
1 
 

REGULATORY ARCHITECTURE OF GENE EXPRESSION VARIATION IN THE 1 

THREESPINE STICKLEBACK, GASTEROSTEUS ACULEATUS. 2 

Victoria L. Pritchard 
1
, Heidi M. Viitaniemi 

1
, R.J. Scott McCairns 

2
, Juha Merilä 

2
, 3 

Mikko Nikinmaa 
1
, Craig R. Primmer 

1
 & Erica H. Leder 

1
.  4 

1
 Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Finland 5 

2
 Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, 6 

Finland. 7 

 8 

Abstract 9 

Much adaptive evolutionary change is underlain by mutational variation in regions of the genome that 10 

regulate gene expression rather than in the coding regions of the genes themselves. An understanding 11 

of the role of gene expression variation in facilitating local adaptation will be aided by an 12 

understanding of underlying regulatory networks. Here, we characterize the genetic architecture of 13 

gene expression variation in the threespine stickleback (Gasterosteus aculeatus), an important model 14 

in the study of adaptive evolution. We collected transcriptomic and genomic data from 60 half-sib 15 

families using an expression microarray and genotyping-by-sequencing, and located QTL underlying 16 

the variation in gene expression (eQTL) in liver tissue using an interval mapping approach. We 17 

identified eQTL for several thousand expression traits. Expression was influenced by polymorphism 18 

in both cis and trans regulatory regions. Trans eQTL clustered into hotspots. We did not identify 19 

master transcriptional regulators in hotspot locations: rather, the presence of hotspots may be driven 20 

by complex interactions between multiple transcription factors. Observed hotspots did not co-locate 21 

with regions of the genome known to be involved in adaptive divergence between marine and 22 

freshwater habitats, suggesting they do not play a role in this well-documented stickleback radiation. 23 
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Introduction 25 

It is now known that much adaptive evolution is underlain by changes in regions of the genome 26 

regulating gene expression, rather than in the protein coding regions of the genes themselves (Pavey 27 

et al. 2010). Recent work has demonstrated that much variation in gene expression is heritable, and 28 

thus evolvable via selection (e.g. Ayroles et al. 2009, Powell et al. 2013, Leder et al. 2015). 29 

Correspondingly, studies using model species have found that the genetic polymorphisms underlying 30 

phenotypic variation are typically not within genes (Flint and Mackay 2009). Variation in gene 31 

expression has been shown to underlie several well-documented cases of phenotypic and/or adaptive 32 

divergence. These include plumage coloration and beak shape in birds (Mallarino et al. 2011; Poelstra 33 

et al. 2015), mimetic wing patterns in butterflies (Reed et al. 2011; Hines et al. 2012), and flower 34 

colour (Durbin et al. 2003). Further, differences in gene expression patterns have been found to 35 

correlate with adaptive divergence in multiple species (e.g. Bernatchez et al. 2010; Barreto et al. 36 

2011). Dysregulation of gene expression due to interactions amongst regulatory loci has potential to 37 

cause reduced fitness of inter-population hybrids and thus contribute to reproductive isolation (Ellison 38 

and Burton 2008; Turner et al. 2014). However, it may also promote hybrid speciation by enabling 39 

hybrids to exploit new niches (Lai et al. 2006). 40 

The genetic architecture of gene expression regulation can be investigated by treating expression 41 

variation as a quantitative trait and identifying the genomic locations associated with it (termed 42 

‘expression quantitative trait loci’ or ‘eQTL’). Such studies have shown that the expression of a gene 43 

can be regulated by multiple genomic regions, which are traditionally classified as either cis or trans. 44 

Cis regulators, including promoters that activate transcription and enhancers that influence 45 

transcription levels, are located close to the regulated gene(s). They contain binding sites for 46 

regulatory molecules (proteins or mRNA) that are produced by more distant, trans, regulators. As cis 47 

regulators are expected to affect only one or a few focal genes, while trans regulators may have 48 

pleiotropic effects on many genes, cis and trans regulators are subject to different evolutionary 49 

dynamics. Cis regulatory changes are expected to be important drivers of local adaptation (Steige et 50 

al. 2015), while intraspecific trans regulatory variation is considered more likely to be under 51 

purifying selection (Schaefke et al. 2013 but see also Landry et al. 2005 for discussion of cis-trans 52 

coevolution). Correspondingly, trans regulatory polymorphisms tend to affect gene expression less 53 

strongly than cis polymorphisms, and their effects are more likely to be non-additive (Zhang et al. 54 

2011; Gruber et al. 2012; Schaefke et al. 2013; Meiklejohn et al. 2014). Nevertheless, work in 55 

multiple species has demonstrated an important role for both cis and trans polymorphism in shaping 56 

expression variation (Cubillos et al. 2012) and the role of trans variation may have been 57 

underestimated due to the higher statistical power required to detect it (Mackay et al. 2009; Clément-58 

Ziza et al. 2014). Interactions involving trans regulators may be particularly important in reducing the 59 

fitness of inter-population hybrids (Turner et al. 2014). Supporting the pleiotropic role of trans 60 
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regulators, a ubiquitous feature of eQTL studies is the identification of ‘trans eQTL hotspots’, 61 

genomic locations associated with expression variation in many distant genes which are thought to 62 

harbour one or more important trans regulators (Wu et al. 2008; Clément-Ziza et al. 2014; 63 

Meiklejohn et al. 2014). 64 

The threespine stickleback (Gasterosteus aculeatus) is an important model in the study of adaptive 65 

evolution. Ancestral anadromous populations of threespine stickleback have repeatedly and 66 

independently colonized freshwater throughout the Northern Hemisphere (Taylor and McPhail 2000; 67 

Mäkinen et al. 2006). Sympatric and parapatric freshwater populations may exploit different habitats 68 

(Schluter and McPhail 1992; Roesti et al. 2012). The species is also distributed throughout semi-69 

marine environments with large temperature and salinity gradients, such as estuaries and the brackish 70 

water Baltic Sea (McCairns and Bernatchez 2010; Guo et al. 2015; Konijnendijk et al. 2015). 71 

Successful colonization of these diverse habitats necessitates evolutionary adaptation to novel 72 

environmental conditions including changed temperature, salinity and predation regimens, a process 73 

that can occur rapidly (Barrett et al. 2011; Terekhanova et al. 2014; Lescak et al. 2015). Parallel 74 

adaptations between independently founded freshwater populations frequently involve the same 75 

regions of the genome and arise from pre-existing genetic variation in the marine population 76 

(Colosimo et al. 2005; Hohenlohe et al. 2010; Jones et al. 2012; Liu et al. 2014; Conte et al. 2015, but 77 

see DeFaveri et al. 2011; Leinonen et al. 2012; Ferchaud and Hansen 2016). Local adaptation in 78 

environmentally heterogeneous habitats such as the Baltic Sea (Guo et al. 2015) and lake-stream 79 

complexes (Roesti et al. 2015) has been shown to involve similar genomic pathways. Evidence 80 

suggests that much of this adaptation may be due to changes in gene regulation rather than protein 81 

structure (Jones et al. 2012). In addition, plasticity in gene expression in response to different 82 

environmental conditions may facilitate colonization of novel habitats in the first place (McCairns and 83 

