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ABSTRACT  

RNA-binding proteins (RBPs) have been established as core components of several post-
transcriptional gene regulation mechanisms. Experimental techniques such as cross-linking and co-
immunoprecipitation have enabled the identification of RBPs, RNA-binding domains (RBDs), and their 
regulatory roles in the eukaryotic species such as human and yeast in large-scale. In contrast, our 
knowledge of the number and potential diversity of RBPs in bacteria is poorer due to the technical 
challenges associated with the existing global screening approaches. We introduce APRICOT, a 
computational pipeline for the sequence-based identification and characterization of proteins using 
RBDs known from experimental studies. The pipeline identifies functional motifs in protein sequences 
using Position Specific Scoring Matrices and Hidden Markov Models of the functional domains and 
statistically scores them based on a series of sequence-based features. Subsequently, APRICOT 
identifies putative RBPs and characterizes them by several biological properties. Here we 
demonstrate the application and adaptability of the pipeline on large-scale protein sets, including the 
bacterial proteome of Escherichia coli. APRICOT showed better performance on various datasets 
compared to other existing tools for the sequence-based prediction of RBPs by achieving an average 
sensitivity and specificity of 0.90 and 0.91 respectively. The command-line tool and its documentation 
are available at https://pypi.python.org/pypi/bio-apricot. 

 

INTRODUCTION 

Ribonucleoproteins and RNA-binding proteins (RBPs) are important post-transcriptional regulators in 

several processes such as, RNA splicing, transport, localization, translation and stabilization. Such 

regulatory mechanisms involve brief interactions or stable bindings of regulatory RNAs with RBPs, 

which are structurally and functionally important for various cellular processes. Due to developments 

in high-throughput mass-spectrometry and sequencing approaches, it is technically possible to 

perform global analyses to comprehensively catalogue RBPs in an organism. Several studies have 

been conducted to identify and characterize RBPs as post-transcriptional regulators in human, mouse 

and yeast (1-6). More than 1,000 eukaryotic RBPs have been described to contain conserved amino-

acid motifs or RNA-binding domains (RBDs), which serve as RNA binding sites (1, 7). A large number 

of these RBDs are classified based on their RNA-binding characteristics as classical RBDs, and non-

classical RBDs (1, 8) based on their identification in several RBPs or few well-characterized 

ribonucleoproteins respectively. Additionally, a small number of RBPs lacking known RNA-binding 

motifs have been identified, which in most cases rely on intrinsically disordered domains for their 

interaction with RNAs (1). Moreover, numerous structures of protein-RNA complexes have also been 
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solved experimentally, providing biophysical information on the interaction between nucleic acids and 

amino acids. 

The developments in RNA and RBP research have provided reliable resources for the 

advancements of computational methods for the identification of similar RBPs in different genomes. 

Bioinformatic approaches have been established to predict and characterize known RBPs using 

sequence-based features, such as biochemical properties, structural properties and their evolutionary 

relationship (9-11). A few computational tools such as SPOT-Seq (10), RNApred (12) and catRAPID 

signature (13) allow the identification of RBPs directly from the primary sequences of proteins. Other 

computational methods, such as RNAProB (14), BINDN+ (15) and RNABindRPLUS (16) have been 

developed to characterize RBPs by predicting RNA-binding residues derived from the known protein-

RNA structures. Such tools can also be used to identify RBPs when RNA-binding residues in the 

query proteins are recognized. Since these methods are computationally expensive and have been 

trained on specific subsets of RBP structures, they do not perform equally well on heterogeneous 

datasets (17). For example, RBRIdent (18) is a recent approach that utilizes several biological 

features for an improved sequence-based prediction of RNA-binding residues, which, like many other 

tools, performs well only on specific datasets (17).  

Since the experimental techniques established for the eukaryotic systems cannot be directly 

applied to bacterial systems without their intensive optimization, there is a lack of a system wide study 

of RBPs in bacteria (19). Current knowledge of the RBPs in bacterial species is restricted to only a 

few proteins such as Hfq and CsrA, which together with their targets are an integral part of large post-

transcriptional regulons (20-24). In contrast to the limited number of RBPs in bacteria, several 

hundreds of non-coding RNAs have been discovered that are linked to various regulatory processes 

such as expression of specific regulons and transcription factors via interactions with mRNAs and 

proteins (20). In order to understand the mechanisms involved in such RNA-regulated events, it is 

crucial to quantify and characterize the proteins that interact with these regulatory RNAs. Based on 

the experimentally derived RBPs from all the domains of life, computational methods can be 

developed that are capable of screening large protein sets. 

We report APRICOT, an integrated pipeline for the sequence-based identification of RBPs in 

complete proteome sets of both eukaryotic and bacterial species. The pipeline characterizes a protein 

as RBP on the basis of experimentally annotated functional motifs and domain families such as RBDs. 

APRICOT measures similarity between the predicted RNA-binding site in the query proteins and their 

corresponding reference domains based on the sequence-based features and performs statistical 

analyses. This tool is built upon a broad knowledge and sophisticated computational approaches in 

the field of functional motif discovery and our experiences of working with RNA-binding proteins in 

bacteria. The pipeline has been trained and tested on several test sets from protein databases and 

compared with previously described tools for RBP predictions. By analysing the complete proteomes 

of human and Escherichia coli (strain K-12) we demonstrate the ability of the pipeline to process large 

datasets including bacterial proteomes. Additionally, by easily adapting the pipeline for the 
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identification of kinases, we demonstrate its application in the characterization of proteins by other 

functional classes as well. 

