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Abstract

Massively parallel assays (MPAs) are being rapidly
adopted for studying a wide range of DNA, RNA,
and protein sequence-function relationships.
However, the software available for quantitatively
modeling these relationships is severely limited.
Here we describe MPAthic, a software package that
enables the rapid inference of such models from a
variety of MPA datasets. Using both simulated and
previously published data, we show that the
modeling capabilities of MPAthic greatly improve
on those of existing software. In particular, only
MPAthic can accurately quantify the strength of
epistatic interactions. These capabilities address a
major need in the analysis of MPA data.

Background
Understanding how sequence governs function is one
of the central challenges in modern biology. The clas-
sic success story in this endeavor is the cracking of
the genetic code, which maps each 3-nucleotide mRNA
codon to a corresponding amino acid [1]. But unlike
the genetic code, which can be represented in a simple
tabular form, most sequence-function relationships re-
quire a quantitative description. For instance, mutat-
ing one nucleotide in a transcriptional enhancer or one
amino acid in an enzyme will typically have a quan-
titative, not qualitative, effect on biological function.
Deciphering such quantitative sequence-function rela-
tionships has proved to be far more difficult than early
success on the genetic code might have suggested.

Fortunately, a variety of massively parallel assays
(MPAs), which have been developed in recent years,
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are providing new hope for deciphering quantitative
sequence-function relationships. MPAs couple func-
tional measurements to ultra-high-throughput DNA
sequencing in ways that allow thousands to millions
of sequences to be assayed in a single experiment; see
[2, 3, 4, 5, 6] for reviews of these methods. Fig. 1 pro-
vides an illustration of three prototypical MPA assays:
the Sort-Seq assay of Kinney et al., (2010) [7], the mas-
sively parallel reporter assay (MPRA) of Melnikov et
al. [8], and the deep mutational scanning (DMS) assay
of Fowler et al., (2010) [9].

Since the publication of these and other early works,
the use of MPAs has rapidly expanded in multiple ar-
eas of molecular biology and genetics. Already, MPAs
are revolutionizing the study of transcriptional regu-
lation in vitro [10], in model organisms [7, 11, 12, 13],
and in human cells [8, 14, 15], the study of splicing
[16] and untranslated regions [17, 18, 19] of mRNA
, the study of protein sequence-function relationships
[9, 20, 21, 22], and the study of fitness landscapes and
their evolutionary consequences [23, 24, 25, 26, 27].
The recent demonstration [28] of MPAs on sequence
libraries integrated into mammalian chromosomes us-
ing CRISPR-Cas9 is likely to substantially increase the
utility and prominence of such experiments in the near
future.

Often, MPAs are used to simply catalog the activities
of a large number of sequences. Multiple software pack-
ages have been developed to assist in the type of anal-
ysis that such cataloging requires [29, 30, 31]. But just
tallying measurements is insufficient for characterizing
most sequence-function relationships. This is because
sequence space is often far too vast for every possible
sequence of interest to be assayed. For example, the
σ70 RNA polymerase holoenzyme of Escherichia coli
(RNAP) has a binding site roughly 40 bp in length.
The sequence specificity of RNAP is of great biological
interest, and in fact RNAP was the first DNA-binding
protein to have its specificity characterized [32]. But
it would be impossible to store quantitative measure-
ments for all 440 ≈ 1024 possible binding sites, let
alone make these measurements, because the result-
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ing dataset would overwhelm the world’s information
technology infrastructure [33].

Understanding a quantitative sequence-function re-
lationship ultimately requires quantitative modeling:
the construction of a mathematical function that can
predict the activity of any sequence of interest regard-
less of whether that sequence was previously assayed
in an experiment. The data that many MPAs provide
is well-suited for training such models. For example, [7]
used quantitative modeling of Sort-Seq data to mea-
sure the in vivo interaction energies governing tran-
scriptional activation at the lac promoter of E. coli. In
later work, [8] used quantitative modeling of MPRA
data to design enhancers with increased inducibility
in human cells.