Bernatchez 2010; Morris et al. 2014). Leder et al. (2015) recently demonstrated substantial 84 

heritability of gene expression variation within a brackish-water population of threespine stickleback, 85 

confirming that it is amenable to evolution. One well-documented locally adaptive trait, reduction of 86 

the pelvic girdle, is known to be underlain by variation in the cis regulatory region of the Pitx1 gene 87 

(Chan et al. 2010). Recently, Di Poi et al (2016) showed that differences in behaviour and response to 88 

stress between marine and freshwater sticklebacks may be modulated by variation in the expression of 89 

hormone receptors. Otherwise, the architecture of gene expression regulation in the threespine 90 

stickleback and its role in adaptive evolution is only starting to be explored (Chaturvedi et al. 2014).  91 

An understanding of the potential role of gene expression variation in facilitating local adaptation will 92 

be aided by an understanding of the regulatory architecture underlying that gene expression. Here, we 93 

perform the first genome-wide study of this regulatory architecture in the threespine stickleback, by 94 

mapping QTL underlying the variation in expression of several thousand genes in a population from 95 

the Baltic Sea. 96 
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Methods 97 

Experimental crosses. 98 

We used a multi-family paternal half-sib crossing design for QTL mapping. Crossing procedures have 99 

previously been detailed in Leinonen et al. (2011) and Leder et al. (2015). In short, 30 mature males 100 

and 60 gravid females were collected from the Baltic Sea for use as parents. Each male was 101 

artificially crossed with two females, producing 30 half-sib blocks each containing two full-sib 102 

families. Families were reared in separate 10L tanks with density standardized to 15 individuals per 103 

tank, temperature at 17 ± 1°C and 12:12h light/dark photoperiod. At the age of six months, ten 104 

offspring from each family (5 treated, 5 controls) were subject to a temperature treatment as part of a 105 

related experiment (Leder et al. 2015), and immediately euthanized for DNA and RNA collection. 106 

RNA preparation, microarray design, and data normalization 107 

RNA preparation, gene expression microarrays, hybridization, and normalization procedures are 108 

described in detail in Leder et al. (2009, 2015). Briefly, total RNA was isolated from offspring liver 109 

tissue using standard protocols. RNA that passed quality thresholds was labelled (Cy3 or Cy5) using 110 

the Agilent QuickAmp Kit, with equal numbers of individuals within family groups (control & 111 

temperature-treated; males & females) assigned to each dye. Labelled RNA was hybridized to a 112 

custom 8x15 microarray, with sample order randomized (Agilent Hi-RPM kit). Images of the arrays 113 

were acquired, image analysis was performed, and array quality was assessed as detailed in Leder et 114 

al. (2015). Post-processed signals were standardized across arrays using a supervised normalization 115 

approach, implemented in the package 'snm' for R/Bioconductor (Mecham et al. 2010; R Core Team 116 

2015). Dye, array and batch (i.e. slide) were defined as ‘adjustment variables’; sex, family and 117 

temperature treatment were defined as ‘biological variables’. Following normalization, individual 118 

intensity values more than two standard deviations from their family-by-treatment mean, and probes 119 

with missing values for an entire family or >10% of individuals were removed. The final dataset 120 

contained 10,527 expression traits (10,495 genes plus 32 additional splice variants) and 563 121 

individuals (158 control females; 125 control males; 152 treated females; 128 treated males).  122 

Genotyping-by-Sequencing 123 

For genotyping-by-sequencing of parents and offspring we used the method of Elshire et al. (2011) 124 

with an additional gel excision step to improve size selection. DNA was extracted from ethanol 125 

preserved fin tissue (parents) or frozen liver tissue (offspring) and DNA concentrations were 126 

measured using a NanoDrop ND-1000 spectrophotometer. DNA (80 ng) was digested with the 127 

restriction enzyme Pst1 1.5 U (New England Biolabs) and 1x NEB buffer 3, 1x bovine serum albumin 128 

(BSA) and dH2O (3.3 µl) in a thermocycler (37°C, 2h; 75°C, 15min; 4°C, 10min). The digested DNA 129 

was ligated to adapters with T4-ligase 0.6x (New England Biolabs), 1x Ligase Buffer, 21 µl dH2O and 130 
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50 nM of pooled forward and reverse adapters, which were prepared according to Elshire et al. (2011; 131 

ligation program: 22°C, 1h; 65°C, 30min; 4°C, 10min). Up to one hundred and four unique barcodes 132 

were used in each library to label individual samples. The ligation products were pooled into libraries 133 

and purified with a QIAquick PCR Purification Kit (Qiagen). The purified libraries were PCR 134 

amplified with the following components: Purified ligated library (20µl), reaction buffer 1x, MgCl2 135 

1.5nM (Bioline), primer mix 0.5 µM, dNTPs (Fermentas) 0.4μM, BioTaq 0.05 U (Bioline) and dH2O 136 

(20µl) (Amplification program: [72C°, 5min; 4 cycles [95°C, 30s; 95°C, 10s; 65°C, 30s; 70°C, 30s]; 137 

11 cycles [95°C, 10s; 65°C, 30s; 72°C, 20s]; 72°C, 5min; 4°C, 10min). Lastly, we performed a 138 

manual size selection by loading 40 µl of the amplified library on a gel (MetaPhor [Lonza] 2.5 %, 150 139 

ml, 100 V. 1.5 h) and cutting the 300-400 bp range from the resultant smear. The DNA was extracted 140 

from the gel with a QIAquick Gel Extraction Kit (Qiagen). The cleaned product was again separated 141 

on a gel, cut and cleaned. 142 

Six hundred and fifty one individuals, multiplexed into ten separate libraries (maximum library size = 143 

104 individuals), were sequenced with paired-end reading on the Illumina HiSeq2000 platform by the 144 

Beijing Genomics Institute (BGI). An additional 55 individuals (including duplicates) were paired-145 

end sequenced on Illumina HiSeq platforms at the Finnish Institute for Molecular Medicine or at the 146 

University of Oslo.  147 

Variant calling 148 

Reads were split by barcode, and barcodes removed, using a custom perl script. Low quality bases 149 

were removed from the reads via window adaptive trimming using Trim.pl (available: 150 

http://wiki.bioinformatics.ucdavis.edu/index.php/Trim.pl, Illumina quality score ≤ 20). Sufficient 151 

numbers of reads were obtained for 626 of the 672 individuals sent for sequencing. Paired-end reads 152 

for each of these individuals were aligned to the BROAD S1 stickleback genome using BWA 153 

aln/sampe (v 0.6.2) with default parameters (Li and Durbin 2009). The threespine stickleback genome 154 

comprises 21 assembled chromosomes plus 1,823 un-placed genomic scaffolds. Unmapped reads, and 155 

reads with non-unique optimal alignments, pair-rescued alignments, or any alternative suboptimal 156 

alignments, were discarded from resulting SAM files. SAM files were converted to sorted BAM files 157 

using samtools 0.1.18 (Li et al. 2009) and variants were called within each paternal family using the 158 

samtools mpileup function with extended BAQ computation (options: -AED, max-depth 500), in 159 

combination with bcftools (Li et al. 2009). We did not degrade mapping quality for reads with large 160 

numbers of mismatches as we found this to reject high-quality reads due to fixed polymorphisms 161 

between our European stickleback samples and the North American stickleback genome. Indel and 162 

multi-allelic variants were discarded. Initial filters based on SNP quality and variability within and 163 

across families resulted in list of 26,290 candidate bi-allelic SNPs for further analysis. Samtools and 164 

bcftools, applied to each paternal family separately, were then used to call each individual for the 165 
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genotype at each of the 26,290 sites. Sites at which bcftools identified multiple variant types (SNPs, 166 

indels and multi-base polymorphisms) within and among families were removed, leaving 25,668 167 

successfully called variant sites.  168 

Genotype quality control 169 

Vcftools (Danecek et al. 2011) was used to recode genotypes with a genotype quality phred score 170 