 

MATERIAL AND METHODS 

 

Databases and the tools 

APRICOT requires a set of query proteins as input for which the presence of RBDs should be 

determined. The basic information, for example, amino acid sequences and taxonomy data, are 

retrieved from UniProt Knowledgebase (25). In addition, a reference domain set is collected from 

domain databases based on functional classes specified by the users.  

The domain resources used in this study are, Conserved Domain Database (26) (CDD) and 

InterPro (27), which consist of predictive models and signatures representing protein domains, 

families and functional sites from multiple publically available databases. CDD includes domain 

entries as Position-Specific Score Matrices (PSSM) that are generated from multiple sequence 

alignment (MSA) of representative amino-acid sequences obtained from several domain databases, 

namely Pfam (28, 29), TIGRFAM (30), SMART (31), COGs (32), several NCBI curated domains like 

PRK or Protein Clusters (33) and multi-model superfamilies of proteins (26). For the identification of 

domains in a given protein sequence, the PSSM entries in CDD are queried via Reverse Position-

Specific BLAST (RPS-BLAST), a variant of popular Position-Specific Iterative BLAST (PSI-BLAST) 

(33). CDD (v3.14) contains annotations for 50,648 domains where entries from every domain 

resource are assigned an individual PSSM identifier allowing redundant entries of domains.  

InterPro is a similar consortium that consists of domain entries as predictive models and 

signatures obtained from different databases, namely Pfam (28, 29), TIGRFAMs (30), SMART (31), 

PROSITE patterns and profiles (35), HAMAP (36), PRINTS (37), PIRSF (38), ProDom (39), 

PANTHER (40), GENE3D (41) and SUPERFAMILY (42). Most of these databases contain domain 

entries as Hidden Markov Models (HMM) (43) probabilistic models derived from sequence alignments, 

which capture information on both substitution and indel frequencies. These domains can be queried 

using tools like HMMER3 (44). Few member databases contain PSSM domain models built from the 

multiple alignments of representative amino-acid sequences from the UniProt protein database, which 

can be queried by BLAST-based methods or single model search algorithm (45), which have been 

integrated into InterProScan 5 (45). As of May 2016, InterPro (v.57) contained 29,175 domain models 

of which several are annotated with Gene Ontology (GO) terms (46).	

InterPro and CDD consortiums have only three databases in common (Pfam, TIGRPFAM and 

SMART) that account for about 20,000 domains. Technically, the PSSM based approach by CDD is 

built upon ungapped motifs, whereas the HMM probabilistic models of InterPro can handle motifs with 
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insertions and deletions. By combining the predictive abilities of the CDD and InterPro consortiums, 

APRICOT provides a broader scope for domain characterization. 

 

Workflow 

APRICOT involves different modules for the identification and characterization of RBPs, which can 

be explained by its program input, analysis modules and program output (Figure 1). These modules 

are assembled into a command-line tool, for which the individual modules accessible through 

subcommands are specified below. 

1. Program input 

APRICOT requires two inputs for its execution: query proteins and the functional class of interest 

(Figure 1). The query proteins can be provided either as a list of gene ids, protein ids or amino acid 

sequences. The query search can be limited to a specific species by providing a corresponding 

taxonomy identifier (id). Since APRICOT has been designed to process multiple queries, the motif 

prediction can be carried out for the functional characterization of an entire proteome set 

corresponding to a taxonomy id. As the second input, users must provide a list of terms or keywords 

like names of domain families, Pfam ids or MeSH terms depending on the functional classes of 

interest, referred hereon as domain selection keywords. APRICOT uses a string-based search to 

select relevant entries from the domain resources, which are further utilized for identifying proteins 

that contain these domains. Optionally a set of terms called result classification keywords can be 

provided for the classification of predicted domains into smaller subsets in order to help users in 

navigating large datasets or classifying proteins by the functional similarity.  

2. Modules for domain prediction and annotations 

The core functionalities of APRICOT involve a multi-step process for the selection of proteins by 

identifying functional sites or domains of interest in their sequences followed by their annotations by 

various biological features. We have used a multifunctional human protein PTBP1 (47) as an example 

in order to describe the different modules involved in domain prediction and annotations in Figure 2. 

PTBP1 is an mRNA regulator that contains several repeated RBDs, specifically a highly abundant 

eukaryotic domain called RNA Recognition Motifs or RRMs (48).  

2.1 Selection of reference domain set: A string based selection of domain families and functional 

motifs are carried out using the domain selection keywords to create a reference domain set. From 

the collections of domain entries from different domain databases in the CDD and InterPro 

consortiums, domains are selected when they match at least one of the provided terms in their 

annotations. In this analysis, we considered the domains obtained from the human interactome study 

(1, 4) as the comprehensive resources for building a reference RBD set. To report high confidence 

RBPs by avoiding the selection of ambiguous and functionally irrelevant domains, we included all the 

classical RBDs in domain selection keywords (Figure 2A). In order to account for ribosomal proteins, 
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109 terms related to RNA-binding ribosomal domains (4) were included in domain selection keywords. 

An additional term ‘RNA-bind’ was introduced to include any additional RBDs in the reference set that 

are well described as RBDs in databases but are not classified under classical RBDs (Figure 2B). 

Using these domain selection keywords, a total of 4,951 RBD entries were curated from CDD (1,951 

entries) and InterPro (3,000 entries), referred as reference domain set, which was used for filtering 

domain predictions in the downstream analysis. 