Unfortunately, the quantitative modeling of MPA
data has been severely hindered by the lack of appro-
priate software. The only published software that pro-
vides any quantitative modeling capabilities appropri-
ate to MPA data is dms tools [31]. dms tools, however,
has multiple limitations. First, it only supports the in-
ference of ‘matrix models,’ in which each position in
a sequence is assumed to contribute independently to
activity.[1] These models are blind to possible epistatic
interactions between different positions within a se-
quence, interactions that are of great interest in MPA
experiments [25]. Second, the parameters of the models
that dms tools returns are inferred using enrichment
ratio calculations. Although this inference approach is
common in bioinformatics, the mathematical justifica-
tion for this procedure relies on multiple assumptions
that are often violated in real MPA experiments [34].
Moreover, enrichment ratios can be computed only
when one’s data consists of precisely one ‘selected’ set
of sequences and one ‘unselected’ set. Many MPAs, e.g.
[7, 9, 11, 18, 19, 22, 23, 26], yield three or more sets
of sequences and it is unclear how dms tools can be
applied to these data without throwing away valuable
measurements.

Here we introduce MPAthic, a software package that
enables quantitative modeling of sequence-function
relationships using data from a variety of MPAs.
MPAthic improves on dms tools in multiple ways. In
addition to supporting the inference of matrix models
using enrichment ratios, MPAthic offers two alterna-
tive inference procedures: least-squares optimization
and mutual information maximization. Both of these
inference methods make use of all the data produced

[1]We use the term ‘matrix model’ here instead of the
more common term ‘position weight matrix’ to dis-
tinguish the mathematical form of such models from
the method by which model parameters are inferred
from data. The term ‘position-specific scoring matrix’
(PSSM) is synonymous with ‘matrix model.’

by MPAs. Least-squares optimization facilitates the
rapid analysis of MPA data, while mutual informa-
tion maximization yields models that are more rigor-
ous in theory [34] and, as will be shown, more accu-
rate in practice. Unlike dms tools, MPAthic also sup-
ports the inference of ‘neighbor’ models, which de-
scribe epistatic interactions between neighboring po-
sitions in a sequence.

We demonstrate MPAthic on both simulated data
and on data from the MPA studies illustrated in Fig.
1 [7, 8, 9]. The modeling capabilities of MPAthic are
shown to dramatically outperform those of dms tools
in almost all cases. In particular, we find that ma-
trix models fit using mutual information maximization
consistently work better than models inferred using en-
richment ratio calculations. This finding validates pre-
vious theoretical arguments [34]. Moreover, we show
that MPAthic can successfully infer epistatic inter-
actions present in both simulated and real sequence-
function relationships.

MPAthic incorporates other capabilities in addition
to quantitative modeling: it provides methods for sim-
ulating massively parallel data using a user-specified
model, for computing useful summary statistics such
as ‘information footprints’ [7], and for evaluating quan-
titative models on arbitrary input sequences. These
additional features are described in Supplemental In-
formation (SI). All of MPAthic’s functionality is acces-
sible at the command line. Information on obtaining
MPAthic is provided in the “Availability of data and
materials” section at the end of this paper.

Methods
Constraints on data

Many massively parallel experiments, including those
of [7, 8, 9, 10, 12, 13, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26, 27, 28], share the common form illustrated in Fig.
2A. One begins with a specific “wild type” sequence
of interest. A library comprising variants of this wild
type sequence, variants that have scattered substitu-
tion mutations, is then generated. These library se-
quences are then used as input to an experimental pro-
cedure that measures a specific sequence-dependent
activity and, as a result of this measurement, outputs
sequences into one or more “bins.” Finally, the number
of occurrences of each variant sequence in each bin is
assayed using high-throughput sequencing.

The resulting data consists of a set aligned se-
quences, each associated with a specific number of
counts within each of the experimental bins. MPAthic
is designed specifically for the analysis of data hav-
ing this form. The aligned nature of these sequences
greatly simplifies the process of quantitative modeling.
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In particular, when the assayed sequences have a natu-
ral alignment, one can sensibly model the quantitative
effect of each nucleotide or amino acid position.

We note that not all massively parallel experiments
have this form. SELEX-SEQ and related experiments
often use library DNA that is completely random (e.g.,
[35, 36, 37, 38, 39, 40]), and thus cannot be expected
to have well-aligned features. Other experiments, in-
cluding Sort-Seq and MPRA experiments, have used
libraries that contain specified arrangements of bind-
ing sites or large numbers of different genomic regions
(e.g., [11, 41, 42, 43]). These other datasets are, in
principle, amenable to quantitative modeling as well.
This modeling task is more complex than for aligned
sequences, however, and is not supported in the cur-
rent version of MPAthic.