(GQ) < 25 or a sequencing depth (DP) < 8 or > 1000 to missing. Vcf files for all families were merged 171 

and the merged file converted to the input format for Plink 1.07 (Purcell et al. 2007). For SNPs on all 172 

autosomal chromosomes and the pseudoautosomal region of Chromosome 19 (see below), the 173 

following filters were applied in Plink: hwe (based on founders only) < 0.01, maximum missing 174 

genotypes = 0.25, minor allele frequency > 0.05, non-founders with > 70% missing data removed. 175 

Adjacent SNPs in complete linkage disequilibrium were manually consolidated into a single locus, 176 

with combined SNP information used to call genotypes.  177 

Several approaches were used check for sample contamination or errors in barcode splitting and 178 

family assignment: in Plink, the mendel option was used to screen families for Mendelian errors, and 179 

sample relatedness was examined by graphically visualizing genome-wide IBD-sharing coefficients 180 

generated by genome; the program SNPPIT (Anderson 2012) was used to assign individuals to 181 

parents, based on five independent datasets of 100 SNPs; and 220 SNPs on Stratum II of 182 

Chromosome 19 (see below) were examined for their expected pattern in males and females (all 183 

heterozygous in males vs. all homozygous in females).  184 

The stickleback Chromosome 19 is a proto-sex chromosome (Roesti et al. 2013; Schultheiß et al. 185 

2015), with a normally recombining pseudo-autosomal domain (approximately 0-2.5mB), a non-186 

recombining domain in the male version (Stratum I, approximately 2.5-12mB) and a domain largely 187 

absent in the male version (Stratum II, approximately 12-20mB). For Stratum I, parental and offspring 188 

genotypes were inspected manually in order to identify the male-specific allele and this was recoded 189 

to a unique allele code (‘9’) for the purposes of linkage map construction. Where the male-specific 190 

allele could not be identified, all genotypes within a family were re-coded as missing. Genotypes were 191 

also inspected manually for Stratum II, and any SNP found to be heterozygous in males was excluded. 192 

All remaining Stratum II SNPs were considered to be hemizygous in males, and one of the alleles was 193 

also recoded as ‘9’.  194 

Linkage map construction 195 

We constructed a linkage map using the improved version of Crimap (Green et al. 1990, available: 196 

http://www.animalgenome.org/tools/share/crimap/). Remaining Mendelian errors in the dataset were 197 

removed using the set-me-missing option in Plink. For each SNP, the number of informative meiosis 198 
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was examined using Crimap, and markers with < 150 informative meioses or within 500bp of one 199 

another were discarded.  200 

The initial map build included 6,448 markers. Where applicable, SNPs were ordered according to the 201 

modified genome build of Roesti et al. (2013). We attempted to position all previously un-placed 202 

scaffolds containing at least two genotyped SNPs on to the map. Scaffolds were assigned to 203 

chromosome on the basis of LOD score using the Crimap function two-point, and then positioned 204 

using a combination of information from pilot Crimap builds, chrompic, and fixed together with 205 

known start and end points of previously assembled scaffolds (Roesti et al. 2013). Information from 206 

chrompic and fixed were also used to confirm the orientation of scaffolds newly placed by Roesti et 207 

al. (2013). Once all possible scaffolds had been placed, recombination distance between ordered 208 

SNPs was estimated using fixed. To refine the map, we iteratively removed SNP genotypes 209 

contributing to implied double crossovers within a 10 cM interval (presumed to be genotyping errors), 210 

and SNPs generating recombination distances of >1cM per 10,000 bp and recalculated distances using 211 

fixed. Remaining regions of unusually high recombination on the map were investigated by examining 212 

whether removal of individual SNPs altered map distance. 213 

eQTL identification 214 

Expression QTL (eQTL) were identified using an interval mapping approach (Knott et al. 1996) 215 

implemented in QTLMap 0.9. 0 (http://www.inra.fr/qtlmap; QTLMap option: -- data-transcriptomic). 216 

As we found that missing values in the expression trait file caused QTLMap to over-estimate the LRT 217 

statistic (see below), we eliminated these from the dataset by removing two individuals and 195 218 

expression traits. Eighty-seven genotyped parents, 474 genotyped and phenotyped offspring (mean 219 

no. offspring per family = 15.8, mean proportion of missing genotypes in offspring = 0.11; maximum 220 

= 0.56), and 10,332 expression traits were included in the analysis. We applied linkage analysis 221 

assuming a Gaussian trait distribution (QTLMap option: --calcul = 3), and included dye, temperature 222 

treatment, and sex as fixed factors in the model. Due to the relatively small size of some of our half-223 

sib families, we examined sire effects only, with a separate QTL effect estimated for each sire. A fast 224 

algorithm was used to identify phase and estimate transmission probabilities at each chromosomal 225 

location (Elsen et al. 1999, QTLMap option: --snp). Autosomes and the pseudoautosomal portion of 226 

the sex chromosome were scanned at 1cM intervals, and the presence of QTL on a chromosome was 227 

assessed using a likelihood ratio test (LRT) under the hypothesis of one versus no QTL. LRT 228 

significance thresholds for each trait on each chromosome were identified empirically, by permuting 229 

fixed effects and traits amongst individuals within families and recalculating LRT scores (5000 230 

permutations). As the combination of 5000 permutations x 10,332 traits x 21 chromosomes was 231 

computationally prohibitive, we first performed permutations on a subset of 200 expression traits to 232 

identify a LRT threshold below which identified QTL were unlikely to be significant at chromosome-233 
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wide p < 0.05 (LRT = 55), and then used permutations to assess significance of all QTL above this 234 

threshold. The non-pseudo-autosomal region of the female Chromosome 19 can be considered 235 

analogous to the X chromosome; identification of QTL in this region requires estimation of dam 236 

effects and was therefore not performed. The 95% confidence interval for each QTL was estimated 237 

using the drop-off method implemented in QTLMap 0.9.7, which returns flanking map positions plus 238 

their nearest marker. 239 

Cis vs. trans eQTL 240 

To discriminate cis vs. trans QTL, we compared inferred QTL location to the position of the 241 

expressed gene according to the BROAD G. aculeatus genome annotation v. 1.77 (available: 242 

http://ftp.ensembl.org/pub/release-77/gtf/gasterosteus_aculeatus/). All positions on the BROAD 243 

annotation were re-coded to positions on our modified chromosome assemblies. We considered a 244 