2.2 Domain prediction: In this step query amino acid sequences are characterized with all the 

possible domains from the databases without filtering a certain functional class. The sequences are 

subjected to domain prediction using RPS-BLAST and InterProScan to query their CDD and InterPro 

respectively (Figure 2C). By default, APRICOT uses both CDD and InterPro for the domain 

predictions, however users can choose one of the databases to reduce the run-time. Since the 

primary requirement of this module is the amino acid sequences of the query proteins in FASTA-

format, users can analyse novel sequences even when the gene/protein ids are unknown or lacking.  

2.3 Selection of proteins by functional domains of interest: This module allows the selection of 

relevant proteins from the query sets based on the predicted domains obtained in the previous step. 

The proteins are considered as candidates if they contain one of the domains of interest. Cut-offs for 

various statistical parameters (discussed below) can be defined for the selection of the predicted 

domains to identify such candidates, which are further annotated with additional information, such as 

ontology, pathway and cross-references to different databases.	

2.4 Feature-based scoring: This module ranks the domain predictions by their relevance. For this 

purpose, a comparative analysis is carried out between the protein region that are predicted in the 

candidate proteins as domain of interest and the corresponding fragments of their reference 

consensus sequence. This comparison is done for a number of sequence-based features namely 

chemical properties (average mass, pKa and pI), alignment scores calculated by Needleman-Wunsch 

algorithm (primary sequence and secondary structure), Euclidean distance of protein compositions 

(di-peptides, tri-peptides and physico-chemical properties) and measure of homology between 

predicted sites and reference domains (for details see Supplementary Material S1A). A relative 

similarity between the predicted functional site and the reference domain consensus for these sets of 

features are calculated. We use Bayesian probabilistic score in a range from 0 to 1 to represent the 

functional potential of the predicted motifs, where 1 indicates the highest probability (Figure 2D). To 

further estimate the statistical significance of a predicted domain, P-values are calculated for the 

sequence-based features except for the chemical properties. These probabilistic scores and P-values 

allow users to select proteins with high confidence motif predictions. 	

2.5 Additional annotations of the selected proteins: Upon selection of proteins of functional 

relevance, users can choose to further annotate these proteins by information like sub-cellular 

localization by PSORTb (48), 8-state secondary structure by RaptorX (49), additional GO allocation 

and tertiary structure homologs (Figure 2E and 2F; further detail in the Supplementary Material S1B). 
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3. Program output 

A comprehensive result is returned by APRICOT at each step of analysis and stored with relevant 

information that serves as the input for the subsequent steps. For example, the data for predicted 

domains can be repeatedly used for extracting proteins of different functional classes. The selected 

proteins are provided in a tabular format with the statistics on domain prediction and corresponding 

annotations obtained from UniProt and the comparative analysis (Supplementary Figure S2). To 

provide an easy navigation through the large-scale analysis data, the results can be classified using 

result classification keywords, into smaller subsets of proteins with enzymatic activities or specific 

functional aspect of proteins. Additionally, graphs and charts are provided to aid the visualization of 

the resulting data.	

 

Training sets 

For the identification of the most suitable parameters and their corresponding cut-offs for domain 

selection, training sets were collected from the manually curated and reviewed subset of the UniProt 

Consortium – SwissProt (51). A positive set of proteins was selected by using the keyword ‘RNA-

binding’. A second set of proteins was selected by using all the terms indicating functional association 

of proteins with nucleic acid. A third set comprising all the uncharacterized and hypothetical proteins 

from the database was selected. All these sets of proteins were subtracted from the SwissProt data 

and the remaining data consisting of 271,219 proteins were considered as the resource for negative 

set. All the redundant protein sequences from both positive and negative sets were removed by 

clustering the sequences using BLASTclust (52) using 90% of sequence identity. A total of 4,779 non-

redundant proteins were compiled in the positive set and a set of 5,834 proteins were selected for 

negative set, referred to henceforth as SwissProt-positive and SwissProt-negative respectively 

(Supplementary Table S4). 

 

Test sets 

To consistently evaluate the sensitivity, specificity and accuracy of APRICOT, a pair of positive 

and negative set was obtained from NCBI Reference Sequence (RefSeq), a non-redundant (nr) 

database (53), using the terms ‘RNA-bind’ and ‘periplasmic’ respectively. The former term retrieved 

4,470 RBPs proteins from various organisms. The term ‘periplasmic’, which retrieved 5,836 bacterial 

periplasmic proteins, was considered as a resource for non-RNA-binding proteins based on the 

assumption that the majority of periplasmic proteins lack RBDs. Using BLASTclust from the NCBI–

BLAST package (52) the proteins in each set were clustered by 75% sequence homology, which 

resulted into 687 proteins in positive set and 1,199 proteins in negative set, henceforth referred as nr-

positive and nr-negative respectively. An additional pair of positive and negative set was obtained 

from RNApred webserver (11), which will be referred as RNApred-positive (377 proteins) and 
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RNApred-negative (355 proteins). The sensitivity of the pipeline was tested on other positive datasets 

collected from various resources, which are RBPDB (53), RNAcompete (6), RBRIdent (18), rbp86 (55), 

rbp109  (55) and rbp107  (55) consisting of 1,101, 205, 281, 86, 109 and 107 proteins respectively. 

The datasets are listed in detail in the Supplementary Table S3.  