Formalization
We formalize the problem of inferring quantitative
models of sequence-function relationships as follows.
We represent massively parallel data as a set of N
sequence-measurement pairs, {(Sn,Mn)}Nn=1, where
each measurement Mn is a non-negative integer cor-
responding to the bin in which the n’th sequence se-
quence, Sn, was found. We assume that all sequences
S have the same length L, and that at each of the L
positions in each sequence there is one of C possible
characters (C = 4 for DNA and RNA; C = 21 for pro-
tein, representing 20 amino acids and the termination
signal). In what follows, each sequence S is represented
as a binary C × L matrix having elements

Scl =

{
1 if character c occurs at position l
0 otherwise

.(1)

Here, l = 1, 2, . . . , L indexes positions within the se-
quence, while c = 1, 2, . . . , C indexes possible nu-
cleotides or amino acids. Note that, in this represen-
tation, the same sequence S will typically be observed
multiple times in each dataset and will often fall into
multiple different bins.

Our goal is to derive a function that can, given a
sequence S, predict the activity R measured by the
experiment. To do this we assume that the activity
value R is given by a function r(S, θ) that depends on
the sequence S and a set of parameters θ. Before we
can infer the values of the parameters θ from data, we
must first answer two distinct questions:
1 What functional form do we choose for r(S, θ)?
2 How do we use the data {Sn,Mn} and the model

predictions r(S, θ) to infer parameter values θ?
MPAthic provides two different options for the func-

tion r: a “matrix” model, where each position in S
contributes independently to the predicted activity,

and a “neighbor” model, which accounts for poten-
tial epistatic interactions between neighboring posi-
tions. MPAthic also provides three different methods
for fitting the parameters θ to data: parameters val-
ues can be inferred by computing enrichment ratios
(a method applicable only to matrix models), by per-
forming least squares optimization, or by maximizing
the mutual information between model predictions and
measurements. These different model types and infer-
ence methods are elaborated below.

Matrix models and neighbor models
Matrix models have the form

rmat(S, θ) =
C∑
c=1

L∑
l=1

θclScl. (2)

In this context, θ is a C × L matrix where each ele-
ment θcl represents the contribution of character c at
position l to the overall sequence-dependent activity.
For example, Fig. 3B shows the parameters of a matrix
model that describes the sequence specificity of RNAP.
These parameters were inferred from the Sort-Seq data
of [7] using MPAthic.

Neighbor models have the form

rnbr(S, θ) =

C∑
c=1

C∑
d=1

L−1∑
l=1

θcdlSclSd(l+1). (3)

Such models comprise C2(L− 1) parameters, denoted
θcdl, that represent the contributions of all possible ad-
jacent di-nucleotides or di-amino-acids within S. Fig.
3C illustrates one such model which, as above, de-
scribes RNAP and was inferred using MPAthic oper-
ating on data from [7].

Enrichment ratio inference
The computation of enrichment ratios is the simplest
way to infer quantitative sequence-function relation-
ships from massively parallel data. The motivation for
this inference method traces back to the seminal work
of Berg and von Hippel [44, 45], and the resulting mod-
els can be thought of as the incarnation of position
weight matrices [46] in the context of massively par-
allel experiments. We note that the calculation of en-
richment ratios is one of the primary types of analyses
reported in the DMS literature [2].

Enrichment ratio inference, however, places strong
restrictions on the types of models and data that one
can use. Specifically, one is restricted to using matrix
models only, and the data used to compute parameter
values can consist of only two bins of sequences: an un-
selected ‘library’ bin (M = 0) and a selected ‘enriched’
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bin (M = 1). Moreover, the validity of this inference
procedure depends on additional assumptions that are
often not satisfied by real-world experiments [34].