QTL to be in cis if the SNP closest to the upper or lower 95% confidence bounds of that QTL was 245 

within 5Mb of the regulated gene; all other QTL were considered trans-QTL. For genes on scaffolds 246 

un-anchored to our assembly, we also used information on scaffold position available in the recently 247 

published map of Glazer et al. (2015). Following Johnsson et al. (2015) we applied a local 248 

significance threshold (chromosome-wide p < 0.01) for evaluation of possible cis-QTL and a genome-249 

wide significance threshold (genome-wide p < 0.021, = chromosome-wide threshold of 0.001 * 21 250 

chromosomes) for evaluation of possible trans-QTL. Although this significance threshold is 251 

permissive, we considered it acceptable as our aim was to analyse the eQTL distribution across the 252 

genome rather than to identify individual QTL-locus associations. Similar significance thresholds 253 

have been used for eQTL detection in comparable studies (e.g. Whiteley et al. 2008). 254 

To ask whether the effect of variation in trans regulatory sites was more often non-additive than the 255 

effect of variation in cis regulatory sites, we examined the narrow sense heritability (h
2
) and 256 

dominance proportion of genetic variance (d
2
) estimated for each expression trait by Leder et al. 257 

(2015) and provided in the Supplementary Data for that paper. 258 

Genes with plastic vs. non-plastic expression 259 

To investigate whether genes exhibiting an alteration in expression level in response to a temperature 260 

stress treatment (i.e. those exhibiting environmental plasticity) had a different underlying regulatory 261 

architecture to those not exhibiting such a response, we divided genes into a ‘responding’ and ‘non-262 

responding’ group based on the results in Leder et al.( 2015) and compared the frequency and position 263 

of cis and trans eQTL between the two groups. 264 

Evaluation of eQTL hotspots 265 
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As all identified eQTL had wide 95% confidence intervals, meaning that physically close eQTL 266 

positions could be due to the effect of the same locus (see below), we evaluated potential eQTL 267 

hotspots by counting eQTL within 5cM bins across the genome (‘hotspot size’ = number of eQTL). 268 

Where the number of 1cM bins within a chromosome was not a simple multiple of 5, bin sizes at the 269 

start and/or end of the chromosome were increased to 6 or 7. To obtain an empirical significance 270 

threshold above which clusters of eQTL could be considered a ‘hotspot’, we simulated the expected 271 

neutral distribution of eQTL across the genome using a custom script. We performed 5000 272 

simulations: for each, we assigned n eQTL (where n = relevant number of significant eQTL) 273 

randomly across the 3,062 1cM bins of the genome and then summed them into 5cM (or larger) bins 274 

as described above. Conservatively, we compared the size of hotspots in the real data to the size 275 

distribution of the largest hotspot observed over each of the 5000 simulations. 276 

Association of eQTL with regions under selection 277 

Hohenlohe et al. (2010), Jones et al. (2012), and Terekhanova et al. (2014) documented parallel 278 

regions of the genome divergent between marine and freshwater sticklebacks on Chromosomes 1, 4 279 

(three regions), 7, 11 and 21, and clusters of QTL associated with morphological variation also occur 280 

on Chromosome 20 (Miller et al. 2014). We investigated whether these regions harboured important 281 

trans regulators that might contribute to marine/freshwater adaptation by comparing the location of 282 

these regions with the location of our identified trans eQTL hotspots. We also compared hotspot 283 

location to regions of the genome inferred by Guo et al. (2015) to be involved in adaptive 284 

differentiation amongst different stickleback populations in the Baltic Sea. 285 

Ortholog identification 286 

In order to maximize the functional information available, we identified human orthologues for G. 287 

aculeatus genes. As a first attempt, we used BioMart (Durinck et al. 2005; Smedley et al. 2009) to 288 

identify human orthologues and obtain the HGNC symbols for the human genes. When BioMart 289 

failed to return a human orthologue, protein BLAST searches were used to identify orthologues using 290 

the Ensembl human protein database. The identifier conversion tool, db2db, from bioDBnet 291 

(https://biodbnet-abcc.ncifcrf.gov/db/db2db.php) was used to convert between Ensembl identifiers 292 

and HGNC gene symbols when needed (Mudunuri et al. 2009).  293 

Hotspot annotation  294 

For functional annotation analysis of G. aculeatus genes, Human Ensembl IDs were used as input into 295 

AmiGO2 (Carbon et al. 2009) or the Database for Annotation, Visualization and Integrated Discovery 296 

(DAVID, Huang et al. 2009a; b). To identify regulatory genes physically associated with an eQTL 297 

hotpot, we defined hotspot confidence boundaries as being the most frequently observed 95% 298 

confidence limits of all significant eQTL centred in the hotspot. We identified the map markers 299 
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closest to the two boundaries (Table S3), and used AmiGO2 to search for intervening genes annotated 300 

with ‘molecular function’ or ‘biological process’ Gene Ontology (GO) terms that contained the words 301 

‘transcription’ and ‘regulation’. As an important transcriptional regulator generating a hotspot might 302 

itself be regulated by the hotspot rather than physically present within it, we repeated this analysis for 303 

all genes with eQTL mapped to the hotspot. We used DAVID to examine GO term enrichment for the 304 

sets of genes with significant eQTL mapping to each hotspot, using the 9,071 genes on the microarray 305 

with identified human orthologues as the background. 306 

Upstream regulator and functional interaction analyses 307 

To search for regulatory genes which may be responsible for the expression variation in genes with 308 

identified trans eQTL, we used the upstream regulator analysis in the Ingenuity Pathway Analysis 309 

(IPA) software (Qiagen). This analysis uses a Fisher’s Exact Test to determine whether genes in a test 310 

dataset are enriched for known targets of a specific transcription factor. We used the human HGNC 311 

symbols as identifiers in IPA. First we examined all genes that that had a significant trans- eQTL 312 

mapping to any location at a genome-wide p < 0.021 (chromosome –wide p< 0.001). To investigate in 313 

more detail the upstream regulators potentially involved in generating eQTL hotspots, we lowered our 314 

stringency and also examined all genes with trans eQTL mapping to the hotspot locations at genome-315 

wide p < 0.057 (chromosome-wide p < 0.0027).  316 

Since transcription is typically initiated by a complex of genes rather than a single transcription factor, 317 

we examined functional relationships among the identified upstream regulators for each hotspot 318 

(Table S7b), the genes located within a hotspot, and the genes with significant eQTL mapping to that 319 

hotspot (Table S3; cis eQTL significant at chromosome-wide p < 0.01, trans eQTL significant at 320 

genome-wide p < 0.021), using STRING v10 (Jensen et al. 2009, http://string-db.org/). We searched 321 

for evidence of functional relationships from experiments, databases and gene co-expression, and 322 

applied a minimum required interaction score of 0.4. 323 

Results 324 

Genotyping by sequencing 325 

For the 604 sticklebacks that we retained for analysis, we obtained a total of 583,032,024 raw paired 326 

reads (40,357 – 11,940,726 per individual, median=834,286). Approximately 67% of these reads 327 

remained aligned to the stickleback genome following removal of reads with non-unique optimal 328 

alignments, any alternative suboptimal alignments, or pair-rescued alignments (range 36.2% - 78.8%, 329 

median = 70.1%). Raw read and alignment statistics for each individual are provided in Table S0. 330 

Linkage map construction 331 
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Following SNP calling and quality control steps 13,809 of the original 25,668 SNPs, genotyped in 332 

604 individuals (mean number of offspring per family = 18), were available for linkage map 333 

construction. Following removal of markers with < 150 informative meioses or within 500bp, 6,448 334 

SNPS were included in the initial map build. The final sex-averaged linkage map spanned 3,110 cM 335 

