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Abstract 1 

Several recent studies have demonstrated that the bottom-up signaling of a visual stimulus is 2 

subserved by interareal gamma-band synchronization, whereas top-down influences are mediated by 3 

alpha-beta band synchronization. These processes may implement top-down control of stimulus 4 

processing if top-down and bottom-up mediating rhythms are coupled via cross-frequency interaction. 5 

To test this possibility, we investigated Granger-causal influences among awake male macaque 6 

primary visual area V1, higher visual area V4 and parietal control area 7a during attentional task 7 

performance. Top-down 7a-to-V1 beta-band influences enhanced visually driven V1-to-V4 gamma-8 

band influences. This enhancement was spatially specific and largest when beta-band activity 9 

preceded gamma-band activity by ~0.1 s, suggesting a causal effect of top-down processes on 10 

bottom-up processes. We propose that this cross-frequency interaction mechanistically subserves the 11 

attentional control of stimulus selection. 12 

Significance Statement 13 

Contemporary research indicates that the alpha-beta frequency band underlies top-down control, 14 

while the gamma-band mediates bottom-up stimulus processing. This arrangement inspires an 15 

attractive hypothesis, which posits that top-down beta-band influences directly modulate bottom-up 16 

gamma band influences via cross-frequency interaction. We evaluate this hypothesis determining that 17 

beta-band top-down influences from parietal area 7a to visual area V1 are correlated with bottom-up 18 

gamma frequency oscillations from V1 to area V4, in a spatially specific manner, and that this 19 

correlation is maximal when top-down activity precedes bottom-up activity. These results show that for 20 

top-down processes such as spatial attention, elevated top-down beta-band influences directly 21 

enhance feedforward stimulus induced gamma-band processing, leading to enhancement of the 22 

selected stimulus.  23 
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Introduction 24 

Many cognitive effects in vision can only be explained by invoking the concept of top-down influences 25 

(Gilbert and Sigman, 2007). For example, when top-down influences pre-allocate attention to specific 26 

spatial locations, stimulus processing is more accurate and/or faster. Correspondingly, neurons in 27 

higher visual areas show enhanced firing when processing attended stimuli. These neurophysiological 28 

consequences of top-down control must be mediated by corresponding anatomical projections. 29 

Indeed, anatomical studies have documented projections in the top-down direction that are as 30 

numerous as bottom-up projections. Bottom-up and top-down projections show different characteristic 31 

laminar patterns of origin and termination, and the pattern of interareal pairwise projections abides by 32 

a global hierarchy (Felleman and Van Essen, 1991; Hilgetag et al., 1996; Markov et al., 2014). 33 

Recently, it has been shown in both macaque and human visual cortex, that the pattern of anatomical 34 

projections is closely correlated to a pattern of frequency-specific directed interareal influences. 35 

Influences mediated by bottom-up projections are primarily carried by gamma-band synchronization; 36 

influences mediated by top-down projections are primarily carried by alpha-beta-band synchronization 37 

(Bastos et al., 2012; Bosman et al., 2012; Grothe et al., 2012; Jia et al., 2013; van Kerkoerle et al., 38 

2014; Bastos et al., 2015b; 2015c; Michalareas et al., 2016). A similar association of higher frequency 39 

bands with bottom-up and lower frequency bands with top-down signaling has also been found in 40 

other systems (Colgin et al., 2009; Bieri et al., 2014; Fontolan et al., 2014) and related to respective 41 

task demands (von Stein and Sarnthein, 2000; Buschman and Miller, 2007).  42 

Here, we investigate directly whether top-down influences actually modulate bottom-up influences. We 43 

simultaneously assess influences in both directions through multi-area electrophysiology and 44 

frequency-resolved Granger causality analysis. We find that on an epoch-by-epoch basis, top-down 45 

beta-band influences enhance bottom-up gamma-band influences. This effect is spatially specific, i.e. 46 

bottom-up gamma-band influences depend most strongly on the top-down beta-band influences that 47 

are directed to the origin of the bottom-up influence. Spontaneous enhancements in top-down beta-48 

band influences are followed ~0.1 s later by enhancements in bottom-up gamma-band influences, 49 

suggestive of a causal relation.  50 

We suggest that this is a mechanism for the implementation of spatially selective attention. Attentional 51 

control areas in posterior parietal cortex contain maps of visual space, with neuronal ensemble activity 52 
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describing the spatial location of a subject’s attention (Bisley and Goldberg, 2003). These neurons 53 

likely exert top-down beta-band influences on retinotopically corresponding parts of early visual cortex, 54 

which in turn enhance the bottom-up forwarding of visual stimuli. 55 

Materials and Methods 56 

Visual stimulation and behavioral task. The experiment was approved by the ethics committee of the 57 

Radboud University Nijmegen (Nijmegen, The Netherlands). Two adult male macaque monkeys 58 

(monkey K and monkey P, both macaca mulatta) were used in this study. During experiments, 59 

monkeys were placed in a dimly lit booth facing a CRT monitor (120 Hz non-interlaced). When they 60 

touched a bar, a fixation point was presented, and gaze had to remain within the fixation window 61 

throughout the trial (monkey K: 0.85 deg radius, monkey P: 1 deg radius), otherwise the trial would be 62 

terminated and a new trial would commence. Once central fixation had been achieved and a 63 

subsequent 0.8 s pre-stimulus interval had elapsed, two isoluminant and isoeccentric drifting 64 

sinusoidal gratings were presented, one in each visual hemifield (diameter: 3 deg, spatial frequency: 65 

≈1 cycle/deg, drift velocity: ≈1 deg/s, resulting temporal frequency: ≈1 cycle/s, contrast: 100%). Blue 66 

and yellow tints were randomly assigned to each of the gratings on each trial (Fig. 1A). Following a 67 

random delay interval (monkey K : 1 - 1.5 s; monkey P : 0.8 - 1.3 s), the central fixation point changed 68 

color to match one of the drifting gratings, indicating that this grating was the target stimulus, i.e. the 69 

fixation point color was the attentional cue. When the target stimulus was positioned in the visual 70 

hemifield contralateral to the recorded hemisphere, we refer to this condition as attend-contra, 71 

whereas when the target was in the ipsilateral hemifield with respect to the ECoG grid, this condition is 72 

labeled attend-ipsi. Either the target or distracter stimulus could undergo a subtle change in shape 73 

consisting of a transient bending of the bars of the grating (0.15 s duration of the full bending cycle). 74 

This change could occur at any monitor refresh from 0.75 s to 5 s (monkey K), and 4 s (monkey P) 75 

after stimulus onset. Bar releases within 0.15 - 0.5 s after target changes were rewarded. If stimulus 76 

changes occurred before the cue indicated which stimulus was the target, reports were rewarded in a 77 

random half of trials. Bar releases after distracter changes terminated the trial without reward. Trials 78 

were pooled from both contra and ipsi conditions, except where explicit comparisons of these 79 

conditions were made. 80 
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Neurophysiological recordings and signal preprocessing. LFP recordings were made via a 252 81 

channel electrocorticographic grid (ECoG) implanted subdurally over the left hemisphere (Rubehn et 82 

al., 2009). Data from the same animals, partly overlapping with the data used here, have been used in 83 

several previous studies (Bosman et al., 2012; Pinotsis et al., 2014; Brunet et al., 2014a; 2014b; 2015; 84 

Richter et al., 2015; Vinck et al., 2015; Bastos et al., 2015b; 2015c; Lewis et al., 2016). Recordings 85 

were sampled at approximately 32 kHz with a passband of 0.159 – 8000 Hz using a Neuralynx Digital 86 

Lynx system. The raw recordings were low-pass filtered at 250 Hz, and downsampled to 1 kHz. The 87 

electrodes were distributed over eight 32-channel headstages, and referenced against a silver wire 88 

implanted onto the dura overlying the opposite hemisphere. The electrodes were re-referenced via a 89 

bipolar scheme to achieve 1) greater signal localization 2) cancellation of the common reference, 90 

which could corrupt the validity of connectivity metrics, 3) to reject headstage specific noise. The 91 

bipolar derivation scheme subtracted the recordings from neighboring electrodes (spaced 2.5 mm) 92 

that shared a headstage, resulting in 218 bipolar derivations, henceforth referred to as “sites” (see 93 