In order to show practical applications of APRICOT as a tool for large-scale data analysis like 

complete proteome sets, two model organisms were evaluated on the genomic scale. E. coli K12 

genome (taxonomy id: 83333) was used as an example for bacterial species and Homo sapiens 

(taxonomy id: 9606) was used as an example for eukaryotic species consisting of 4,479 and 70,076 

protein entries in UniProt database respectively. The positive RBP sets were selected from both the 

proteomes to quantify the accuracy with which APRICOT identifies RBPs in these genomes. We 

considered 1,535 non-redundant human proteins as positive set (Supplementary Table S6), which 

were proposed as RBPs in the global experiment-based studies or were reported by independent 

publications (1-4). So far no global study has been reported for the genome wide identification of 

RNA-binding proteins in bacteria. Beside ribosomal proteins, only a few proteins such as Hfq (20), 

CsrA (21), YhbY (56), SmpB (57), ProQ (58), CspA (59) and CspB (59) have been reported as RBPs 

in E. coli. Hence, a larger RBP reference of E. coli K12 was retrieved from UniProt database using 

GO term GO:0003723) for RNA-Binding that comprised of 160 proteins including the known RBPs 

(Supplementary Table S7). 

Assessment criteria 

The statistical parameters for domain predictions in the training set and the performance of the tool 

on the test sets were evaluated by using standard binary criteria of sensitivity (SN), specificity (SP), 

accuracy (ACC), Matthews Correlation Coefficient (MCC) and F-measure, using the following 

equations where TP, FN, TN and FP are true positive, false negative, true negative and false positive 

respectively.  

𝑆𝑁 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑆𝑃 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

𝑀𝐶𝐶 =
𝑇𝑃×𝑇𝑁 − 𝐹𝑁×𝐹𝑃

𝑇𝑃 + 𝐹𝑁 × 𝑇𝑃 + 𝐹𝑃 × 𝑇𝑁 + 𝐹𝑃 × 𝑇𝑁 + 𝐹𝑁
 

𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2×𝑆𝑁×𝑆𝑃
𝑆𝑁 + 𝑆𝑃
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Receiver operating characteristic (ROC) curve and their area under the curve (AUC) was used as 

a criterion for accuracy, which was plotted using false positive rate (FPR or 1-SP) and true positive 

rate (TPR or SN). 

RESULTS 

Parameter optimization for the selection of predicted domains 

The training sets, SwissProt-positive (4,779 proteins) and SwissProt-negative (5,834 proteins), 

were analysed in order to evaluate the ability of the method to accurately differentiate RBPs from non-

RBPs. For this evaluation, we used statistical parameters of sequence similarity, residue identity, 

residue gap and E-value of the domain prediction to describe the similarity between a query and its 

corresponding reference. Unlike residue identity, sequence similarity accounts for the edit operations 

like positive substitutions, thereby capturing the secondary structure information at a better resolution. 

An E-value for searches of homologs against a database represents the likelihood that a given match 

in a sequence is purely by chance, meaning that a lower E-value reflects a higher significance of 

database match. We describe an additional parameter namely the domain coverage, which is the 

percentage of the length predicted as domain in the query compared to the original length of 

reference domain. Generally, lower domain coverage suggests a random homology of the predicted 

domain, whereas higher domain coverage reflects a higher potential of a domain to be functionally 

relevant. 	

Initially we investigated the analysis of the training sets by naïve approach, which involved 

InterProScan and CDD based batch-search methods in their default settings. Analysis by 

InterProScan achieved a TPR of 0.77 and CDD achieved a TPR of 0.79. Several queries in CDD 

based method were annotated as RBD containing proteins with coverage lower than 10% and 

sequence similarity lower than 5%, which indicated poor conservation of the functional domains. 

Similarly, InterProScan failed to characterize several RBPs due to its stringent filtering criteria. 

Interestingly, several RBPs were reported by only one of the methods, hence when the results from 

both the analyses were combined, an increased TPR of 0.82 was achieved. This clearly showed the 

potential to achieve higher sensitivity by the combined approach, which is implemented in APRICOT. 

We further analysed the training datasets by APRICOT, which predicted thousands of RBD entries in 

both positive and negative sets that were evaluated using systematically varying cut-offs of each 

parameter to optimize the identification of RBPs. The corresponding ROC curves were generated and 

optimal cut-off ranges were defined by identifying the values of the parameters that show a optimal 

TPR (closer to 1) and FPR (closer to 0) with high ACC (closer to 1), resulting into statistically 

significant AUC, MCC and F-measure (Figure-3A and Supplementary Table S4). 

For the coverage of the predicted domains, the minimum cut-off was recorded to be 39% that 

attained an accuracy, TPR, FPR, MCC value, and F-measure of 0.81, 0.87, 0.24, 0.63 and 0.81 

respectively. Using a higher cut-off of 60% a lower TPR 0.81 but a better FPR 0.16 was obtained, 

which consequently shows better ACC and F-measure. Similarly, the optimal threshold for the 
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minimum cut-off of sequence similarity was recorded to be 24%, which attains accuracy, TPR, FPR, 

MCC value of and F-measure of 0.81, 0.83, 0.20, 0.63 and 0.81 respectively. Similarly, as shown in 

the ROC curve, by using a minimum cut-off of 15% for the residue identity and at a maximum E-value 

cut-off of 0.01, high accuracies of 0.81 and 0.82 were achieved. The decision values of the 

parameters were further ranked, individually and in combinations, for all the predicted RBD entries in 

the training sets, we generated ROC curves and AUCs to identify their marginal contributions on 

overall accuracy in detecting RBDs (Supplementary Figure S5). 

This evaluation led to the selection of domain coverage and sequence similarity as the default 

parameters for the APRICOT analysis with their minimum cut-offs of 39% and 24% respectively. The 

analysis by APRICOT using the selected parameters with their defined cut-offs achieves a TPR of 

0.85, which is higher than the naïve approach. The MCC and F-measure achieved for the APRICOT 

analysis of the training sets are 0.64 and 0.82 respectively. This successfully demonstrates the 

efficiency of the selected parameters and their cut-offs in identifying RBPs with high accuracy of 0.82. 