Kosambi (including the complete Chromosome 19) and included 5,975 markers, of which 336 

approximately 45% were located at the same map position as another marker (Figure 1, Figure S1, 337 

Table S1). Forty-three previously un-placed scaffolds (10.35 mB) were added to the chromosome 338 

assemblies of Roesti et al. (2012, Table S2). Thirty-five of these scaffolds were also recently added to 339 

the stickleback assembly in an independent study by Glazer et al. (2015). Although there were some 340 

differences in scaffold orientation, location of the new scaffolds was almost completely congruent 341 

between the two maps (Table S2). For QTL detection with QTLMap, the map was reduced to 3,189 342 

SNPs with unique positions (average inter-marker distance = 0.98cM, Table S1).  343 

Identification of cis and trans eQTL 344 

At chromosome-wide p < 0.01, we identified 5,226 eQTL associated with 4,411 expression traits 345 

(42.7% of the 10,322 expression traits examined, Table S3). Based on our recoded gene positions, we 346 

classified 2,072 of these as cis eQTL, 2,988 as trans eQTL, and 165 as unknown – that is, the 347 

expressed gene was located on a scaffold that had not been assigned to a G. aculeatus chromosome by 348 

either this study or Glazer et al. (2015; Table S3, Table S4). Five hundred and eighty of the trans 349 

eQTL were significant at genome-wide p < 0.021. Of these, 68.3% mapped to a chromosome other 350 

than the one containing the regulated gene. After application of this genome-wide significance 351 

threshold for trans eQTL, 2,713 expression traits (26.3% of those examined) remained associated 352 

with one or more significant cis or trans eQTL. Of these, 74.3% were associated with a cis eQTL, 353 

18.9% with one or more trans eQTL, 2.1% with both a cis and a trans eQTL and 4.7% with eQTL of 354 

unknown class (Table S3). The physical distribution across the genome of the 2,713 loci with 355 

significant cis or trans eQTL is shown in Figure S1. Mean 95% confidence interval of significant 356 

eQTL was 10.1 cM (range 1-74cM). Overall, trans regulated expression traits did not exhibit more 357 

dominance variance than cis regulated loci (trans regulated loci, mean h
2
 = 0.32, mean d

2
 = 0.16; cis 358 

regulated loci: mean h
2
 = 0.37, mean d

2
 = 0.18; values from Leder et al. 2015).  359 

Trans eQTL hotspots 360 

Trans eQTL (significant at genome wide p < 0.021) were not evenly distributed across the genome 361 

and we identified eight 5cM bins, located on six different chromosomes, as containing eQTL clusters 362 

(7 or more eQTL; p < 0.05 based on the largest hotspot observed in neutral simulations; Figure 1). A 363 

particularly large eQTL hotspot (38 trans eQTL within the 5cM bin) was identified close to one end 364 

of Chromosome 6, three hotspots (18, 10, and 9 trans eQTL) were present at separate locations on 365 

Chromosome 12, and remaining hotspots were located near the ends of Chromosomes 7, 8, 9 and 16 366 
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(13, 11, 7 and 9 trans eQTL). To eliminate the possibility that distant cis eQTL mis-classified as trans 367 

were contributing to observed hotspots, we repeated the analysis with the 396 trans eQTL that were 368 

on a different chromosome to their regulatory target: the same eight hotspots were identified (7 or 369 

more eQTL, p < 0.004). Physical hotspot boundaries were assigned from inspection of eQTL hits and 370 

95% confidence intervals as follows: Chromosome 6, 111-116cM (‘Chr6’, 17,238,934-17,469,219bp); 371 

Chromosome 7, 5-12cM (‘Chr7’, 396,541-1,107,393bp); Chromosome 8, 134-139cM (‘Chr8’, 372 

19,917,746-20,316,565bp); Chromosome 9, 165-174cM (‘Chr9’, 19,822,078-20,440,410bp); 373 

Chromosome 12, 0-1cM (‘Chr12a’, 0-337,849bp); Chromosome 12, 72-79cM (‘Chr12b’, 5,853,981-374 

7,440,742bp); Chromosome 12, 109-119cM (‘Chr12c’, 15,551,555-17,229,387bp); Chromosome 16, 375 

123-130cM (‘Chr16’, 17,658,526-18,257,571bp). 376 

Genes with plastic vs. non-plastic expression 377 

Following FDR correction, 4,253 genes were found by Leder et al. (2015) to exhibit a significant 378 

change in expression in response to a temperature treatment. We identified significant eQTL 379 

underlying 1,033 of these genes (Table S3; eQTL type: 76.0% cis, 18.0% trans, 2.2% both, 3.8% 380 

unknown). The distribution of the 216 significant trans eQTL across 5cM bins indicated five hotspots 381 

(5 or more eQTL, p < 0.02, Figure S2), four of which had been previously observed in the full dataset. 382 

The Chromosome 16 hotspot was greatly increased in relative importance, and a new hotspot was 383 

observed on Chromosome 18 (Chr 6: 12 eQTL; Chr16: 9 eQTL; Chr12a: 5 eQTL; Chr12b: 5 eQTL; 384 

Chromosome 18, ‘Chr18’: 5 eQTL, 96-102cM, 13,870,895-14,643,331bp).  385 

Association of eQTL with regions under selection 386 

None of our identified eQTL hotspots overlapped parallel regions of the genome divergent between 387 

marine and freshwater sticklebacks identified by Hohenlohe et al. (2010), Jones et al. (2012), and 388 

Terekhanova et al. (2014), or with the clusters of morphological QTL on Chromosome 20 (Miller et 389 

al. 2014, Table S5). However, one genomic region identified as divergent between marine and 390 

freshwater populations by Terekhanova et al. (2014) alone overlapped with the Chr12b eQTL hotspot. 391 

Only four of the 297 genes inferred by Guo et al. (2015) as being under selection amongst Baltic Sea 392 

populations experiencing different temperature and salinity regimens overlapped observed eQTL 393 

hotspots (Chr7 and Chr12b, Table S5). 394 

Hotspot annotation  395 

We identified human orthologues for 16,315 of the 20,787 protein-coding genes annotated on the 396 

Broad stickleback genome (78.5%, Table S4). There were 300 genes with human annotation 397 

physically located within the designated boundaries of the nine hotspots (Table S5). Of these, 41 had 398 

a GO term related to transcription regulation (Table 1, Table S6). In addition, 21 genes with 399 

significant cis eQTL or trans eQTL mapping to a hotspot had GO terms related to transcriptional 400 
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regulation (Table 1, Table S6). Following correction for multiple testing we found no significant GO 401 

term enrichment amongst any group of genes regulated by the same eQTL hotspot. 402 

Upstream regulator and functional interaction analyses 403 

When examining all 580 genes with trans eQTL significant at genome wide p < 0.021, 84 404 

significantly enriched upstream regulators were identified (Table S7a). In total, these regulators had 405 

244 of the genes in the dataset as known targets. Hepatocyte nuclear factor 4α (HNF4A) was 406 

identified as a particularly important regulator, with 73 (29.9%) of these genes as downstream targets. 407 

Other important regulatory factors were: tumor protein p53 (TP53; 40 genes; 16.4%); estrogen 408 

receptor 1 (ESR1; 38 genes; 15.6%); myc proto-oncogene protein (MYC; 30 genes; 12.3%) and 409 

huntingtin (HTT; 27 genes; 11.1%). The full list of 85 significant upstream regulators is in Table S7a. 410 