Bastos et al. (2015c) for a detailed description of the re-referencing procedure). The site locations are 94 

shown as spheres in Figure 1b (monkey K: light gray, monkey P: black).  95 

All signal processing was conducted in MATLAB (MathWorks, USA) and using the FieldTrip toolbox 96 

(http://www.fieldtriptoolbox.org/) (Oostenveld et al., 2011). Raw data were cleaned of line noise via the 97 

subtraction of 50, 100, and 150 Hz components fit to the data using a discrete Fourier transform. 98 

Following trial epoching (see below for details), epochs for each site were de-meaned by subtracting 99 

the mean over all time points in the epoch. Epochs exceeding 5 standard deviations of all data from 100 

the same site in the same session were rejected. In addition, epochs were manually inspected and 101 

epochs with artifacts were rejected. The remaining epochs were normalized by the standard deviation 102 

across all data in all epochs from the same site in the same recording session. Subsequently, all 103 

epochs of a given site were combined across sessions. 104 

Region of interest definition. Three regions-of-interest (ROIs) were selected for the current study: V1, 105 

V4, and area 7A (referred to simply as “7A”). ROIs were defined based on comparison of the electrode 106 

locations (co-registered to each monkey’s anatomical MRI and warped to the F99 template brain in 107 

CARET (Van Essen, 2012), with multiple cortical atlases of the macaque (see Bastos et al. (2015c) for 108 

a detailed description). Recording sites composing each ROI were co-registered to a common 109 
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template (INIA19, (Rohlfing et al., 2012)), as were the Paxinos ROI definitions (Paxinos et al., 1999). 110 

The V1/V2 combined definition of Paxinos et al. (1999), is shown in Figures 1B, 3G (red) for simplicity 111 

due to uncertainty across atlases of the V1/V2 border. Recording site selection was based on multiple 112 

atlases with no recording sites selected that were believed to belong to area V2. Based on these ROI 113 

definitions, 77 recording sites were selected from area V1 (monkey K: 29, monkey P: 48), 31 from 114 

area V4 (monkey K: 17, monkey P: 14), and 18 from area 7A (monkey K: 8, monkey P: 10). 115 

Segmenting data into periods and epochs. Each successfully completed trial contained three periods: 116 

The fixation, the stimulation and the attention period. The fixation period was the time between fixation 117 

onset and stimulus onset. During the fixation period, monkeys fixated on a fixation point on a gray 118 

screen, and there was no stimulus presented and no cue had been nor was presented during that 119 

time. The stimulation period was the time between onset of the stimuli and either a change in one of 120 

the stimuli or cue onset. During the stimulation period, monkeys kept fixation, the stimuli were 121 

continuously present, one tinted yellow the other blue, chosen randomly, and the fixation point had not 122 

yet assumed a color, and thereby the attentional cue had not been given. The attention period was the 123 

time between cue onset and a target or distracter change, whichever occurred first. During the 124 

attention period, monkeys kept fixation, the stimuli were continuously present with their tints, and the 125 

fixation point was tinted in one of these colors, thereby providing the attentional cue.  126 

The fixation, stimulation and attention periods all were of variable lengths across trials. The spectral 127 

analysis was based on epochs of fixed lengths. Therefore, the task periods were cut into epochs. 128 

Longer trials contributed correspondingly more epochs. We aimed at excluding data soon after events, 129 

like stimulus onset and cue onset, to minimize effects of post-event transients and non-stationarities 130 

on the metrics of rhythmicity and synchronization. Therefore, from the fixation period, we used the last 131 

0.5 s before stimulus onset; from the stimulation period, the first 0.3 s after stimulus onset were 132 

discarded; for the attention period, the first 0.3 s after cue onset were discarded. 133 

For the analyses of Figure 2 and Figure 3, the remaining parts of the described periods were 134 

segmented into 0.5 s epochs with 60% overlap. This overlap allows for the application of Welch’s 135 

method (Welch, 1967) and was selected as an optimal overlap for the multitaper method, while 136 

maintaining a reasonable computational load (Thomson, 1977; Percival and Walden, 1993). This 137 

resulted in 6822 fixation epochs (Monkey K: 3384, Monkey P: 3438), 13675 stimulation epochs 138 
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(Monkey K: 8109, Monkey P: 5566), and a total of 16212 attend epochs (Monkey K: 7275, Monkey P: 139 

8937), of which 8313 were attend-contra epochs (Monkey K: 3819, Monkey P: 4494) and 7899 were 140 

attend-ipsi epochs (Monkey K: 3456, Monkey P: 4443). 141 

For the analyses of Figures 4-7, the same procedure was followed, but using only the attention period 142 

and segmenting it into epochs without overlap, because the correlation analyses shown in these 143 

figures require independent epochs. This resulted in fewer epochs, totaling 6414 attend epochs 144 

(Monkey K: 2655, Monkey P: 3759). 145 

For the analyses of Figure 8, the attention period was segmented into many overlapping 0.5 s epochs, 146 

with epochs centers stepped by 0.005 s and epochs fully contained within 0.3-2 s after cue onset. This 147 

was done, because the analysis required GC influence time series. It resulted in a total of 878 time 148 

series (Monkey K: 398, Monkey P: 480). 149 

Spectral Analysis of power, phase locking and directed influences. The 0.5 s epochs were tapered and 150 

Fourier transformed using the Fast Fourier Transform (FFT). For frequencies from 0-50 Hz, a Hann 151 

taper was utilized, whereas for frequencies above 50 Hz, the multitaper method (MTM) was used to 152 

improve the spectral concentration of the gamma rhythm (Thomson, 1982; Percival and Walden, 153 

1993). We applied 5 tapers, resulting in a spectral smoothing of +/- 6 Hz. All epochs were zero-padded 154 

to 1 s, resulting in a spectral resolution of 1 Hz. The coefficients resulting from the FFT were used to 155 

determine power-spectral densities (PSDs) and cross-spectral densities (CSDs), which are the basis 156 

for the two employed connectivity metrics: pairwise phase consistency (PPC) (Vinck et al., 2010), and 157 

Granger causality (GC) (Granger, 1969; Bressler and Seth, 2011). For the display of power spectra, 158 

the power dropoff with frequency, often referred to as 1/f, was partly compensated by multiplying 159 

power values at each frequency by the respective frequency values; for example, the power at 40 Hz 160 

was multiplied by 40 (Sirota et al., 2008) (Fig. 2A-F). The PPC metric (Fig. 2G-J, Fig. 3A, B), in 161 

contrast to the classic coherence metric, does not contain a sample-size bias, that is, it can be directly 162 

compared between different numbers of epochs. The GC metric (Fig. 3C-F) was computed directly 163 

from the CSDs, using non-parametric spectral matrix factorization, in contrast to the traditional 164 

parametric method based on autoregressive modeling (Dhamala et al., 2008). Connectivity metrics 165 

were computed for all interareal site pairs of the ROI pairs V1-V4 and V1-7A.  166 
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Statistical comparison of spectral metrics. Statistical comparison of interaction metrics between 167 

conditions used non-parametric randomization, entailing correction for multiple comparisons across 168 

frequencies (Maris and Oostenveld, 2007). We illustrate this for PPC. The observed PPC spectra 169 

(without randomization) are derived by 1) Calculating PPC spectra across all epochs of a given 170 

condition in a given animal, separately for all site pairs of the relevant ROI pair, 2) Averaging PPC 171 

spectra across those site pairs, 3) Averaging across the two animals after aligning the peaks of the 172 

respective frequency bands. We performed 1000 randomizations, each constituting the null 173 

hypothesis. For each randomization, the following steps were performed: 1) Epochs were randomly 174 

distributed between conditions. 2) The same steps as for the observed PPC spectra were followed. 175 

3) The maximal absolute difference value across all frequencies was retained and placed into the 176 

randomization distribution. The observed differences were compared against the distribution of 177 

maximal absolute differences. Observed absolute difference values greater than the 97.5th percentile 178 

of the randomization distribution were considered significant at p<0.05. The selection of the maximal 179 

absolute difference value per randomization implements the correction for multiple comparisons 180 

across frequencies (Nichols and Holmes, 2002). This procedure was used for both PPC and 181 