Still, if one is willing to impose these restrictions and
make the necessary assumptions, then model parame-
ters θER are computed using

θER
cl = log

f1cl
f0cl
, (4)

where

fMcl =
1

NM + Cλ

∑
n|M

Sncl + λ

 . (5)

Here, fMcl denotes the fraction of sequences in bin M
having character c at position l, NM is the total num-
ber of sequences in bin M , λ is a nonnegative pseu-
docount (specified by the user), and the sum in Eq.
(5) is restricted to sequences Sn that lie within bin
M (i.e., for which Mn = M). We note that that Eq.
(5) arises in a Bayesian calculation as a the maximum
a posteriori estimate of θER

cl for appropriate choice of
prior.

The calculation of enrichment ratios is the only type
of inference supported by dms tools [31]. This ap-
proach, however, is implemented in two different ways.
dms tools supports the computation of matrix model
parameters using the formulas in Eq. (4) and Eq. (5).
This leads to very rapid calculations, and for this
reason such inference is also supported by MPAthic.
dms tools also supports a much more computationally
intensive inference procedure, which uses Monte Carlo
sampling of an explicit Bayesian posterior distribution.
In [31], this Monte Carlo approach is advocated as
providing a more accurate estimate of model param-
eters than do Eqs. (4) and (5). In what follows, we
use ‘DT’ to label matrix models inferred by dms tools
using this Monte Carlo approach. Supplemental Infor-
mation shows, however, that all DT models discussed
in this manuscript are nearly indistinguishable from
the models inferred by analytic enrichment ratio cal-
culations.

Least squares inference

Least squares provides a computationally simple infer-
ence procedure that overcomes the most onerous re-
strictions of enrichment ratio calculations. It can be
used to infer any type of linear model, including both
matrix models and neighbor models. It can also be
used on data that consists of more than two bins.

The idea behind the least squares approach is to
choose parameters θLS that minimize a quadratic loss
function. Specifically, we use

θLS = argminθL(θ), (6)

where

L(θ) =
∑
M

∑
n|M

[r(Sn, θ)− µM ]
2

σ2
M

+ α
∑
i

θ2i . (7)

Here, µM is the assumed mean activity of sequences in
bin M , σ2

M is the assumed variance in the activities of
such sequences, i indexes all parameters in the model,
and α is a “ridge regression” regularization parame-
ter [47]. By using the objective function L(θ), one can
rapidly compute values of the optimal parameters θ
using standard algorithms [48].

One downside to least squares inference is the need
to assume specific values for µM and for σ2

M for each
bin M . MPAthic allows the user to manually specify
these values. There is a danger here, since assuming
incorrect values for µM and σ2

M will generally lead to
bias in the inferred parameters θLS [34]. In practice,
however, the default choice of µM = M and σ2

M = 1
often works surprisingly well when bins are arranged
from lowest to highest average activity.

Another downside to least squares is the need to as-
sume that experimental noise – specifically, p(R|M)
– is Gaussian. Only in such cases does least squares
inference correspond to a meaningful maximum like-
lihood calculation. In massively parallel assays, how-
ever, noise is often strongly non-Gaussian. In such sit-
uations, least squares inference cannot be expected to
yield correct model parameters for any choice of µM
and σ2

M [34].

Information maximization inference
An alternative inference procedure, one that does not
suffer from the need to assume a specific quantitative
form for experimental noise, is the maximization of
mutual information. In the large data limit, informa-
tion maximization is equivalent to performing maxi-
mum likelihood inference when the quantiative form
of experimental noise is unknown [34, 49, 50]. This ap-
proach was originally proposed for receptive field in-
ference in sensory neuroscience [51, 52, 53], but has
since been applied in multiple molecular biology con-
texts [49, 54], including in the analysis of massively
parallel experiments [7, 8].

In this approach, parameter values are chosen to
maximize the mutual information between model pre-
dictions and measurements. Specifically, one chooses

θIM = argmaxθI(θ), (8)
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where

I(θ) = I[R;M ] (9)

=
∑
M

∫
dR p(R,M) log

p(R,M)

p(R)p(M)
(10)

is the mutual information between the bins M in which
sequences are found and the corresponding model pre-
diction R for those sequences. In what follows, I(θ)
is referred to as the “predictive information” of the
model. For each choice of θ, computing predictive in-
formation requires a regularized estimate of the joint
probability distribution p(R,M). MPAthic currently
uses standard kernel density methods [47] to estimate
these distributions, although field-theoretic density es-
timation [55, 56] may ultimately prove superior in this
context.