To identify upstream regulators that could be contributing to the nine eQTL hotspots (including one 411 

only observed when examining genes with a plastic response to temperature), we further examined all 412 

genes that had trans eQTL mapping to the hotspots at genome-wide p< 0.057 (1120 genes). One 413 

hundred and fifty seven different enriched upstream regulators were identified for these genes (Table 414 

S7b). For genes with trans eQTL mapping to the Chr6, Chr12a, Chr12b, Chr12c and Chr18 hotspots, 415 

HNF4A remained an important regulator. Only two of the identified upstream regulators were 416 

physically located within a hotspot (serum response factor, SRF, Chr9; nuclear receptor subfamily 4, 417 

group A, member 1, NR4A1, Chr12b). Two had significant trans eQTL mapping to the Chr6 hotspot: 418 

catenin (cadherin-associated protein) beta (CTNNB1) and hypoxia inducible factor 1 alpha (HIF1A). 419 

One had a significant trans eQTL mapping to the Chr7 hotspot: junction plakoglobin (JUP), and one 420 

had a significant trans eQTL mapping to the Chr12b hotspot: Nuclear Receptor Subfamily 1, Group 421 

H, Member 4 (NR1H4; Table 1). 422 

When the enriched upstream regulators, genes with cis eQTL mapping to a hotspot at chromosome-423 

wide p < 0.01, and genes with trans eQTL mapping to a hotspot at genome wide p < 0.021 were 424 

examined in STRING, multiple protein-protein interactions were found (Figure 2, Figure S4). In 425 

particular for the Chr6 hotspot we found an interaction network that included two molecules trans-426 

regulated by this hotspot (CTNNB1 and HIF1A), one molecule cis-regulated by the hotspot (C1D 427 

Nuclear Receptor Co-Repressor), and multiple molecules inferred as important upstream regulators by 428 

IPA (Figure 2a). Similarly, for the Chr12b hotspot, we observed a large network of interactions 429 

involving molecules cis and trans regulated by the hotspot, molecules produced by genes physically 430 

located in the hotspot, and inferred upstream regulators (Figure 2b). 431 

Discussion 432 

In this study we identified regions of the genome underlying variation in gene expression in a marine 433 

population of threespine stickleback from northern Europe. We used a genotyping-by-sequencing 434 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 24, 2016. ; https://doi.org/10.1101/055061doi: bioRxiv preprint 

https://doi.org/10.1101/055061


14 
 

approach to generate an improved linkage map, and applied interval mapping to identify eQTL. Our 435 

new map was independent of that recently constructed by Glazer et al. (2015), and the congruent 436 

placement of scaffolds between the two maps confirms the reliability of these new genome 437 

assemblies. Our map covered a substantially larger distance in cM than those of Roesti et al. (2013) 438 

and Glazer et al. (2015), probably due to differences in experimental design. Nevertheless, for our 439 

Baltic Sea population, we observe very similar patterns of recombination rate variation across and 440 

between chromosomes as found by Roesti et al. (2013) for freshwater sticklebacks from central 441 

Europe and Glazer et al. (2015) for marine-freshwater crosses from western North America, (Figure 442 

S1). Thus, the large scale pattern of recombination rate variation across the genome may impose, 443 

and/or be under, similar evolutionary constraints throughout the range of the species. 444 

Using a chromosome-wide significance threshold for cis regulatory loci and a genome-wide threshold 445 

for trans loci, we identified eQTL for just over a quarter of the 10,332 expression traits examined. 446 

Because at least 74% of these expression traits exhibit significant heritable variation (Leder et al. 447 

2015), and gene expression is commonly regulated by multiple eQTL, we expect that a much larger 448 

number of underlying eQTL remain undetected due to low statistical power. Despite expectations that 449 

trans regulatory regions might be under purifying selection due to their potentially pleiotropic effect, 450 

and that the effect of trans eQTL on expression will be weaker than that cis eQTL, we found many 451 

cases where gene expression was influenced by regulatory variation in trans but not in cis. This 452 

suggests that a frequently-used approach of detecting local selection by examining patterns of 453 

differentiation at markers linked to genes that are adaptive candidates (e.g. DeFaveri et al. 2011, 454 

Shimada et al. 2011) may fail to identify such selection as it is acting to change gene expression via 455 

trans regulatory regions. We did not observe any difference in additive vs dominance variance 456 

underlying genes found to be regulated in cis vs. those regulated in trans. However this may again be 457 

due to low statistical power to detect many of the underlying eQTL: genes are expected to be 458 

influenced by a large number of eQTL, meaning that the observed heritable variation is generated by a 459 

combination of additively and non-additively acting regulatory regions. 460 

The trans eQTL that we detected were not randomly distributed across the genome but instead 461 

clustered into multiple eQTL hotspots. This observation is a ubiquitous feature of eQTL studies and is 462 

thought to indicate the existence of ‘master regulators’ acting in trans to influence many genes. 463 

However apparent eQTL hotspots may also arise as a statistical artefact as a result of many false 464 

positive QTL when testing thousands of expression traits in combination with spurious correlation 465 

between these traits due to uncorrected experimental factors (Wang et al. 2007; Breitling et al. 2008). 466 

Disentangling gene expression correlation that is due to common underlying regulatory architecture 467 

from that caused by experimental artefacts is a difficult analytical problem that we are unable to fully 468 

address here (Joo et al. 2014). Therefore, we caution that these hotspots should be verified using other 469 

stickleback populations and different approaches. 470 
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The parents for this study came from a genetically diverse marine population of threespine stickleback 471 

(DeFaveri et al. 2013). Local adaptation of threespine sticklebacks to freshwater has been 472 

demonstrated to arise, at least partly, from selection on standing genetic variation in the marine 473 

environment. Further, QTL underlying morphological divergence between marine and freshwater 474 

populations have been demonstrated to have pleiotropic effects (Rogers et al. 2012; Miller et al. 475 

2014), and frequently co-localize with regions of the genome found to be under parallel selection 476 

amongst independent freshwater colonisations. One way in which these regions could exert such 477 

pleiotropic effects is by harbouring loci that influence the expression of many genes, i.e. eQTL 478 

hotspots. However, only one of the trans eQTL hotspots found in this study overlapped with genomic 479 

regions found to be associated with marine/freshwater divergence by Hohenlohe et al. (2010), Jones 480 

et al. (2012), or Terekhanova et al. (2014), indicating that they do not underlie the multiple parallel 481 

changes observed when sticklebacks colonize freshwater. It remains possible that regulatory hotspots 482 

acting in tissues or life stages that we did not examine do have a role in this freshwater adaptation. 483 

To investigate the potential genetic mechanisms underlying the nine observed eQTL hotspots we 484 

searched for associated loci with known transcriptional regulatory functions, and performed upstream 485 

regulator analysis for the genes with eQTL in the hotspots. Although the pathways regulating 486 

transcription are still poorly characterized for most genes, particularly in non-mammalian species, 487 

these analyses can provide useful preliminary information. We found no evidence that eQTL hotspots 488 

were due to the presence of a single ‘master’ regulatory locus, or a cluster of regulatory genes, at the 489 

hotspot locations. Although many genes with roles in transcriptional regulation were present in, or 490 

regulated by, hotspots, finding such genes is not unexpected: approximately 10% of the human 491 

orthologues of BROAD stickleback genes are annotated with the GO terms that we used to identify 492 

transcriptional regulators. It is also possible that the regulatory elements generating such hotspots are 493 

not annotated coding genes: microRNAs and long non-coding RNAs are potentially important trans 494 

regulators (Vance and Ponting 2014) and not yet well characterized across the stickleback genome. 495 