GC influences spectra, separately for the respective frequency bands, either comparing stimulation to 182 

fixation or attend-contra to attend-ipsi. 183 

The GC influence metric is known to be biased by sample size (Bastos and Schoffelen, 2015a), thus 184 

the number of epochs per attention condition needed to be balanced for each monkey. This was 185 

accomplished by finding the condition with the fewest epochs, and randomly selecting this number of 186 

epochs from the other condition. 187 

The comparison of top-down versus bottom-up GC was performed on the pooled data from the attend-188 

contra and attend-ipsi conditions. Since this was a within-condition comparison, no balancing of epoch 189 

numbers was needed, and all epochs from both attention conditions were used. The statistical 190 

analysis of the difference between top-down and bottom-up GC could not be obtained using a non-191 

parametric randomization framework, because top-down and bottom-up GC are not properties of 192 

specific sets of epochs, but rather are expressed by all trials simultaneously. Therefore, an alternative 193 

statistical approach was used, namely the bootstrap (Efron and Tibshirani, 1994). Like with the 194 

randomization approach, the statistic of interest (in this case the top-down/bottom-up GC difference) is 195 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 11, 2017. ; https://doi.org/10.1101/054288doi: bioRxiv preprint 

https://doi.org/10.1101/054288


 

Richter et al., Top-down beta enhances bottom-up gamma. 

 

9

recomputed on each bootstrap resample, giving rise to a distribution of surrogate values. Following 196 

Efron and Tibshirani (1994), a confidence interval was constructed from the surrogate distribution. To 197 

assess the statistical significance at p<0.05 (two-tailed), we find the 2.5th and 97.5th percentile values 198 

from the surrogate distribution of differences between top-down and bottom-up GC. This naturally 199 

forms the 95% confidence interval such that if zero lies outside of this interval, we may conclude that 200 

the result is significant at a level of p<0.05. This method does not control for multiple comparisons, but 201 

it can be easily modified to do so using the same logic as employed by Maris and Oostenveld (2007). 202 

We performed 1000 bootstrap resamples. For each resample we determined the absolute difference 203 

across frequencies between the bootstrap resample spectrum and the average of all bootstrap 204 

resamples, and retained the maximum of this value across frequencies. Thus, we are guaranteed to 205 

form the largest confidence interval possible across frequencies and in so doing construct an omnibus 206 

confidence interval that controls for the multiple comparisons. This confidence interval is applied to 207 

each frequency, and where it does not contain zero, the result is significant at p<0.05. To conduct 208 

group level statistics, the omnibus statistic is derived from the mean of each bootstrap resample of the 209 

difference between top-down and bottom-up spectra across both monkeys (first averaged within-210 

subject across pairs), such that the mean of the empirical difference across the monkeys can be 211 

assessed for significance. 212 

Median split analysis. For the median split analysis, we used a jackknife approach, which leaves out 213 

one epoch at a time. The remaining epochs form a jackknife replication (JR). There are as many JRs 214 

as there are epochs. 7A-to-V1 beta-band GC (beta peak ±1 Hz) was computed for all JRs. The 215 

resulting values were median split, and V1-to-V4 GC computed for the corresponding sets of epochs. 216 

The jackknife procedure inverts the distribution of single-epoch GC values (Richter et al., 2015), such 217 

that the upper half of JR values corresponds to the lower half of the true single epoch values. The 218 

observed differences in V1-to-V4 GC were tested for significance as described for the spectral 219 

metrics, using 200 randomizations. The analysis always included a 7A-to-V1 site pair and a V1-to-V4 220 

site pair, sharing the same V1 site. We refer to this configuration as a triplet, or sometimes as 221 

7A-to-V1-to-V4 triplet. There was a total of 10664 triplets (Monkey K: 3944, Monkey P=6720). The 222 

median split analysis is presented in three forms: 1) for an example triplet, 2) for all triplets, followed 223 

by averaging of V1-to-V4 GC, 3) for median splits based on the averaged 7A-to-V1 GC, followed by 224 
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averaging of V1-to-V4 GC. For approaches 2) and 3), individual peak frequencies were aligned across 225 

monkeys. The median split analysis was repeated for the inverse direction, splitting epochs based on 226 

V1-to-V4 gamma-band GC jackknife replications (average of the peak ± 5 Hz), followed by averaging 227 

of 7A-to-V1 GC. 228 

Binning of sorted trials. To determine correlation values after sorting and binning the data, JR values 229 

of 7A-to-V1 beta-band GC were sorted and binned into either 5, 10, 50, or 100 bins of equal size. Per 230 

bin, JR values of 7A-to-V1 beta-band GC and of V1-to-V4 gamma GC were averaged. The Spearman 231 

rank correlation was determined across bins. When data were combined across monkeys, correlation 232 

coefficients were averaged across triplets for each monkey, and then averaged across monkeys. 233 

Statistical testing was based on permutations of bin order. Per permutation, bin order was 234 

randomized, and correlation coefficients were computed and averaged as for the observed data. This 235 

was applied 10000 times, resulting in minimal p-values of 0.0001. 236 

Jackknife Correlation. We aimed at quantifying the correlation between epoch-by-epoch fluctuations in 237 

two GC influences. This is normally precluded by the fact that GC influences are not defined per single 238 

data epoch (without substantially sacrificing spectral resolution and/or signal-to-noise ratio). Therefore, 239 

we used the Jackknife Correlation (JC), which quantifies the correlation by first calculating GC 240 

influences for all leave-one-out subsamples (i.e. the jackknife replications of all epochs) and then 241 

correlating these values (Richter et al., 2015). For each leave-one-out subsample, the GC or any other 242 

smooth function F of the data can be defined as follows: 243 

 244 

 ��� � ����, ��, … , ����, ����, … , ��� (1) 

 245 

, where x specifies the pair of recording sites and j specifies the index of the left-out observation, here 246 

the epoch. Attend contra and attend ipsi conditions were combined for the JC analysis. The JC is 247 

defined using the following formula: 248 

 249 
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 �	���� � 1� 
 1 � ���� 
 ������ ��

�	�

��
� 
 �
���� � (2) 

 250 

, where � is defined as the number of jackknife replications and is equal to the total number of epochs, 251 

��� and �
�  are the jackknife replications, ���  and �
�  are the means of the jackknife replications, and ��� 252 

and ��� are the standard deviations of the jackknife replications. To use the JC with the Spearman 253 

correlation metric, we applied the above formula on the ranks of ��� and �
� . 254 

For the statistical analysis of the observed JC values, we created a distribution of 1000 JC values 255 

under a realization of the null hypothesis of independence between the 7A-to-V1 and V1-to-V4 GC 256 

components of each triplet. This was realized by calculating JC between randomly permuted orderings 257 

of jackknife replications of 7A-to-V1 and V1-to-V4 GC influences, which is equivalent to calculating the 258 

JC between GC influences after leaving out a random epoch for the 7A-to-V1 GC and a random epoch 259 

for the V1-to-V4 GC influence without replacement. To control for multiple comparisons across the 260 

frequency-frequency combinations, the max-based approach (see above) was again employed. For 261 

each permutation, the maximum absolute Spearman’s rho value was selected, giving rise to an 262 

omnibus distribution of surrogate correlation coefficients. For the example triplet, the observed values 263 

were compared to the distribution of maximum absolute surrogate correlation values. For the average 264 

across triplets, the average was first calculated over triplets, then over monkeys, after aligning to their 265 

respective peak frequencies. For statistical testing, the same randomization was applied to all triplets 266 

of a given monkey, subsequent averaging was performed as for the observed data, and the maximum-267 

based multiple comparison correction was applied as for the example triplet. An additional JC analysis 268 

first averaged all 7A-to-V1 site pairs and all V1-to-V4 site pairs to form one triplet per monkey. JC 269 

values were then averaged over monkeys. For statistical testing, the randomization was applied to this 270 

triplet per monkey, followed by averaging over monkeys, and the max-based multiple comparison 271 

correction. 272 

For testing spatial specificity, we analyzed recording site triplets, which did not share the same V1 site 273 