Following [7], MPAthic optimizes parameters using
a Metropolis Monte Carlo algorithm in which each
choice for θ has relative probability exp[NI(θ)]. Be-
cause this Monte Carlo procedure is computationally
expensive, information maximization is much slower
than enrichment ratio calculations or least squares in-
ference. Running on a standard laptop computer, our
current algorithm takes between 30 minutes and 2
hours for each of the information maximization tasks
described below.

Results
To test the capabilities of MPAthic, we analyzed data
from previously published Sort-Seq [7], MPRA [8], and
DMS [9] studies. Each of these studies generated mul-
tiple independent datasets, allowing us to test the in-
ference capabilities of MPAthic by training and testing
models on separate data. We also analyzed simulated
data in order to assess the ability of MPAthic to accu-
rately recover known parameter values.

Sort-Seq data
In their studies of the E. coli lac promoter, Kinney
et al. [7] performed six independent Sort-Seq experi-
ments, which they referred to as rnap-wt, crp-wt, full-
wt, full-500, full-150, and full-0. All of these experi-
ments assayed the transcriptional activity of variant
sequences spanning a 75 bp region of the lac promoter
(Fig. 3A). This region is known to bind two proteins,
RNAP and CRP, at two separate binding sites. In the
original study [7], models for the sequence specificity of
these two proteins were inferred by modeling how tran-
scription depends on sequence variation within their
respective binding sites.

For both RNAP and CRP, we used each of these
six datasets to infer both matrix models and neighbor

models.[2] Inference was performed using two meth-
ods supported by MPAthic: least squares optimiza-
tion (LS) and mutual information maximization (IM).
In addition, matrix models were inferred using the
Monte Carlo estimates of enrichment ratios provided
by dms tools (DT).[3] The performance of each of these
models on each of the available datasets was then
quantified by estimating the predictive information
I[R;M ].

Fig. 4A illustrates the performance of each in-
ferred RNAP model (columns) on each of the pub-
lished datasets (rows). Fig. 4B shows similar results
for the inferred CRP models.[4] For both CRP and
RNAP, the IM-inferred matrix models consistently
outperformed the LS- and DT-inferred matrix mod-
els when evaluated on independent test data (Figs.
4C,4D,4E,4F). This finding lends support to the the-
oretical arguments of [34] that information maximiza-
tion has substantial advantages over other methods for
inferring quantitative sequence-function relationships
from massively parallel data. It also demonstrates the
superior performance of MPAthic relative to dms tools
for the inference of matrix models.

We also investigated whether neighbor models,
which account for epistatic interactions between neigh-
boring positions in a sequence, might provide better
descriptions of RNAP and CRP than simple matrix
models do. To our knowledge, the presence of such in-
teractions in either of these well-studied proteins has
yet to be definitively established (although see [57]).
We therefore compared the predictive performance of
matrix and neighbor models that were trained (using
IM) on the same datasets (Figs. 4G, 4H).

Neighbor models did not always outperform matrix
models in these tests. However, for both CRP and
RNAP, neighbor models did perform better than their
corresponding matrix models when the predictive in-
formation of the matrix model was high (Figs. 4E,4F).
Such high matrix model predictive information values

[2]Raw data from [7] is available on NCBI SRA, acces-
sion number SRA012345; processed data formatted for
use with MPAthic is provided on the MPAthic project
homepage.
[3]Because enrichment ratio calculations require ex-
actly two sequence bins, only one high-activity and
one low-activity set of sequences were used for the en-
richment ratio calculations in Figs. 4 and 5.
[4]RNAP models were not trained or tested on the crp-
wt dataset because the RNAP binding site was not
mutagenized in that experiment. Similarly, CRP mod-
els were not trained or tested on the rnap-wt dataset.
CRP models were also not trained or tested on the full-
0 dataset because cAMP, a ligand that CRP requires
in order to bind DNA, was absent in that experiment.
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are expected to occur when the data used to train
models is of high quality. We interpret this finding
as evidence for epistatic interactions in the specifici-
ties of both CRP and RNAP. This also indicates that
MPAthic, but not dms tools, is capable of quantify-
ing such interactions. We note that the crp-wt data
should be expected to be the best dataset for training
models of CRP because the mutation rate used in this
experiment was the highest (24%). This expectation
is consistent with our finding that the CRP neighbor
model inferred from crp-wt outperformed every other
model inferred for CRP.