Our results suggest that, alternatively, these hotspots may be generated by a complex interaction of 496 

multiple transcription regulators. Several well-characterized regulatory proteins were identified as 497 

upstream regulators for numerous genes with eQTL within the hotspots. In particular, HNF4A was 498 

identified as a strongly enriched regulator for all genes with significant trans eQTL (Table S7a), and 499 

the subsets of genes with trans eQTL mapping to the hotspots on Chromosome 6, Chromosome 12, 500 

and Chromosome 18 (Table S7b). In mammals, HNF4A is known to be a master regulator of 501 

transcription in the liver (Odom et al. 2004). Although the gene is not physically located in any 502 

hotspot, and we were unable to identify any significant eQTL underlying its expression, it is less than 503 

300 kb from hotspot Chr12b. HNF4A likely acts through direct and indirect interactions with other 504 

proteins to regulate transcription. Interacting molecules particularly of interest in respect to hotspot 505 

locations are HIF1A and CTNNB1 (trans regulated by the Chr6 hotspot, Fig. 2a) and NR4A1 (located 506 
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in the Chr12b hotspot, Fig. 2b): all of these are also identified as significantly enriched upstream 507 

regulators when examining genes with trans eQTL mapping to any of the nine hotspots (Table S7b). 508 

CTNNB1 is an important transcriptional coactivator in the cell nucleus (Willert & Jones 2006). 509 

NR4A1 along with its subfamily members NR4A2 (trans regulated by the Chr16 hotspot) and NR4A3 510 

(not on microarray) are orphan nuclear receptors that interact with other regulators to influence 511 

transcription (Ranhotra 2015). From the point of view of local adaptation, HIF1A is particularly 512 

interesting. It is part of a transcriptional complex (HIF) that alters the expression of numerous genes 513 

in response to low oxygen conditions. HIF1A has been demonstrated to regulate responses to hypoxia 514 

in fishes (Nikinmaa and Rees 2005 Liu et al. 2013) and is also involved in inflammation and 515 

temperature adaptation (Rissanen et al. 2006; Liu et al. 2013). It has been investigated as a possible 516 

selective target for adaptation to low-oxygen conditions, such as those encountered in benthic 517 

habitats, in various fish species. Rytkönen et al. (2007) found no association between variation in the 518 

HIF1A coding region and adaptation to hypoxic conditions across species, and markers linked to 519 

HIF1A do not appear be under directional selection amongst Baltic Sea stickleback populations 520 

(Shimada et al. 2011). HIF1A is known to be transcriptionally regulated in fish (Liu et al. 2013), and 521 

the identification of a trans eQTL for HIF1A demonstrates that regulatory variation for this gene is 522 

present in Baltic Sea sticklebacks and could be an alternative target of selection. HNF4A has also 523 

been found to be an important regulator of hypoxia response (Xu et al. 2011). 524 

HNF4A was not implicated in the regulation of genes with trans eQTL mapping to the Chr7, Chr8, 525 

Chr9 or Chr16 hotspots, suggesting that different regulatory complexes may be underlie these 526 

additional hotspots. Comparison of the regulatory architecture underlying genes exhibiting a plastic 527 

response to the temperature treatment to that underlying genes not responding indicates that the Chr16 528 

and Chr18 eQTL hotspots are particularly strongly associated with this gene expression plasticity. 529 

These eQTL hotspots are both linked with the gene bone morphogenic protein 2 (BMP-2, Table 1), 530 

suggesting that this may have a role in mediating such plasticity, although we are unable to examine 531 

this further here. 532 

In conclusion, we have performed the first genome-wide characterisation of the regulatory 533 

architecture of gene expression in G. aculeatus. We found that variation in gene expression was 534 

influenced by polymorphism in both cis-acting and trans acting regulatory regions. Trans-acting 535 

eQTLS clustered into hotspots, however these did not co-locate with regions of the genome known to 536 

be involved in adaptive divergence among marine and freshwater threespine sticklebacks. Hotspots 537 

locations appear to be mediated by complex interactions amongst regulator molecules rather than the 538 

presence of few ‘master regulators’. Our broad-scale study suggests many avenues for finer-scale 539 

investigation of the role of transcriptional regulation in stickleback evolution. 540 

  541 
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Data accessibility 542 
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Table 1: Known transcriptional regulators associated with identified eQTL hotspots. Human orthologues of stickleback genes were identified using BioMart. 776 

Location is as follows: ‘Hotspot’: annotated gene is in genomic region of hotspot; ‘Cis’: gene is cis-regulated by hotspot at chromosome wide p<0.01; 777 

‘Trans’: gene is trans-regulated by hotspot at genome-wide p<0.021. 778 

Hotspot Location 
Stickleback 

Ensembl_ID 

Human 

Ensembl_ID 
Gene Name Description 

Chr06 Cis ENSGACG00000012317 ENSG00000266412 NCOA4 Nuclear receptor coactivator 4 

Chr06 Cis ENSGACG00000001371 ENSG00000167380 ZNF226 Zinc finger protein 226 

Chr06 Hotspot ENSGACG00000011981 ENSG00000197223 C1D C1D nuclear receptor co-repressor 

Chr06 Trans ENSGACG00000018659 ENSG00000112983 BRD8 Bromodomain containing 8 

Chr06 Trans ENSGACG00000004982 ENSG00000065883 CDK13 Cyclin-dependent kinase 13 

Chr06 Trans ENSGACG00000005983 ENSG00000168036 CTNNB1 Catenin (cadherin-associated protein), beta 1, 88kDa 

Chr06 Trans ENSGACG00000003088 ENSG00000116580 GON4L Gon-4-like 

Chr06 Trans ENSGACG00000008525 ENSG00000100644 HIF1A Hypoxia inducible factor 1, alpha subunit 

Chr06 Trans ENSGACG00000013704 ENSG00000096968 JAK2 Janus kinase 2 

Chr07 Cis/Hotspot ENSGACG00000018669 ENSG00000137462 TLR2 Toll-like receptor 2 

Chr07 Hotspot ENSGACG00000000325 ENSG00000135625 EGR4 Early growth response 4 

Chr07 Hotspot ENSGACG00000018606 ENSG00000109670 FBXW7 F-box And WD repeat domain containing 7, E3 

ubiquitin protein ligase 

Chr07 Hotspot ENSGACG00000000304 ENSG00000170448 NFXL1 Nuclear transcription factor, X-box binding-like 1 

Chr07 Hotspot ENSGACG00000000370 ENSG00000164985 PSIP1 PC4 and SFRS1 interacting protein 1 

Chr07 Hotspot ENSGACG00000018586 ENSG00000074966 TXK Tyrosine kinase 
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Chr07 Trans ENSGACG00000000333 ENSG00000173801 JUP Junction plakoglobin 

Chr08 Hotspot ENSGACG00000014457 ENSG00000162733 DDR2 Discoidin domain receptor tyrosine kinase 2 