(see Results for additional details): 7A-to-V1aV1b-to-V4. Since a vast number of such triplets exist, yet 274 

we wished to select a number equal to the original number of triplets to control potential statistical 275 
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bias, we randomly selected a number of 7A-to-V1aV1b-to-V4 triplets that matched the original number 276 

of 7A-to-V1-to-V4 triplets evaluated for each monkey. We repeated this procedure 100 times and 277 

averaged the outcomes. Results were plotted against the average distance between the two V1 sites, 278 

V1a and V1b, obtained for each distance interval. 279 

Weighted Jackknife Correlation. JCs might be particularly strong for triplets with strong 7A-to-V1 beta-280 

band GC and/or strong V1-to-V4 gamma-band GC. To test for this, we weighted JC by multiplying it 281 

with the product of the 7A-to-V1 beta and the V1-to-V4 gamma GC magnitudes. Weights were 282 

normalized such that the average weight across triplets was one. The weighted and the unweighted 283 

JC values were separately averaged per monkey and then across monkeys. Statistics were based on 284 

random exchanges between weighted and unweighted values, within each monkey, and subsequent 285 

averaging as for the observed data. Randomization was applied 1000 times.  286 

Lagged Jackknife Correlation (LJC). We were interested in whether the correlation between top-down 287 

beta GC and bottom-up gamma GC depended on their time lag. We started out by using the JC as 288 

described above. To smooth the results against shifts in peak frequencies over time, we used the 289 

average of the range of the top-down beta GC peak ±5 Hz, and the bottom-up gamma GC peak ±10 290 

Hz. Since a given jackknife replication eliminated the same epoch for the calculation of both GC 291 

influences, this established the correlation at zero time-lag. To investigate the dependence of JC on 292 

time lag between GCs, we computed the JC between GC influences calculated from epochs that were 293 

offset by a variable lag. The epochs were stepped at intervals of t=0.005 s. The offsets were stepped 294 

at �=0.005 s. Note that stepping of intervals and offsets was in principle independent and could have 295 

been different, but it was chosen to be identical to speed up computation. We refer to this as lagged 296 

JC (LJC): 297 

 298 

 ��	������, �� �  1� 
 1 �����,� 
 ������� ��

�	�

��
�,��� 
 �
������� � (3) 

 299 

� was chosen to cover a range of lags from -0.5 s to 0.5 s. The GC calculation itself was as in the 300 

previous zero-lag JC, using 0.5 s and the tapering specified above. LJC was calculated across trials, 301 
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i.e. leaving out an entire trial at a time (this is different from the previous zero-lag JC, which used 302 

multiple non-overlapping epochs per trial if available). The data that was available per trial allowed for 303 

multiple realizations of the two epochs with a particular lag. For each lag, LJC was calculated 304 

separately for all possible realizations and averaged. The number of possible realizations decreases 305 

as the lag between top-down beta GC and bottom-up gamma GC increases, resulting in fewer LJC 306 

computations that are averaged. This results in a noisier estimate at larger lags, but no systematic 307 

bias in the average JC value. The number of epochs that each LJC is computed upon always equals 308 

the number of trials. Formally, this implementation of the LJC is defined as: 309 

 310 

 ��	������� �  1� 
 � � � 1� 
 1 � ����,� 
 �������� ��

�	�

��
�,��� 
 ��
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	�

 (4) 

 311 

, where m is the number of 0.5 s windows, stepped at 0.005 s, that fit into the trial length of 1.7 s. 312 

Statistical significance was assessed using the same logic as used for the JC, where the epoch order 313 

of one member of the JC was permuted with respect to the other. For the LJC, the permutation was 314 

identical for each time step and lag, to be conservative. Multiple comparison correction must take 315 

place over the multiple lags, which was achieved by taking the maximum absolute Spearman’s rho 316 

value across lags for each permutation. The resulting distribution was used to assess the probability 317 

that the observed result at each lag occurred by chance. The observed and the permutation metrics 318 

were first averaged over all triplets per monkey and then averaged over the two monkeys, to give 319 

equal weight to both subjects. 320 

We wished to assess whether the LJC peak lag of -0.105 s was significantly different from a lag of 321 

zero. We did so using a jackknife method to determine the standard error of the peak position in 322 

milliseconds (Efron, 1981). In this case, we leave out a specific triplet to assess the variability of the 323 

peak. The jackknife procedure causes a compression of the variance (Richter et al., 2015), thus the 324 

0.005 s sampling grid would not be sufficient to represent the peak positions of the jackknife 325 

replications. To account for this, we cubic-spline interpolated each replication to a resolution of 1e-6 s, 326 

which proved adequate to represent the variance of the peak. The peak of each jackknife replication 327 
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was found using a Gaussian fit of the smoothed correlation as a function of lag (findpeaksG.m by T.C 328 

O’Haver). We then derived the standard error of the estimator, and converted this to a t-score by 329 

dividing the mean peak lag value of the jackknife replications by the estimated standard error. The 330 

significance of this t-value was then assessed against Student’s t-distribution. At the group level, this 331 

procedure entails concatenating the data from both monkeys, and leaving out each triplet once. Based 332 

on this group estimate of the standard error, a t-value is derived, as above, and assessed for statistical 333 

significance. 334 

Results 335 

Top-Down Versus Bottom-Up Spectral Asymmetries and their Stimulus and Task 336 

Dependence 337 

We performed electrocorticographic (ECoG) recordings from large parts of the left hemisphere in two 338 

macaque monkeys performing a selective attention task (Fig. 1). From the ECoG recording sites, we 339 

selected three ROIs (Fig. 1B), according to the following criteria: 1) One ROI should be a high-level 340 

control area, one ROI a low-level visual area, and one ROI a higher-level visual area; 2) ECoG 341 

coverage should be as good as possible; 3) ROIs should not be directly abutting, to avoid ambiguity in 342 

boundary definition and to minimize volume conduction. These criteria led to the selection of areas 7A, 343 

V1 and V4. The ROI pair 7A-V1 constitutes a clear top-down pathway with documented projections 344 

from a very high-level control area to primary visual cortex (Markov et al., 2014; Bastos et al., 2015c; 345 

Michalareas et al., 2016). The ROI pair V1-V4 constitutes a clear bottom-up pathway emerging from 346 

V1, i.e. the area targeted by the top-down 7A-to-V1 influence. For both ROI pairs, the ECoG provided 347 

good coverage. The central aim was to determine whether the top-down influence was modulating the 348 

bottom-up influence.  349 

To assess the individual frequency bands for each monkey (monkey K and monkey P), we first 350 

computed the power spectra during visual stimulation. Area 7A shows strong beta-band peaks in both 351 

monkeys (Fig. 2E, F, monkey K: ≈17 Hz; monkey P: ≈13 Hz). Areas V1 and V4 show gamma 352 

frequency peaks (Fig. 2A-D, monkey K: ≈76 Hz; monkey P: ≈60 Hz). Beta activity is visible in V4 and 353 

V1 of both monkeys at their matching peak frequencies found in area 7A. In area V4 of both monkeys, 354 
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there are distinct beta peaks. In area V1, monkey K shows a distinct beta peak, and monkey P shows 355 

a shoulder in the power spectrum, at the respective beta frequency.  356 

We determined the dominant interareal communication frequencies for each monkey by calculating 357 

the pair-wise phase consistency (PPC), a frequency-resolved measure of synchronization (Vinck et 358 

al., 2010), between the V1-V4 and V1-7A ROI pairs (Fig. 2G-J). Gamma band synchronization was 359 

present for both ROI pairs in both monkeys with peaks at ≈76 Hz in monkey K and in a range of 58–65 360 

Hz in monkey P. Beta peaks were present between both ROI pairs: at ≈17 Hz in monkey K and at ≈12 361 