Simulated data

To further establish the ability of MPAthic to prop-
erly infer quantitative models, we next analyzed sim-
ulated Sort-Seq data. To generate simulated Sort-Seq
data, we used the simulation capabilities of MPAthic
together with the nbr-IM models for RNAP and CRP
that were inferred from the full-wt dataset of [7]. Eight
datasets were simulated in total, four for RNAP and
four for CRP. In each simulation, 106 cells were sorted
into either 10 or 2 bins; see SI for simulation details.
Half of these simulated datasets (labeled “train”) were
then used to infer matrix and neighbor models as de-
scribed in the previous section. The other half (la-
beled “test”) were used solely to evaluate model per-
formance.

Fig. 5A shows results for the simulated RNAP data,
while Fig. 5B shows corresponding results for simu-
lated CRP data. The nbr-IM models performed best in
every case tested, with virtually no apparent difference
in performance between training and test data. In par-
ticular, all of the nbr-IM models performed substan-
tially better than the mat-IM models, demonstrating
the ability of MPAthic to accurately quantify epistatic
interactions. It is also worth noting that, as in the
analysis of Sort-Seq data, the matrix models found by
MPAthic using IM inference outperformed those com-
puted by dms tool using enrichment ratio calculations.
Figs. 5C and 5D plot the values of parameters for in-
ferred neighbor models against the corresponding pa-
rameter values of the neighbor models used to gener-
ate the data. We found very strong agreement, with a
signal-to-noise ratio of 31 across the 528 parameters of
the RNAP neighbor model, and a signal-to-noise ratio
of 49 across the 336 parameters of the CRP neighbor
model.

MPRA and DMS data

MPAthic is designed to facilitate the quantitative mod-
eling of data from a variety of massively parallel assays,
including MPRA and DMS experiments. To test the

utility of MPAthic in these contexts, we inferred ma-
trix models using MPRA data from [8] and DMS data
from [9].[5]

In [8], replicate MPRA experiments were performed
on a synthetic cAMP responsive element (CRE). These
experiments tested ∼ 2.7×104 microarray-synthesized
CREs having randomly scattered substitution muta-
tions (10% per nucleotide position) throughout an 87
bp region. Using MPAthic, we inferred matrix mod-
els spanning this entire 87 bp region using IM- and
LS-based inference. We also computed matrix mod-
els using dms tools. We found that on both replicate
datasets, the IM-inferred models found by MPAthic
performed the best in cross-comparisons (Fig. 6A).
Moreover, both of these models performed better on
both replicate datasets relative to the matrix model
described in the original publication [8].

The DMS experiments of [9] assayed a variable re-
gion spanning 33 aa within a WW domain protein.
Specifically, the gene sequences of this WW domain
was mutagenized at ∼2% per base. Multiple rounds of
panning using a peptide ligand were then used to se-
lect WW-domain variants displayed on the surface of
phage. The WW domain coding sequences present in
the phage library after 0, 3, and 6 rounds of selection
were then sequenced.

Using MPAthic, we fit models to either the round 0
and round 3 libraries, or to the round 3 and round 6
libraries. When trained on round 0,3 data and tested
on round 3,6 data, the IM-inferred matrix models re-
turned by MPAthic performed better than LS-inferred
models and about the same as the matrix models re-
turned by dms tools (Fig. 6B). However, IM models fit
to round 3,6 data actually performed worse than the
corresponding models of dms tools. This is the only
situation we encountered where DT models outper-
formed IM models.

The poor performance of IM in this context is most
likely due to the sparsity of data in the round 3,6
dataset. Specifically, in the round 3,6 dataset, we ob-
served 8 amino-acid-position combinations with no
representation in the data. Furthermore, 16 amino-
acid-position combinations were represented by data

[5]The preprocessed MPRA data of [8] was obtained
from NCBI GEO, accession number GSE31982. The
preprocessed DMS data of [2] was kindly provided by
Douglas Fowler; raw data is available from NCBI SRA,
accession number SRA020603. Processed data from
both publications, formatted for use with MPAthic,
is provided on the MPAthic project homepage. The
neighbor models fit to data from both of these studies
performed poorly relative to matrix models. We there-
fore ignore these neighbor models in what follows.
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from only one sequence read. By contrast, the round
0,3 dataset contained data on all amino-acid-position
combinations, and for only 2 of these combinations
did this data come from a single sequence. Our re-
sults therefore suggest that the IM-based inference of
MPAthic can perform at least as well on DMS data as
enrichment ratio calculations, but only when datasets
are sufficiently rich. More generally, the existence of 20
amino acids compared to 4 DNA/RNA bases places
a significantly larger burden on the amount of data
needed to obtain accurate models from DMS data rela-
tive to Sort-Seq or MPRA data. This is true regardless
of the inference method one uses.