Assessment of the pipeline performance 

A variety of positive datasets were analysed by APRICOT, on which the pipeline achieved 

sensitivity in a range of 0.81 to 1 (Figure 3B) demonstrating its high efficiency in domain-based 

characterization of RBPs. A more detailed evaluation of the pipeline performance was carried out on 

the paired dataset of nr-positive and nr-negative, and RNApred-positive and RNApred-negative 

(Table 1).  

To demonstrate the efficiency of APRICOT on large-scale data, the complete proteomes of Homo 

sapiens and E. coli K-12 were analysed. The human proteome set containing 70,076 UniProt protein 

entries was subjected to domain prediction. A known set of 1,535 non-redundant RBPs was used as 

positive reference set (4) of which 25 RBPs have not been defined with any RBDs. The reference 

domain set was considered for the initial identification of RBPs using pre-defined cut-offs for the 

aforementioned default parameters. Upon filtering of proteins by predicted domains, 1,091 from the 

reference RBP set were reported with at least one RBD from the reference domain set, showing a 

sensitivity of 0.71. By including the non-classical RBDs in the reference domain set, 68 more proteins 

could be recognized as RBPs and 201 RBPs could be recognized additionally by further including 

domains listed as RBDs unknown (Supplementary Table S6). The remaining 180 proteins that are not 

identified as RBPs by APRICOT do not contain RBDs and are listed as RNA-related proteins by 

Gerstberger et al. (4). The data for this analysis has been provided in the Supplementary Table S6. 	

A similar analysis of the complete proteome of E. coli K-12 was carried out by APRICOT using the 

default parameters with the reference domain set (Figure 2A and 2B). In the initial characterization of 

RBPs, 673 sequences were selected as RBP candidates by RPS-BLAST and 502 sequences by 

InterProScan analysis. These proteins account for 806 RBP candidates, of which 369 proteins were 

identified as putative RBPs by both the methods. From the full proteome set, APRICOT could 

successfully identify all the known E. coli RBPs. Specifically, Hfq, CsrA, YhbY, SmpB, ProQ, CspA 
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and CspB were identified due to highly conserved RBDs in their sequences, which have been 

previously reported and characterized for their regulatory roles (Table 2). Furthermore, from the GO 

term derived 160 RBPs from E. coli K-12, 129 were identified correctly by APRICOT that 

demonstrated a sensitivity of 0.80. APRICOT failed to identify the remaining 24 proteins as RBPs 

because either the predicted RBDs could not pass the parameter filters or the reference domain set 

lack specific domains associated with these proteins. These unidentified RBPs included CRISPR 

system Cascade subunits, toxic proteins and several enzymatic proteins like ribonucleases, tRNA-

dihydrouridylases and mRNA interferases.  

The feature-based scores were calculated for each domain selected from the predicted data, 

which facilitate in differentiating highly reliable RBD predictions from the low confidence RBD 

predictions. Query proteins that consist if high confidence RBDs were further annotated with 

additional information, namely subcellular localization, secondary structures, GO terms and tertiary 

structures (Supplementary Table S7). 

These proteome-wide analyses clearly demonstrate a high sensitivity of the pipeline in identifying 

RBPs based on functional domains. However, it also shows a limitation related to the dependence of 

query characterization on the functional domains and motifs selected from the databases based on 

the user-provided terms. 

 

Identification of other functional classes by APRICOT 

Importantly, in addition to the application for the functional identification of RBPs, APRICOT 

modules can be easily adapted for one or multiple other functional classes. As a part of the Critical 

Assessment of Function Annotation (CAFA), a project to assess the methods for computational 

annotation of protein functions (60), APRICOT was successfully used to annotate bacterial datasets 

comprising of more than 1 million proteins by a wide number of biological functions (arXiv:1601.00891 

[q-bio.QM]). In order to emphasize the aspect of APRICOT as a tool for the characterization of other 

functional classes of proteins, we chose kinase proteins from E. coli (strain K-12) as the reference set. 

Kinases are known to catalyse the transfer of phosphate groups to a substrate molecule using ATP as 

a phosphate donor. In UniProt database, 110 proteins from E. coli (strain K-12) are annotated with 

various kinase activities (for e.g. Serine/threonine-protein kinase, Signal histidine kinase and 

Shikimate kinase) and are tagged by the GO term (GO:0016301) for kinase activity.  

The APRICOT pipeline was supplied with the term ‘kinase’, for the selection of reference domain 

set and the pipeline was applied to the kinase proteins (Supplementary Table S8). Out of 110, 106 

kinase proteins were identified correctly by APRICOT, achieving a sensitivity of 0.96. The set of 

proteins that was not selected by APRICOT, contain kinase-associated domains that were not present 

in the reference domain set due to the pipeline domain selection constraints. This analysis suggests 

that APRICOT is efficient in the characterization of proteins based on pre-defined set of domains 
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associated with functional classes other than RBPs as well. However, it should be noted that the 

accuracy of the results depends on the choice of terms for the domain selection. 