Hz in monkey P. For the further analyses, data from both monkeys were combined, by aligning their 362 

individual beta and gamma peaks ±10 Hz and averaging across monkeys.  363 

When determining individual beta and gamma frequencies, we selected the dominant peaks in the 364 

respective frequency ranges. It has been shown that both beta and gamma frequencies show 365 

substantial inter-individual variability, which can largely be explained by genetic factors (Vogel, 1970; 366 

van Pelt et al., 2012). Note that while the beta peak in monkey P has its maximum at 12-13 Hz, at the 367 

border between the alpha and beta band, the peak is strongly asymmetric with a sharp rise to the 368 

maximal value and a slower falloff, such that most of the peak falls into the classical beta-frequency 369 

band. This observation, together with the fact that it corresponded phenomenologically to the clear 370 

beta peak in monkey K, led us to refer to it as beta, rather than alpha. The further analyses confirmed 371 

that the beta rhythms in both monkeys exerted qualitatively the same effects. Yet whether they reflect 372 

the same underlying physiological process cannot be determined on the basis of the ECoG recordings 373 

alone. Some of the power and PPC spectra showed also a theta-band peak, which is not further 374 

investigated, because the focus of this study is on the interaction between beta and gamma rhythms. 375 

To demonstrate that interareal gamma-band synchronization is stimulus driven (Bosman et al., 2012; 376 

Grothe et al., 2012), we contrasted PPC between the fixation and stimulation conditions. Figure 3A, B 377 

shows significantly enhanced gamma-band synchronization between ROI pairs V1-V4 and 7A-V1 378 

once the stimulus has appeared, in contrast to an almost flat spectrum when no stimulus is present. 379 

This finding is consistent with gamma-band oscillations occurring as a result of stimulus drive. In 380 

contrast, beta-band synchronization for both ROI pairs is present already during the pre-stimulus 381 

fixation period, suggesting an endogenous origin (Fig. 3A, B). Beta synchronization is maintained 382 

during the stimulation period, consistent with an ongoing top-down influence. 383 
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We next assessed the dominant directionality of interareal synchronization and its attentional 384 

modulation. We quantified directionality of synchronization by means of Granger causality (GC) 385 

(Granger, 1969; Ding et al., 2006; Bressler and Seth, 2011). As shown by Bastos et al. (2015c), and 386 

extended to humans by Michalareas et al. (2016), the top-down beta-band influence of area 7A to V1 387 

is significantly greater than the bottom-up beta-band influence of V1 to 7A (Fig. 3E). This top-down 388 

beta-band influence is significantly increased when attention is directed to the visual hemifield 389 

contralateral to the recording grid (Fig. 3C), consistent with an earlier report (Bastos et al., 2015c). 390 

Between V1 and V4, the gamma-band influence is stronger in the bottom-up direction from area V1 to 391 

V4 (Fig. 3F). The bottom-up gamma-band influence of V1 to V4 was significantly increased with 392 

attention (Fig. 3D).  393 

Note that the beta-band GC influence between V1 and V4 was stronger in the bottom-up than top-394 

down direction (Fig. 3F), in contrast to what has been reported for the same dataset (Bastos et al., 395 

2015c). This is due to differences in preprocessing between the present and the previous study. It 396 

shows that for this particular pair of areas, the beta-band directionality is not robustly determined by 397 

their hierarchical relationship. However, the difference in preprocessing did not affect other area pairs, 398 

leaving the overall pattern intact, in which gamma-band influences are stronger in the bottom-up 399 

direction and beta-band influences are stronger in the top-down direction. This overall pattern has also 400 

been confirmed in an independent dataset from 43 human subjects (Michalareas et al., 2016), and in 401 

this large human dataset, the beta-band influence between V1 and V4 also does not show an 402 

unequivocal directionality, despite the overall pattern across all area pairs. Note that both in the 403 

human MEG data, and in the macaque ECoG data presented here, V1-to-V4 GC did not significantly 404 

exceed V4-to-V1 GC for all frequencies, that is, there was not a general broadband shift. 405 

Top-Down Beta-Band Influences Correlate with Bottom-Up Gamma-Band Influences 406 

Spontaneous endogenous increases in 7A-to-V1 beta GC may lead to increases in stimulus-driven 407 

V1-to-V4 gamma GC. A resulting correlation between epoch-by-epoch fluctuations in the two GC 408 

influences is difficult to quantify, because GC influences are not defined per single data epoch (without 409 

substantially sacrificing spectral resolution and/or signal-to-noise ratio). To surmount this problem, we 410 

used a jackknife approach. A jackknife replication (JR) of all epochs consists of all epochs except one, 411 

that is, an all-but-one subsample of the epochs. There are as many JRs as there are epochs, because 412 
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each epoch can be left out once. If the GC in a given JR is high, this reflects a low GC in the left-out 413 

epoch, and vice versa. This approach allows to median split epochs according to GC, and to sort and 414 

bin epochs according to GC. Ultimately, it also allows to calculate the correlation between epoch-wise 415 

top-down and bottom-up GC, a technique that we recently described and named Jackknife Correlation 416 

(JC) (Richter et al., 2015). 417 

We first investigate this for one example triplet of recording sites from monkey K. Data epochs were 418 

median split based on the GC JRs. When we select the epochs in which V1-to-V4 gamma GC is 419 

weak, 7A-to-V1 beta GC is almost absent; by contrast, when we select the epochs in which V1-to-V4 420 

gamma GC is strong, 7A-to-V1 beta GC shows a pronounced peak (Fig.4A, left panel). A similar 421 

dependency exists in the other direction. When we select epochs with weak 7A-to-V1 beta GC, V1-to-422 

V4 gamma GC is small; when we select epochs with strong 7A-to-V1 beta GC, V1-to-V4 gamma GC 423 

is much larger (Fig. 4A, right panel). These results indicate a relationship between 7A-to-V1 beta GC 424 

and V1-to-V4 gamma GC.  425 

We next asked whether this relationship holds when we move from the coarse median split to finer 426 

and finer bins, and calculate the Spearman rank correlation across bins. We sorted epochs according 427 

to 7A-to-V1 beta GC JRs and binned them into 5, 10, 50 or 100 bins. Per bin, the 7A-to-V1 beta GC 428 

JRs and the V1-to-V4 gamma GC JRs were averaged, and the correlation between them was 429 

calculated across bins. This analysis revealed that the relationship found for the median split indeed 430 

held for finer bins (Fig. 4B). Finally, we used JC to base the correlation analysis on single epochs, 431 

which confirmed the relationship even at this most fine-grained level (Fig. 4B, rightmost bars). The 432 

finer the binning, the lower the correlation value, and the lower the p-value, that is, the more significant 433 

the correlation. This dependence of correlation and p-value on bin size has been previously described 434 

as a general consequence of binning (Richter et al., 2015). Essentially, the widely-used sorting-and-435 

binning approach, through averaging observations per bin and thereby removing noise, leads to 436 

dramatic increases in correlation values; yet this comes at the expense of statistical power and it 437 

precludes an inference on the epoch-by-epoch correlation, which requires the JC approach. 438 

To investigate the frequency-specificity of this correlation, JC was calculated between all possible 439 

combinations of top-down and bottom-up frequencies, both ranging from 1-100 Hz. This analysis 440 

revealed a correlation between 7A-to-V1 GC and V1-to-V4 GC in the beta band and in the gamma 441 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 11, 2017. ; https://doi.org/10.1101/054288doi: bioRxiv preprint 

https://doi.org/10.1101/054288


 

Richter et al., Top-down beta enhances bottom-up gamma. 