Discussion
MPAthic provides routines for inferring quantitative
models from MPA data. Such modeling is essential
for understanding quantitative sequence-function rela-
tionships. The lack of published software available for
this purpose has likely restricted the range of biologi-
cal problems to which MPAs have been applied. Cur-
rently, the only published software for learning quan-
titative models from MPA data is dms tools [31]. As
shown here, MPAthic improves upon dms tools in two
key ways.

First, MPAthic is better than dms tools at infer-
ring the parameters of matrix models, the simplest
and most widely used type of model for describing
sequence-function relationships. This improved perfor-
mance is due to MPAthic supporting the use of mutual
information maximization as a way to infer parameter
values. dms tools, by contrast, is limited to enrichment
ratio calculations. Mutual information maximization
has been theoretically shown to provide an optimal
inference method in the large data limit [34]. By con-
trast, the use of enrichment ratio calculations requires
multiple assumptions that are often violated in real-
world MPA experiments. Moreover, mutual informa-
tion maximization makes use of all the available data,
while enrichment ratio calculations often require one
to discard valuable measurements. As we showed on
both real and simulated data, the mutual information
maximization routines provided by MPAthic almost
always yield better matrix models than do enrichment
ratio calculations. The only exception to this obser-
vation was found, unsurprisingly, in the analysis of a
dataset having comparatively sparse coverage.

Second, unlike dms tools, MPAthic enables the
quantification of epistatic interactions via the inference
of neighbor models. Using simulated data, we showed
that MPAthic is able to recover nearest-neighbor
epistatic interactions with high accuracy. When ap-
plied to the published Sort-Seq data of [7], MPAthic
was able to find neighbor models for both RNAP and

CRP that had higher predictive power than the cor-
responding optimal matrix models. This indicates the
successful quantification of real epistatic interactions
that had not been previously known for either of these
well-studied proteins.

The quantitative modeling of sequence-function re-
lationships will ultimately require capabilities beyond
those currently supported by MPAthic. For instance,
there are a variety of other types of models that are
likely to prove useful. Particularly promising are mod-
els with sparse all-versus-all pairwise interactions [57],
models with interactions based on higher-order se-
quence features [58], deep neural network models [59],
and nonlinear models that reflect specific biophysi-
cal mechanisms [7]. MPAthic does, however, provide a
framework into which such modeling capabilities can
be incorporated in the future, and through which dif-
ferent modeling strategies can be compared in a trans-
parent way.

Availability of data and materials
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• Installation
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Figure 1 Three different massively parallel experiments. (A) The Sort-Seq assay of [7]. A plasmid library is generated in which
mutagenized versions of a bacterial promoter (blue) drive the expression of a fluorescent protein (green). Cells carrying these plasmids
are then sorted according to measured fluorescence using fluorescence-activated cell sorting (FACS). The variant promoters in each
bin of sorted cells are then sequenced. (B) The MPRA assay of [8]. Variant enhancers (blue) are used to drive the transcription of
RNA that contains enhancer-specific tags (shades of brown). Expression constructs are transfected into cell culture, after which
tag-containing RNA is isolated and sequenced. Output sequences consist of the variant enhancers that correspond to expressed tags.
(C) The DMS assay of [9]. Randomly mutagenized gene sequences (blue) produce variant proteins (colored bells) that are expressed
on the surface of phage (gray rectangles). Panning is used to enrich for phage that express proteins that bind a specific ligand of
interest (brown circles). The variant coding regions enriched after one or more rounds of panning are then sequenced.
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Figure 2 Overview of MPAthic. (A) In all massively parallel assays, a library of sequences is used as input to an experiment (black
box) that outputs these sequences into one or more bins. The prevalence of each sequence in each bin depends on the assayed
activity of that sequence. MPAthic can be used to analyze data from such experiments when the input library consists of
substitution-mutated versions of a specific “wild type” sequence. (B) The data from such experiments can be represented as a table
listing the number of occurrences of each unique sequence in each bin. MPAthic provides routines for inferring quantitative models
from datasets that have this form. Routines are also provided for simulating data, for computing summary statistics, and for
evaluating inferred models on arbitrary sequences.
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CRP RNAP

AATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGG

34 bp22 bp

Figure 3 Examples of quantitative models. (A) The 75 bp
region of the E. coli lac promoter that was assayed in the
Sort-Seq experiments of [7]. This region contains binding sites
for two proteins: CRP and RNAP. As shown in Fig. 4, multiple
types of quantitative models for both CRP and RNAP
(spanning the two indicated regions) were inferred from the
datasets of [7] using multiple different inference methods. (B)
A matrix model for RNAP, inferred from the full-wt experiment
of [7] via information maximization. (C) A neighbor model for
RNAP spanning the same region and fit to the same data as
in panel B, again inferred using information maximization.
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Figure 4 Analysis of Sort-Seq data. (A,B) Performance of (A) RNAP and (B) CRP models inferred from and evaluated on
Sort-Seq data from [7]. Each column corresponds to an inferred model; column headers indicate the dataset (rnap-wt, crp-wt,
full-wt, full-500, full-150, or full-0) used to train the model, the type of model inferred (neighbor (nbr) or matrix (mat)), and the
inference method used by MPAthic (information maximization (IM) or least squares (LS)). Columns corresponding to matrix models
inferred using dms tools are indicated by DT. Rows indicate the datasets used to evaluate model performance. Heatmap values give
the predictive information of each inferred model (column) on each test set (row). These values are expressed as a percentage of the
maximal predictive information achieved on each test set (i.e., along each row). (C-H) Scatter plot comparisons of predictive
information values for (C,D) matrix models fit using IM inference (Imat,IM) vs. using dms tools (Imat,DT), (E,F) matrix models fit
using IM vs. LS inference (Imat,LS), and (G,H) IM-inferred matrix models versus IM-inferred neighbor models (Inbr,IM). Data points
in panels C-H indicate model performance on non-training data only. In panels G and H, regression lines and 95% bootstrap
confidence intervals are shown.
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Figure 5

Figure 5 Analysis of simulated data. Sort-Seq data was simulated using the RNAP and CRP neighbor models inferred using
MPAthic (in IM mode) from the full-wt data of [7]. Four datasets were generated for each model: one training and one test set were
generated by sorting into 10 bins, while one training and one test set generated by sorting into 2 bins. (A,B) Performance of (A)
RNAP and (B) CRP models inferred from and evaluated on these simulated datasets. Columns indicate the dataset used to train the
model, the type of model inferred (nbr or mat), and the inference method used for training (MPAthic in IM or LS mode, or
dms tools (DT)). Rows indicate the datasets on which models were evaluated. As in Figs. 3A and 3B, heatmaps show predictive
information values expressed as a percentage of the maximal predictive information achieved on each dataset. (C,D) Comparison of
the parameters of the neighbor models used in these simulations to the parameters of the neighbor models fit to the corresponding
“sim-10 train” data using MPAthic in IM mode. Also shown is the signal-to-noise ratio, defined as the variance in the abscissa
divided by the variance in the deviation of the ordinate from the diagonal.
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Figure 6 Analysis of MPRA and DMS data. (A)
Cross-comparison of matrix models fit to data from two
replicate MPRA experiments reported in [8]. The performance
of the matrix model reported in the original publication (Pub)
is also shown. (B) In the DMS experiments of [9], sequence
data was gathered after 0, 3, and 6 rounds of selection. Shown
is a cross-comparison of matrix models fit to data from either
rounds 0 and 3, or to data from rounds 3 and 6, using either
MPAthic in IM or LS mode, or using dms tools (DT).
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Additional Files
Additional file 1 — Sample additional file title

Additional file descriptions text (including details of how to view the file, if

it is in a non-standard format or the file extension). This might refer to a

multi-page table or a figure.

Additional file 2 — Sample additional file title

Additional file descriptions text.
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