or the maintenance of polymorphism (Hedrick, 2006). The study of DNA 525 

sequence variation, while already challenging by itself, needs to be combined with other 526 

disciplines such as ecology to be informative (Habel et al., 2015).  Although genome-scale 527 

analyses can be insightful to this regard, it is necessary to be conscious of their limits and to 528 

keep a biological perspective when interpreting their results. To do so, every analysis should 529 

always begin with a proper understanding of the methods used, to avoid using them as black 530 

boxes.  531 

Before launching a project targeting thousands of markers in a species of interest, possibilities 532 

and limits of the chosen protocol must be evaluated. Focusing on species history will not 533 

necessarily require the same sampling strategy than focusing on local adaptation. While a 534 

small number of markers and populations may be enough to recover global structure and infer 535 

robustly demographic parameters, it will not provide enough resolution to target genes 536 

involved in local adaptation. In many cases, a preliminary study focusing on a few markers 537 
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may already inform about the global species history and help to define an adapted design for 538 

NGS.  539 

There is a need for a more collaborative and open culture in biology, allowing the free access 540 

to data and favoring good practices to allow repeatability of analyses (Nekrutenko and Taylor, 541 

2012), although this cultural shift remains challenging (e.g. Mills et al., 2015; Whitlock et al., 542 

2015). However, current challenges are not limited to data sharing, but also include dealing 543 

with the inflation of bioinformatics tools that sometimes overlap. Instead of working 544 

independently, researchers designing those tools could collaborate to propose free, robust and 545 

unified pipelines (Prins et al., 2015). Such initiatives, like Galaxy (Goecks et al., 2010) or 546 

Bioconductor (Huber et al., 2015) are nonetheless emerging ; this should facilitate the 547 

emergence of a unified framework to limit the time dedicated to data analysis and focus on 548 

biological questions.  549 

 550 
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Figures 904 

Figure 1: Summary of methods assessing the demographic history of populations (middle 905 

panel). References are provided in the main text. 906 

Figure 2: Summary of methods dedicated to the detection of various signatures of selection in 907 

the genome. In this simple example, the mutation on the left is under positive selection 908 

in one population (red) but not the other (black). The mutation on the right is under 909 

ancient balancing selection in the two populations. 910 
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