 

18

band (Fig. 4C, lower left and upper right quadrants). Critically, and further confirming the median-split 442 

and the sorting-and-binning analysis, 7A-to-V1 beta GC shows a significant positive correlation with 443 

V1-to-V4 gamma GC (Fig. 4C, lower right quadrant). The peak of this cross-frequency interaction is 444 

well aligned with the 7A-to-V1 beta and V1-to-V4 gamma GC peak frequencies (Figure 4C, dashed 445 

lines). There is no significant JC between 7A-to-V1 gamma and V1-to-V4 beta GC, even though 446 

7A-to-V1 gamma GC is significantly correlated to V1-to-V4 gamma GC, and 7A-to-V1 beta GC is 447 

significantly correlated to V1-to-V4 beta GC.  448 

We then repeated these analyses for all possible triplets (Fig. 5). Figure 5A, B, C uses the same 449 

format as Figure 4A, B, C, but shows the grand average over all triplets and the two monkeys after 450 

alignment by their respective top-down beta, and bottom-up gamma peak frequencies. The pattern of 451 

results found for the example triplet held in the grand average, even though average effect size was 452 

smaller. Figure 5D shows the probability distribution across triplets of JC values between 7A-to-V1 453 

beta GC and V1-to-V4 gamma GC, averaged over monkeys. The distribution shows a positive skew 454 

and greater mass above zero, indicating a greater number and magnitude of positive correlations, 455 

though with a substantial number of negative correlations, which partially accounts for the low average 456 

JC value.  457 

To determine whether greater GC values resulted in greater JC values, we weighted the JC value of 458 

each triplet by the product of the respective triplet’s top-down beta and bottom-up gamma GC values, 459 

followed by averaging over triplets. This resulted in an increase of the mean JC value from 0.006 to 460 

0.014, that is, a ≈230% increase (p<0.001, two-tailed non-parametric randomization test). This 461 

indicates that site pairs with larger GC magnitudes, which are less susceptible to the influence of 462 

noise, give rise to higher correlation coefficients. 463 

Next, we tested whether the correlation was affected by attentional state. We calculated the JC 464 

between 7A-to-V1 beta GC and V1-to-V4 gamma GC, separately for the attend-contra and attend-ipsi 465 

conditions. The JC was significant for each attention condition separately (p<0.001). Selective 466 

attention to the right hemifield stimulus, activating the recorded left hemisphere, enhanced JC values 467 

by 17% (attend-contra: 0.007; attend-ipsi: 0.006, p=0.006, two-tailed paired non-parametric 468 

randomization test). This effect is likely related to the observed increase in JC, when triplets are 469 
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weighted by GC values, because attention increased both 7A-to-V1 beta GC and V1-to-V4 gamma 470 

GC (Fig. 3 C, D). 471 

The sorting-and-binning analysis showed that the JC increases substantially when 7A-to-V1 GC and 472 

V1-to-V4 GC are averaged per bin, thereby removing noise across individual triplets within bins. The 473 

bin-wise averaging precludes an inference on the epoch-by-epoch correlation. Therefore, we explored 474 

an alternative approach to reduce noise, while retaining an epoch-by-epoch correlation. Per epoch, we 475 

averaged GC JRs over all 7A-to-V1 site pairs, and we averaged GC JRs over all V1-to-V4 site pairs. 476 

Thus, per monkey, we constructed one triplet comprising the average 7A-to-V1 GC and the average 477 

V1-to-V4 GC. Figure 6A, B, C shows the resulting analyses in the same format as the respective 478 

panels in Figures 4 and 5. After reduction of noise across site pairs, the pattern of results was 479 

confirmed, yet with substantially increased correlation values. Importantly, this also holds for the 480 

epoch-wise JC values shown in the rightmost bars of Figure 6B and in Figure 6C. The JC value 481 

between 7A-to-V1 beta GC and V1-to-V4 gamma GC increased from 0.006 in the average across 482 

individual triplets to 0.12, that is, it showed a 20-fold increase. This is a striking demonstration of the 483 

utility of spatial averaging for exposing the epoch-wise correlation. When we additionally give up the 484 

epoch-wise calculation and smooth the GC values further through binning of epochs, correlations 485 

increase even more and exceed values of 0.6 for a typical 10-bin scheme (Fig. 6 B). 486 

To investigate whether V1-to-V4 gamma GC is truly dependent on 7A-to-V1 beta GC influences, 487 

rather than merely on 7A beta power, we stratified for beta power. We applied this to the median split 488 

analysis, because it lends itself best to stratification. As before, we median split epochs based on 7A-489 

to-V1 beta GC JRs. The 7A power spectra aligned to the monkeys’ individual beta peak frequencies 490 

showed that stronger 7A-to-V1 beta GC was in fact related to higher 7A beta power (Fig. 6D, left 491 

panel, solid lines). This power difference is fully in line with the hypothesis that the top-down beta-492 

band influence is generated in 7A. Power differences were sufficiently small, such that stratification 493 

rendered the power spectra almost identical (Fig. 6D, left panel, dashed lines). After stratification, V1-494 

to-V4 gamma-band GC values remained almost unchanged compared to the values before 495 

stratification (compare right panels of Fig. 6A and D). Thus, V1-to-V4 gamma GC depended not on 7A 496 

power differences, but rather on actual 7A-to-V1 GC influences through synchronization. 497 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 11, 2017. ; https://doi.org/10.1101/054288doi: bioRxiv preprint 

https://doi.org/10.1101/054288


 

Richter et al., Top-down beta enhances bottom-up gamma. 

 

20

Spatial Resolution of the Correlation between Top-Down and Bottom-Up Influences 498 

We next investigated whether the JC between 7A-to-V1 beta GC and V1-to-V4 gamma GC depended 499 

on involving the same V1 site, which would demonstrate spatial specificity at the level of recording 500 

sites. We tested this spatial specificity by pairing 7A-to-V1 beta GC to a specific V1 site, with V1-to-V4 501 

gamma GC from a different V1 site. The distance that separated the two V1 sites was parametrically 502 

varied. For each V1 site, 5 sets of other V1 sites were defined that fell into pre-specified distance 503 

intervals (1 cm per interval, stepped by 2.5 mm, between 0 and 2 cm). Figure 7A shows one example 504 

V1 site (arrow) and illustrates with 5 colored lines the five distance intervals (colored lines were slightly 505 

displaced for illustration purposes). The average distance for each distance interval is marked with a 506 

filled circle. Figure 7B shows the resulting JCs, averaged over triplets and monkeys, as a function of 507 

distance. It can be seen that as the distance between the two V1 sites increases, there is a monotonic 508 

falloff of the correlation coefficient between 7A-to-V1 beta and V1-to-V4 gamma GC. This indicates 509 

that the physiological process linking 7A-to-V1 beta GC to V1-to-V4 gamma GC is not global, but 510 

rather spatially specific. As a consequence, any spatially non-specific fluctuations, for example of 511 

neuromodulators reflecting arousal fluctuations, are unlikely to cause the observed correlation. 512 

Top-down Beta Leads Bottom-up Gamma in Time 513 

We have established that spontaneous fluctuations in endogenous top-down beta GC are correlated 514 

with fluctuations in stimulus-driven bottom-up gamma GC. To investigate whether the data contain 515 

evidence in support of a causal relation, we assessed whether top-down beta GC is predictive of 516 

subsequent bottom-up gamma GC. To accomplish this, we extended the JC by adding a temporal 517 

dimension, similar to time-lagged cross-correlation. We compute the JC on time-frequency data, 518 

where we systematically offset 7A-to-V1 beta GC JRs from V1-to-V4 gamma GC JRs by positive or 519 

negative lags. We call this procedure lagged jackknife correlation (LJC). This quantifies at what time 520 

delay between the top-down beta-band influence and the bottom-up gamma-band influence the JC 521 

between them is largest. We computed LJC for each triplet. The red curve in Figure 8 shows the LJC 522 

averaged over triplets and monkeys and exhibits a peak at -0.105 s, indicating that 7A-to-V1 beta GC 523 

led V1-to-V4 gamma GC by 0.105 s (t(10663) = -7.576, p<<0.001, two-tailed jackknife-based t-test). 524 

The LJC dropped off slowly, which likely reflects slow dynamics of the underlying GC influences 525 

together with the fact that the windows used for GC influence estimation result in low-pass filtering of 526 
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GC influence time courses. For comparison, we performed the same LJC analysis between 7A-to-V1 527 

gamma GC and V1-to-V4 beta GC. This combination had not shown a significant correlation in the 528 

non-lagged case (Fig. 5C, upper left quadrant), which was confirmed for the lagged case (Fig. 8, gray 529 

line). 530 

Discussion 531 

We used LFP recordings from 252-channel ECoG arrays covering large parts of the left hemispheres 532 

of two macaques to analyze the interaction between top-down and bottom-up influences, both 533 

quantified by Granger-causality (GC). Top-down influences were assessed between area 7a at the top 534 

of the visual hierarchy and V1 at the bottom. Bottom-up influences were assessed between V1 and 535 