 

Comparative assessment of APRICOT with other RBP prediction tools 

Although there are several approaches developed for the prediction of nucleic acid binding sites, 

we could compile only four tools described for their original aim to predict RBPs, namely SVMprot (61), 

RNApred (12), SPOT-Seq-RNA (63) and catRAPID signature (13). SVMprot was designed to predict 

RBPs by SVM based classification of proteins primary sequences into functional families (54 Pfam 

families) and it was made available as a webserver. Since the tool is no longer available, we could not 

include it in our comparative analysis. RNApred uses SVM models that are developed with amino-

acid compositions and PSSMs. SPOT-Seq-RNA, uses structure homology based predictions of the 

RBPs and also allows the identification of the binding residues and binding affinities using SPARKS X 

(10) and DRNA tools (64) respectively. The fourth tool, catRAPID signature, is a SVM based method 

to identify RNA-binding proteins and their binding regions based on physico-chemical properties. We 

conducted comparative assessment of APRICOT’s capabilities with these tools (Table 3). 

Unlike other tools, which have been trained or constructed on a certain set of reference set, 

APRICOT is established independent of any fixed set of reference because it selects reference 

domains for each analysis based on the user provided keywords. Therefore, it is capable of using any 

new RNA-binding domains that might be added in the integrated domain sources in future. APRICOT 

takes proteins that are predicted with statistically significant RBDs and scores them in comparison 

with their reference consensus sequence for various features using Needleman-Wunsch alignment 

scores, Euclidean distance and homology-based scores. At the end, the scores for each property are 

combined to obtain a Bayesian probabilistic score in a range of 0 to 1, where 1 indicates the best hits. 

The results from all the intermediate steps are provided to allow users to evaluate different statistical 

aspects of their study. 

For an unbiased evaluation of the relative performances of APRICOT with RNApred, SPOT-Seq-

RNA and catRAPID signature, we used two datasets RBscore_R130 (130 RBPs) and RBscore_R116 

(116 RBPs), which are the training and test sets created for the RBscore_SVM approach in NBench 

(17). On RBscore_R130, APRICOT achieved a TPR of 0.88, whereas RNApred, SPOT-Seq-RNA and 

catRAPID signature attained much lower TPRs of 0.79, 0.82 and 0.55 respectively. On the 

RBscore_R116, which is indicated as a challenging set in NBench, APRICOT achieved a 

comparatively low TPR of 0.67, however, this was still higher than the TPRs achieved by RNApred 

(0.66), SPOT-Seq-RNA (0.51) and catRAPID signature (0.47). We also checked the performances of 

naïve RPS-BLAST, which is used for the batch-search of domain in CDD, and InterProScan, which is 

used for motif prediction in InterPro consortium. On both the datasets the naïve approaches for 

domain identification showed lower performances compared to their combined performance. Both the 

methods in their default setting achieved a TPR of 0.82 on the RBscore_R130 by identifying 107 
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RBPs. On the RBscore_R116, RPS-BLAST and InterProScan showed performances higher than 

SPOT-Seq-RNA but lower than APRICOT and RNApred by achieving TPR of 0.55 and 0.57 

respectively. 	

APRICOT performed better than the other tested tools in all the assessment metrics used for the 

evaluation of RBscore_R246 (RBPs from both the datasets) as positive set and RNApred-negative 

(355 proteins) by achieving highest accuracy, MCC and F-measure of 0.88, 0.75 and 0.86 

respectively (Table 3).  

 

APRICOT versus tools for the prediction of RNA-binding residues  

A comparative assessment of the programs developed for the prediction of nucleic acid binding 

sites was carried out in NA Binding prediction Benchmark (17). Total 16 tools for the prediction of 

RNA-binding residues, 5 tools for the prediction of DNA-binding residues along with several datasets 

obtained from the structures of protein-nucleic acid complexes were included in this study (available 

at http://ahsoka.u-strasbg.fr/nbench/index.html). The motivation behind developing APRICOT is 

noticeably different from the tools involved in NBench. APRICOT identifies RBPs among large-scale 

query sets and further characterizes them by biological functions, whereas the 16 tools in NBench 

predict RNA-binding residues in the pre-defined RBPs. Practically, APRICOT and these tools can 

complement each other by first using APRICOT to identify RBPs and their corresponding RBDs and 

then applying the best performing NBench tools to obtain a high-resolution annotation by identifying 

RNA-binding residues. To evaluate the potential of this idea, we acquired 3,657 PDB entries, 

consisting of 24 different RNA related datasets in NBench selected at a resolution cut-off of 3.5 Å. 

This dataset was subjected to analysis by APRICOT and a comparative assessment was carried out 

between the identified RBD sites and the nucleic acid binding residues at the distance cut-off of 3.5 Å 

in each PDB entry (Supplementary Table S9).  

We observed that the RNA-binding residues of 3,340 (91%) PDB entries overlap with the 

APRICOT predicted RBD sites showing an overall sensitivity of 0.91 (Figure 4A and 4B). The NBench 

tools were ranked by their sensitivities to identify RNA-binding residues together with APRICOT for its 

ability to identify RNA-binding sites on 24 datasets. As shown in Figure 4C, APRICOT was among the 

best performing tools compared to the other tools in NBench across the 21 diverse datasets. In 

agreement with the observations made for the tools, APRICOT showed a lower sensitivity on the 

New_R15 set (15 new structures) and RBscore_R116 (116 proteins, mentioned as difficult set). 

Furthermore, unlike most of the tools that do not show discriminative potential for RNA and DNA 

binding residues, APRICOT showed a high specificity (0.70) when 1,374 DNA binding proteins were 

included in the analysis. This evaluation demonstrates that APRICOT’s domain prediction based 

analysis is an extremely efficient approach to identify RBPs and their corresponding potential RNA-

binding region in the query sequences. Furthermore, it also implies that the resolution of the RBP 
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studies could be enhanced significantly by first identifying the RBPs using APRICOT, followed by the 

analysis with the tools for the identification of RNA-binding residues in the predicted RBD sites.  