Chr08 Hotspot ENSGACG00000014404 ENSG00000187764 SEMA4D Sema domain, immunoglobulin domain (Ig), 

transmembrane domain (TM) and short cytoplasmic 

domain, (Semaphorin) 4D 

Chr08 Trans ENSGACG00000006033 ENSG00000125686 MED1 Mediator complex subunit 1 

Chr08 Trans ENSGACG00000017475 ENSG00000137699 TRIM29 tripartite motif containing 29 

Chr09 Hotspot ENSGACG00000019898 ENSG00000162961 DPY30 Dpy-30 histone methyltransferase complex regulatory 

subunit 

Chr09 Hotspot ENSGACG00000019915 ENSG00000132664 POLR3F Polymerase (RNA) III (DNA directed) polypeptide F, 

39 KDa 

Chr09 Hotspot ENSGACG00000020002 ENSG00000112658 SRF Serum response factor 

Chr12a Cis ENSGACG00000000816 ENSG00000126767 ELK1 ELK1, member of ETS oncogene family 

Chr12a Hotspot ENSGACG00000000295 ENSG00000146109 ABT1 Activator of basal transcription 1 

Chr12a Hotspot ENSGACG00000000248 ENSG00000106785 TRIM14 Tripartite motif containing 14 

Chr12a Trans ENSGACG00000019625 ENSG00000164134 NAA15 N(Alpha)-acetyltransferase 15, NatA auxiliary subunit 

Chr12a Trans ENSGACG00000001088 ENSG00000111581 NUP107 Nucleoporin 107kDa 

Chr12b Hotspot ENSGACG00000011155 ENSG00000101017 CD40 CD40 molecule, TNF receptor superfamily member 5 

Chr12b Hotspot ENSGACG00000010943 ENSG00000110925 CSRNP2 Cysteine-serine-rich nuclear protein 2 

Chr12b Hotspot ENSGACG00000011240 ENSG00000163349 HIPK1 Homeodomain interacting protein kinase 1 

Chr12b Hotspot ENSGACG00000011086 ENSG00000101096 NFATC2IP Nuclear factor of activated T-cells, cytoplasmic, 

calcineurin-dependent 2 

Chr12b Hotspot ENSGACG00000010788 ENSG00000123358 NR4A1 Nuclear receptor subfamily 4, group A, member 1 
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Chr12b Hotspot ENSGACG00000010925 ENSG00000184271 POU6F1 POU class 6 homeobox 1 

Chr12b Hotspot ENSGACG00000010990 ENSG00000079337 RAPGEF3 Rap guanine nucleotide exchange factor (GEF) 3 

Chr12b Hotspot ENSGACG00000010838 ENSG00000181852 RNF41 Ring finger protein 41, E3 ubiquitin protein ligase 

Chr12b Hotspot ENSGACG00000010929 ENSG00000135457 TFCP2 Transcription factor CP2 

Chr12b Hotspot ENSGACG00000011135 ENSG00000182463 TSHZ2 Teashirt zinc finger homeobox 2 

Chr12b Hotspot ENSGACG00000011187 ENSG00000204859 ZBTB48 Zinc finger and BTB domain containing 48 

Chr12b Hotspot ENSGACG00000011128 ENSG00000020256 ZFP64 Zinc finger protein 64 

Chr12b Hotspot ENSGACG00000011124 ENSG00000101115 SALL4 Spalt-like transcription factor 4 

Chr12b Trans ENSGACG00000006074 ENSG00000185513 L3MBTL1 L(3)mbt-like 

Chr12b Trans ENSGACG00000011682 ENSG00000162761 LIMX1A LIM homeobox transcription factor 1, alpha 

Chr12b Trans ENSGACG00000004938 ENSG00000012504 NR1H4 Nuclear receptor subfamily 1, group h, member 4 

Chr12c Cis/Hotspot ENSGACG00000004839 ENSG00000188157 AGRN Agrin 

Chr12c Hotspot ENSGACG00000004256 ENSG00000101126 ADNP Activity-dependent neuroprotector homeobox 

Chr12c Hotspot ENSGACG00000004544 ENSG00000009307 CSDE1 Cold shock domain containing E1, RNA-binding 

Chr12c Hotspot ENSGACG00000004732 ENSG00000101412 E2F1 E2F transcription factor 1 

Chr12c Hotspot ENSGACG00000004740 ENSG00000078747 ITCH Itchy E3 ubiquitin protein ligase 

Chr12c Hotspot ENSGACG00000004213 ENSG00000197780 TAF13 TAF13 RNA Polymerase II, TATA box binding 

protein (TBP)-associated factor, 18kDa 

Chr12c Hotspot ENSGACG00000004773 ENSG00000122691 TWIST2 Twist homolog 2 

Chr12c Hotspot ENSGACG00000004763 ENSG00000111424 VDR Vitamin D (1,25- dihydroxyvitamin D3) receptor 

Chr12c Hotspot ENSGACG00000004662 ENSG00000197114 ZGPAT Zinc finger, CCCH-type with G patch domain 
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Chr12c Hotspot ENSGACG00000004734 ENSG00000131061 ZNF341 Zinc finger protein 341 

Chr12c Trans ENSGACG00000017068 ENSG00000104221 BRF2 BRF2, subunit of RNA polymerase III transcription 

initiation factor, BRF1-like 

Chr16 Trans ENSGACG00000012487 ENSG00000125845 BMP2 Bone morphogenetic protein 2 

Chr16 Trans ENSGACG00000005831 ENSG00000153234 NR4A2 Nuclear receptor subfamily 4, group A, member 2 

Chr18 Hotspot ENSGACG00000012487 ENSG00000125845 BMP2 Bone morphogenetic protein 2 

Chr18 Hotspot ENSGACG00000012415 ENSG00000125812 GZF1 GDNF-inducible zinc finger protein 1 

Chr18 Hotspot ENSGACG00000012595 ENSG00000100811 YY1 YY1 transcription factor 

Chr18 Hotspot ENSGACG00000012744 ENSG00000165588 OTX2 Orthodenticle homeobox 2 

Chr18 Trans ENSGACG00000016702 ENSG00000103449 SALL1 Spalt-like transcription factor 1 
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Figure Legend 780 

Figure 1 Position of SNP markers along each chromosome (top) and location of trans eQTL hits for 781 

all assayed genes (bottom). Black bars show the number of eQTL hits at each 1cM Kosambi interval 782 

along the chromosome. Blue shading shows the number of eQTL with 95% confidence intervals 783 

overlapping each 1cM interval. Arrows indicate the location of eight significant trans eQTL hotspots. 784 

Figure created using ggplot2 (Wickham 2009) in R. 785 

Figure 2: Networks of known protein-protein interactions inferred by String 10 for proteins 786 

associated with a) Chr6 hotspot and b) Chr12b hotspot. ‘Upstream Regulator’: significantly enriched 787 

upstream regulator identified when examining genes trans-regulated by the hotspot using IPA; 788 

‘Hotspot Location’: protein is coded by a gene physically located in the hotspot; ‘Trans regulated’: 789 

protein is trans regulated by an eQTL mapping to the hotspot and significant at genome-wide 790 

p<0.021; Cis/Hotspot: both present in and significantly cis regulated by the hotspot. Interactions not 791 

involving an identified upstream regulator are not shown. 792 
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Figure 1 (cont.)  
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Figure 2a: Chr6 

Figure 2b: Chr12b 
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