V4, a known feedforward pathway carrying stimulus driven input. 7A-to-V1 GC showed a beta-band 536 

peak, which did not require visual stimulation and thus was endogenously generated, which was 537 

significantly larger in the 7A-to-V1 than the V1-to-7A direction, and which increased with selective 538 

attention. V1-to-V4 GC showed a gamma-band peak, which was stimulus driven, which was 539 

significantly larger in the bottom-up than the top-down direction, and which also increased with 540 

selective attention. Jackknife Correlation between top-down beta-band influences and bottom-up 541 

gamma-band influences revealed a positive cross-frequency interaction. This interaction was spatially 542 

specific, as it was maximal between top-down and bottom-up interareal influences that shared the 543 

same V1 site. Finally, top-down beta-band influences best predicted bottom-up gamma-band 544 

influences ~0.1 s later, suggesting that the cross-frequency interaction is causal. Therefore, we 545 

conclude that 7A-to-V1 beta-band influences enhance V1-to-V4 gamma-band influences. 546 

Noise can affect GC estimates (Nalatore et al., 2007; Vinck et al., 2015). Fluctuating shared noise 547 

could in principle generate correlation between GC fluctuations. Yet, a predominant source of shared 548 

noise, volume conduction, is strongly attenuated in our signals due to bipolar derivation 549 

(Trongnetrpunya et al., 2015). Furthermore, influences of shared noise on the two GC metrics should 550 

typically occur nearly simultaneously and therefore, the lagged JC would peak at zero-lag, whereas 551 

we found a significant lag of ~0.1 s. Also, local noise can affect GC estimates, yet these effects do not 552 

necessarily explain a positive correlation between GC influences. For example, enhanced noise in a 553 

recording site can lead to an overestimation of the GC influence onto that site, and at the same time to 554 
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an underestimation of the GC influence of that site onto other sites (Bastos and Schoffelen, 2015a). If 555 

this applied to our V1 recording sites, fluctuations in their noise level would artefactually reduce the 556 

observed correlation and thereby lead to an underestimation of the true correlation value. Finally, the 557 

observed increase in average JC after weighting site triplets by the GC values of their constituent site 558 

pairs argues against a confounding role of noise. The effect of noise on GC is larger for weaker GC. 559 

Thus, if noise had generated the observed JC, more weight for strong-GC triplets would have reduced 560 

the average JC. By contrast, we observed an increased average JC, which is consistent with our 561 

interpretation of actual top-down influences affecting actual bottom-up influences. 562 

Additional alternative scenarios concern physiological modulatory effects that act independently on 563 

both, 7A-to-V1 beta GC and V1-to-V4 gamma GC, without a direct causal link between the two GC 564 

influences. Those interareal GC influences can probably only be affected at the circuits containing the 565 

respective projection neurons and at the circuits containing their postsynaptic target neurons, that is, 566 

not at the corresponding interareal axonal projections. Thus, to explain our observations, such 567 

modulatory effects would need to modify 7A circuits to enhance their beta outflow, and 0.1 s thereafter 568 

modify V1 circuits to enhance their gamma outflow. Alternatively, they would need to modify V1 569 

circuits to enhance their beta susceptibility, and 0.1 s thereafter modify V4 circuits to enhance their 570 

gamma susceptibility. Additional mechanisms would be necessary to explain the observed spatial 571 

specificity. Thus, these alternative interpretations require complex sets of assumptions. Certainly, 572 

widespread or even global neuromodulatory fluctuations, as potentially associated with arousal 573 

fluctuations, cannot explain the observed pattern of results.  574 

The most parsimonious interpretation seems to be the following: The 7A-to-V1 beta-band influence 575 

onto a given V1 site enhances with 0.1 s delay that site’s V1-to-V4 gamma influence. We propose that 576 

this cross-frequency interaction constitutes a mechanism for spatially selective attention. If correct, this 577 

entails that the top-down control of selective attention corresponds fully or partly to top-down beta-578 

band influences, and the ensuing preferential bottom-up routing of the attentionally selected stimulus 579 

corresponds fully or partly to bottom-up gamma-band influences. Thus, epoch-by-epoch fluctuations in 580 

spatially selective attention could well generate the observed correlations. In fact, we would like to 581 

identify the epoch-by-epoch GC fluctuations that are the basis for the observed correlations with 582 

epoch-by-epoch fluctuations of spatially selective attention. Several recent studies have revealed that 583 
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attention samples stimuli rhyhthmically, with a predominant sampling rhythm in the theta and/or alpha 584 

range (7-13 Hz), which is multiplexed across the sampled stimuli (Landau and Fries, 2012; Fiebelkorn 585 

et al., 2013; Holcombe and Chen, 2013; Fries, 2015; Landau et al., 2015; VanRullen, 2016). Future 586 

studies will need to investigate whether the correlations described here are specifically driven by those 587 

attentional sampling rhythms. 588 

Numerous studies in visual cortex have reported gamma-band synchronization within and between 589 

visual areas (Gray and Singer, 1989; Engel et al., 1991; Kreiter and Singer, 1996; Tallon-Baudry et al., 590 

1996; Fries et al., 1997; Fries, 2001; Bichot et al., 2005; Taylor et al., 2005; Hoogenboom et al., 2006; 591 

Womelsdorf et al., 2006; Wyart and Tallon-Baudry, 2008), and numerous studies in parietal cortex 592 

have reported beta-band synchronization within parietal areas and between parietal and frontal areas 593 

(Buschman and Miller, 2007; Salazar et al., 2012; Dotson et al., 2014; Stetson and Andersen, 2014). 594 

Recent ECoG recordings covering both visual and parietal areas revealed that interareal beta-band 595 

influences predominate in the top-down and interareal gamma-band influences predominate in the 596 

bottom-up direction (Bastos et al., 2015c). These findings link parietal beta-band activity with visual 597 

gamma-band activity and suggest a concrete case of cross-frequency interaction (Bressler and 598 

Richter, 2015). In the present paper, we have tested some of the resulting predictions and found direct 599 

experimental support for such a cross-frequency interaction that allows top-down beta-band influences 600 

to enhance bottom-up gamma-band influences. 601 

Cortical anatomy has revealed a distinct laminar pattern of top-down and bottom-up projections 602 

(Felleman and Van Essen, 1991; Markov et al., 2014). Bottom-up projections originate predominantly 603 

in superficial layers, and this predominance increases with the number of hierarchical levels bridged 604 

by the bottom-up projection. Note that an additional bottom-up pathway via the pulvinar originates in 605 

layer 5, and it might mediate the observed V1-to-V4 GC influences in the beta band (Shipp, 2003; 606 

Sherman, 2007; Schmid et al., 2012). Furthermore, bottom-up projections terminate predominantly in 607 

layer 4. Top-down projections originate predominantly in deep layers, and this predominance 608 

increases with the number of hierarchical levels bridged by the top-down projection. Furthermore, top-609 

down projections terminate predominantly outside layer 4, primarily in layers 1 and 6. Determining how 610 

the respective top-down influences interact with local processing, and thereby ultimately with bottom-611 

up influences, remains a central neuroscientific quest. One potential mechanism has been proposed in 612 
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a model that entails details of both layer-specific anatomy and cellular biophysics (Lee et al., 2013), 613 

and that replicates the effect of top-down selective attention on bottom-up gamma-band coherence. 614 

The model implicates a subclass of inhibitory interneurons, the slow-inhibitory (SI) interneurons, as 615 

targets of top-down modulation. These cells may span multiple cortical laminae and thus are suitably 616 

situated for integration of neuronal activity across layers. A subpopulation of these cells, low-threshold 617 

spiking (LTS) cells, are found in deep layers of the cortex. In the model, LTS cells: 1) are hypothesized 618 

to receive top-down input, 2) are implicated in the generation of beta oscillations and in a resonant 619 

response to beta-rhythmic top-down input, 3) selectively modulate gamma-band activation in layer 2/3, 620 

leading to an enhanced gamma band output. Our present analysis confirms the central prediction of 621 

the Lee et al. (2013) paper, namely that specifically top-down beta-band influences enhance stimulus-622 

driven gamma-band processes. Lee et al. show how this mechanism can support the implementation 623 

of attentional stimulus selection. The current results, which mechanistically link the previously reported 624 

attentional enhancements of top-down beta and bottom-up gamma influences, provide the hitherto 625 

missing experimental bridge. Together, experiments, modeling and model-testing data analysis have 626 

led to an intriguingly coherent understanding of the neuronal processes behind the implementation of 627 

attentional stimulus selection.  628 
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Figure Legends 801 