 

CONCLUSIONS 

APRICOT is an integrated pipeline for the sequence-based identification and annotation of the query 

proteins based on the functional motifs and domains of interest known from the experimental data. 

Notably, here we report APRICOT primarily as a tool for the sequence-based identification of RBPs, 

which uses a consistent set of reference RBDs derived from large-scale experimental studies. Using 

several domain data-resources and associated tools, the domains are predicted in the queries and 

only those proteins that contain domains of interest are further characterized. By involving a wide 

range of biological features for the characterization of functional motifs, the pipeline carries out an 

intensive comparative analysis between the predicted domains and their respective reference 

consensus. This comparison is translated into statistical scores that enable users to differentiate 

proteins that are predicted to harbour domains of high similarity with their reference sequences from 

proteins that have poorly conserved domains. The proteins are subjected to annotation by additional 

biological properties, such as subcellular localization and secondary structure to get further insight 

into their functional relevance.  

The pipeline has been extensively tested on several RBPs and is optimized for the identification of 

RBPs in large datasets, such as complete proteomes of human and E. coli. For instance, APRICOT 

could successfully identify the respective motifs of CsrA, ProQ, YhbY and SmpB in E.coli with domain 

coverage higher than 80% and residue similarity closer to 70%. In addition to these previously 

characterized RBPs, APRICOT predicted a number E.coli proteins that can potentially interact with 

RNAs via RBDs, and hence, could be further validated by experimental studies. 

A thorough comparison between APRICOT and the other RBP prediction tools successfully 

demonstrated its superior performance and efficiency in a wide range of datasets for the identification 

of RBPs. Furthermore, we showed that the RBD sites obtained from APRICOT analysis have high 

overlap with the known RNA-binding residue sites in RBPs. Hence, we suggest that analysis of 

APRICOT can be complemented with the RNA-binding residue prediction tools to achieve a high-

resolution binding information of RBPs. Due to the automated framework and accessibility of different 

modules of the pipeline, APRICOT can be conveniently adapted for the characterization of other 

functional classes. In agreement, by applying the pipeline for the identification of kinase proteins in E. 

coli, we demonstrate that the tool is not built on a fixed set of domain information, but instead it allows 

users to characterize proteins based on the functional classes of their interest. 

 

AVAILABILITY 
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APRICOT is implemented in Python as a standalone command-line program, which can be executed 

on Unix systems. The tool has been extensively refined based on the requirements and suggestions 

by experimental researchers. The source-code for the command-line tool is available under the ISC 

license at https://pypi.python.org/pypi/bio-apricot (GitHub repository: 

http://malvikasharan.github.io/APRICOT/) and the releases are automatically submitted to zenodo 

(DOI: http://dx.doi.org/10.5281/zenodo.51917	for	the	current	version	1.1).	
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TABLE AND FIGURE LEGENDS 

 

Table 1. Performance of APRICOT on positive and negative pair of datasets obtained from NCBI 

database and RNApred method. 

Table 2. List of known RBPs in E. coli. These RBPs consist of well-defined RNA-binding domains. 

Hence, as shown in the table they were predicted to have higher coverage and similarity when 

compared with their reference domains. 

Table 3. Comparative evaluation of APRICOT with other RBP prediction tools: catRAPID signature, 

SPOT-Seq-RNA and RNApred. Different features of the tools are listed in the upper part of the table 

to highlight the main differences and advantages over other tools. The comparative performance of 

the tools, shown in the lower part of the table, was assessed using the positive set of RBscore_R246 

containing 246 proteins (total proteins from RBscore_R130 and RBscore_R116), and the negative set 

of RNApred-negative containing 355 proteins. APRICOT achieved higher overall sensitivity of 0.79 

compared to the other tools. 

Figure 1. Architecture of APRICOT. (A) A simplified overview of the processes involved in APRICOT 

analysis. (B) Flow-chart showing different components of APRICOT pipeline for the characterization 

of RNA-binding proteins. Modules for the primary analysis involving the processing of user-provided 

inputs (orange boxes) and the downstream analysis, which includes modules for the identification of 

RBPs candidates (grey box) and the modules for the annotation and feature-based scoring of putative 

RBPs (purple boxes). APRICOT generates a comprehensive results for each analysis, which are 

represented by means of tables and visualization files (green box).  

Figure 2. Different components of APRICOT for the characterization of RBPs are explained using an 

example of a human protein, PTBP1. (A) Bar chart showing the distribution of the known RNA binding 

domains collected from the CDD and the InterPro consortium. Several of these domains were 

selected by more than one domain selection term. (B) Additional domains selected by RNA-binding 

ribosomal domains and the term ‘RNA-bind’. (C) Domain entries from CDD and InterPro database, 

which were identified by APRICOT in the PTBP1 human protein. (D) A schematic workflow illustrating 

different processes involved in feature-based scoring resulted from a comparative analysis of RRM-1 

domain (RRM1_PTBP1) and the corresponding domain identified in PTBP1 human protein. As shown 

in the schema, the features involved in this analysis have been classified into four categories, each 

comprising of specific set of sequence-based features. The features are scored by Bayesian 

probabilities in a range of 0 to 1, where 1 signifies a complete match between the reference and the 

domain identified in the query. (E) The 4 RRM sites in PTBP1 protein corresponding to different RRM 

entries from CDD and InterPro. (F) Visualization of additional annotations of PTBP1 protein by 

secondary structure and probability of sub cellular localizations generated by APRICOT. 