Figure 1. Behavioral task and recording locations. A, The task commenced with a fixation period 802 

followed by presentation of two differently colored stimuli. The fixation point color then indicated the 803 

visual stimulus to covertly attend in either the visual hemifield ipsilateral (attend-ipsi) or contralateral 804 

(attend-contra) to the recording grid. The presentation timings for each monkey are shown as a 805 

timeline. B, Recording sites for areas V1 and V2 (red), V4 (blue), and 7A (yellow) from monkey K (light 806 

gray spheres) and monkey P (black spheres), co-registered to a common macaque template.  807 

Figure 2. Power spectra and phase locking (PPC) spectra during visual stimulation. V4 (A, B), V1 (C, 808 

D), and 7A (E, F) power spectra averaged over all respective site pairs of monkey K (A, C, E) and P 809 

(B, D, F). Power values at each frequency were multiplied by that frequency value to reduce the 1/f 810 

component. (G-J) LFP-LFP PPC for V1-V4 (G, H) and V1-7A (I, J), for monkey K (G, I) and P (H, J), 811 

respectively. Error regions show ±1 standard error of the mean (SEM) over sites or site pairs. 812 

Frequencies from 45-55 Hz were omitted due to line-noise pollution.  813 

Figure 3. Average phase locking (PPC) and Granger causality (GC) spectra. All spectra were first 814 

averaged over site pairs, then over monkeys after alignment to their beta and gamma peak 815 

frequencies. A, LFP-LFP PPC for 7A-V1 and B, V1-V4 during fixation (dark shading) and visual 816 

stimulation (light shading). Error regions show ±1 standard error of the mean (SEM) over site pairs, 817 

merely for illustration. Gray background shading indicates frequency regions with significant condition 818 

differences (p<0.05, two-tailed non-parametric randomization test, corrected for comparisons across 819 

multiple frequencies). Inset brackets denote the minimum separation required for significance. C, 820 

7A-to-V1 GC influence spectra and D, V1-to-V4 GC influence spectra, for attend-contra (light shading) 821 

and attend-ipsi (dark shading). Same statistics conventions as A and B. E, Bidirectional GC influences 822 

for 7A-V1 and F, V1-V4. For 7A-V1, the 7A-to-V1 influences are shown in blue shading, and the V1-to-823 

7A influences in dark shading. For V1-V4, V1-to-V4 influences are shown in green shading, and V4-to-824 

V1 influences in light shading. Same statistics conventions as A and B, but with statistical tests based 825 

on a non-parametric bootstrap procedure. G, Top-down modulatory stream (blue arrow) from 826 

7A-to-V1, and bottom-up feedforward path from V1-to-V4 (green arrow).  827 
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Figure 4. Example triplet: Median split, correlation across binned epochs, and JC. A, left panel: 828 

7A-to-V1 GC for epochs median split by the V1-to-V4 gamma GC jackknife replications; right panel: 829 

V1-to-V4 GC for epochs median split by the 7A-to-V1 beta GC jackknife replications. Gray background 830 

shading indicates significant differences (p<0.05, two-tailed non-parametric randomization test, 831 

corrected for multiple comparisons across frequencies). Inset brackets denote the minimum 832 

separation required for significance. B, The correlation between 7A-to-V1 beta GC and V1-to-V4 833 

gamma GC for the sorted data divided into 5, 10, 50, or 100 bins, and without binning. Corresponding 834 

p-values for each correlation coefficient are shown below with a dashed line marking p=0.05. C, The 4 835 

colored panels show JC for the selected 7A-to-V1-to-V4 triplet. The frequencies of 7A-to-V1 GC are 836 

shown on the vertical axis, the frequencies of V1-to-V4 GC are shown on the horizontal axis. The 837 

frequency ranges 1-50 Hz and 51-100 Hz are shown separately, because they required slightly 838 

different spectral analyses (see Materials and Methods). Non-significant regions are partially masked 839 

by white (p<0.001, two-tailed non-parametric randomization test, corrected for multiple comparisons 840 

across both frequency axes). The line plots at the bottom show the GC spectrum for the 841 

corresponding V1-to-V4 site pair. The line plots to the left show the GC spectrum for the 842 

corresponding 7A-to-V1 site pair. Dashed lines mark the top-down beta GC spectral peak and the 843 

bottom-up gamma GC spectral peak.  844 

Figure 5. Average over all triplets and both monkeys: Median split, correlation across binned epochs, 845 

and JC. (A, B, C) Same format as Figure 4A, B, C, but averaging over all triplets and both monkeys, 846 

after aligning to their individual beta and gamma peak frequencies. D, Probability distribution across 847 

triplets of JC values between 7A-to-V1 beta GC and V1-to-V4 gamma GC, averaged over monkeys. 848 

Figure 6. Triplet based on average 7A-to-V1 GC and average V1-to-V4 GC: Median split, correlation 849 

across binned epochs, and JC. (A, B, C) Same format as Figure 5A, B, C, but for a triplet formed by 850 

the average 7A-to-V1 GC jackknife replications and the average V1-to-V4 GC jackknife replications, 851 

per monkey, and then averaged over monkeys. D, Left panel: 7A beta-band power spectra after 852 

median split by 7A-to-V1 beta GC jackknife replications. Solid lines: Before stratification; Dashed lines: 853 

After stratification. Right panel: Same as right panel of A, but after stratification for 7A beta power. 854 
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Figure 7. Spatial specificity of correlation between top-down beta and bottom-up gamma GC. A, Inset: 855 

MRI of monkey K with the surgical trepanation and prominent sulci overlaid. The blow-up shows 856 

recording sites in 7A (yellow), V1 (red), and V4 (blue) that were analyzed. The V1 site marked by the 857 

arrow serves as an example to demonstrate the distance intervals from which another V1 site may 858 

have been chosen, which were 0 to 1 cm (magenta), 0.25 to 1.25 cm (orange), 0.5 to 1.5 cm (yellow), 859 

0.75 to 1.75 cm (green), and 1 to 2 cm (cyan). Solid circles mark the average distance between V1 860 

sites that were chosen for each distance interval. The particular arrangement of the distance intervals 861 

was chosen solely for the purpose of illustration. B, Average jackknife correlation between 7A-to-V1 862 

beta GC and V1-to-V4 gamma GC, averaged over triplets, then over monkeys. The solid black circle 863 

shows the result for standard triplets, that is, triplets where the 7A-to-V1 beta GC and the V1-to-V4 864 

gamma GC are connected through the same V1 site. As the distance between V1 sites increases, 865 

there is a monotonic falloff in the correlation coefficient. The mean distance between V1 sites is color-866 

coded as solid circles matching the mean distances of the five distance intervals shown in A. The error 867 

region shows ±1 SEM across triplets per monkey, then averaged over monkeys. 868 

Figure 8. Lagged jackknife correlation (LJC) analysis. A, The solid red curve shows the LJC between 869 

7A-to-V1 beta GC and V1-to-V4 gamma GC, averaged over triplets, then over monkeys. The blue 870 

dashed line denotes the significance threshold (p=0.05, two-tailed non-parametric randomization test, 871 

corrected for multiple comparisons across lags). The green vertical line indicates the lag of the 872 

maximum LJC value, with ±1 SEM indicated in red. The lag of the peak LJC value was significantly 873 

different from zero (t(10663) = -7.576, p<<0.001, two-tailed). Solid gray curve: LJC between 7A-to-V1 874 

gamma GC and V1-to-V4 beta GC, averaged over triplets, then over monkeys, which showed no 875 

significant peaks. 876 
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