Figure 3. Selection of parameter cut-offs for RBP selection and the performance assessment of 

APRICOT on different datasets. (A) The ROC curves were generated for the domain prediction 
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parameters of domain E-value (magenta), coverage (blue), residue gap (yellow), residue identity 

(green) and similarity (red). The optimal ranges for the parameters were defined for the selection of 

predicted domains at a considerably high accuracy (> 0.8 as indicated by the dashed lines) on the 

training sets (SwissProt-positive and SwissProt-negative). The minimum cut-off for most contributing 

parameters, percentage domain coverage and percentage similarity were recorded to be 39% and 24% 

respectively, which together attained an accuracy of 0.82. (B) The bar chart illustrates the 

performance of APRICOT on different datasets by means of sensitivity (shown in black) and 

specificity (shown in red). APRICOT was evaluated on 8 positive datasets and 2 negative datasets, 

which showed an average sensitivity of 0.90 and an average specificity of 0.91. 

Figure 4. APRICOT based analysis of 24 datasets compiled from PDB in the NBench study for the 

evaluation of the tools for RNA-binding residue prediction (A) The bar chart showing the specificities 

achieved by APRICOT on different datasets, including the entire set of 3,657 RBPs (NBench_3657 

shown in green). (B) Distribution of RNA-binding proteins based on the percentage of overlapping 

RNA-binding residues defined in NBench with the RNA-binding sites identified by APRICOT. The 

RNA-binding sites were identified in 3,445 of NBench_3657, of which 3,304 proteins have more than 

70% of their RNA-binding residues overlapping with the RNA-binding sites. (C) Boxplots showing the 

sensitivities achieved by APRICOT in identifying RNA-binding sites (in red) and other RNA-binding 

residue prediction tools in identifying RNA-binding residues (in black) on NBench datasets. On all the 

datasets, APRICOT achieved sensitivities higher than or as good as high performing tools. 
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Table	1	

Datasets		 RNApred	 NCBI	(nr)	

Dataset	types	 	 	

Positive	set		 376	proteins	 687	proteins	

Negative	set	 355	proteins	 1,199	proteins	

Measures	of	performance	assessment	 	 	

TP	proteins	 344	proteins	 657	proteins	

FP	proteins	 47	proteins	 119	proteins	

TPR	(SN)	 0.96	 0.97	

FPR	(1-SP)	 0.10	 0.13	

Accuracy	 0.93	 0.92	

MCC	 0.86	 0.85	

F	measure	 0.93	 0.92	

	

Table	2	

Protein	
name	
	

Reference	
	

Domains	
	

Domain 
Coverage	

Residue 
Similarity	

Residue 
Identity	

	

Hfq	 Chao	et	al,	2010	 RRM_RBM7	 41.33	 25.33	 17.33	
CsrA	 Romeo	et	al,	1993	 CsrA	 84.06	 72.46	 49.28	
ProQ	 Chault	et	al,	2011	 ProQ/FINO	family	 100.00	 66.67	 55.26	
YhbY	 Ostheimer	et	al,	2002	 RNA_bind_YhbY	 97.89	 89.47	 80.00	
SmpB	 Wower	et	al,	2002	 SsrA-binding	domain	 99.31	 67.36	 46.53	
CspA	 Phadtare	et	al,	1999	 Cold	shock	domain	 98.51	 77.61	 67.16	
CspB	 Phadtare	et	al,	1999	 Cold	shock	domain	 97.01	 73.13	 67.16	
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Table	3	
	 	 	 	RBP	prediction	tools	 APRICOT	 catRAPID	signature	 SPOT-RNA-Seq	 RNApred	

		

Main	features	of	the	tools	

Main	criteria	for	RBP	
characterization	

RNA-binding	motifs	and	
domain	families	

Physico-chemical	properties	 RBP	structure	
homologs	

SVM	classification	by	
composition	features	of	
proteins	

Additional	analysis	 Sequence-based	scoring	
of	domain	features	

Prediction	of	RNA-binding	
regions	

RNA-binding	
residue	prediction	
and	binding	affinity	

PSSM	based	
evolutionary	
information	

Availability	 Command-line	 Webserver	 Webserver	and	
command-line	

Webserver	

Query	types		 Amino-acid	sequences	/	
gene	names	/	UniProt	
protein	/	taxonomy	ids	

Amino-acid	sequences	 Amino-acid	
sequence	

Amino-acid	sequences	

Allowed	number	of	query	
proteins	

Unlimited	 100	proteins	or	total	number	
of	submitted	characters	=	
100000	

One	query	at	a	time	 Unlimited	for	
composition	based	or	
one	query	at	a	time	for	
the	PSSM	based	analysis	

Probability	scores	for	RBPs	 Bayesian	score	(0-1)	 SVM	score	(Threshold	-0.2)	 Z-score	 SVM	score	(Threshold	-
0.2)	

Main	criteria	for	RBP	
characterization	

RNA-binding	motifs	and	
domain	families	

Physico-chemical	properties	 RBP	structure	
homologs	

SVM	classification	by	
composition	features	of	
proteins	

		 		 		 		 		

Performance	assessment	 		 		 		 		

TP	(proteins)	 193	 125	 166	 180	

FP	(proteins)	 44	 150	 6	 102	

TPR	(SN)	 0.79	 0.51	 0.67	 0.73	

FPR	(1-SP)	 0.12	 0.42	 0.02	 0.29	

ACC	 0.83	 0.54	 0.83	 0.72	

MCC	 0.66	 0.1	 0.69	 0.44	

F-measure	 0.83	 0.54	 0.8	 0.72	
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