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Biogeographic Ancestry and Socioeconomic Outcomes in the Americas: a 
Meta-analysis 

Abstract 
Narrative reports suggest that socioeconomic status (SES) is associated with biogeographic ancestry (BGA) 
in the Americas. If so, SES potentially acts as a confound that needs to be taken into account when 
evaluating the relation between medical outcomes and BGA. To explore how systematic BGA-SES 
associations are, a meta-analysis of American studies was conducted. 41 studies were identified, yielding a 
total of 64 independent samples with directions of associations, including 48 independent samples with 
effect sizes. An analysis of association directions found a high degree of consistency. The square root n-
weighted directions were 0.83 (K = 36), -0.81 (K = 41) and -0.82 (K = 39) for European, Amerindian and 
African BGA, respectively. An analysis of effect size magnitudes found that European BGA was positively 
associated with SES, with a meta-analytic effect size of r = .18 [95% CI: .13 to .24, K = 28, n = 35,476.50], 
while both Amerindian and African BGA were negatively associated with SES, having meta-analytic effect 
sizes of -.14 [-.18 to -.10, k =31, n = 28,937.50] and -.11 [-.15 to -.07, K = 28, n = 32,710.50], respectively. 
There was considerable cross-sample variation in effect sizes (mean I2 =92%), but the sample size was not 
enough for performing credible moderator analysis. Implications for future studies are discussed. 

Keywords: biogeographic ancestry, admixture, self-identified race/ethnicity, SES, medical outcomes 

1 Introduction 
Admixture analysis is a potent tool for the exploration of the etiology of traits and trait differences in 
admixed populations. Admixture mapping (AM) is a form of admixture analysis that allows for the detection 
of specific disease- and trait-associated genes (Shriner, 2013; Winkler, Nelson, & Smith, 2010). When 
biogeographical ancestry (BGA) groups differ in the frequency of disease- or trait-causing genetic variants, 
the phenotype of interest will be correlated with the degree of BGA near local regions of the genome in the 
admixed populations and self-identified racial/ethnicity (SIRE) groups, allowing for the identification of 
associated loci. Admixture analysis also permits global analyses, in which global BGA is correlated with a 
trait. While admixture mapping does not require the determination of the association between global 
ancestry and a trait, the finding that global BGA is related to a trait is often the launching point for AM 
analyses.  

As used here, SIRE refers to self-identified race/ethnicity, while population refers to geographically 
delineated population. In contrast, BGA refers to ancestry with respect to BGA groups, where these are 
delineated using ancestrally informative molecular markers, according to the relative genetic affinity of the 
members of the reference samples. These reference groups have been called clusters, ancestral groups, and 
ancestral populations (e.g., Shriver and Kittles, 2004; Frudakis & Shriver, 2003; Frudakis, 2010). With 
respect to studies of American populations, the reference BGA groups are typically Europeans, Sub-Saharan 
Africans, and Amerindians, because these are the main source ancestral groups (Salzano & Sans, 2014).  
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SES inequalities between populations and SIRE groups may lead to spurious associations between BGA and 
medical outcomes (Marden et al., 2016). Thus, the covariance between SES and BGA is a potential concern 
when it comes to admixture analyses. For this reason, controls for socioeconomic status (SES) are not 
infrequently incorporated into such analyses. Narrative reports (e.g., Burchard et al., 2005) have suggested 
that SES covaries with admixture such that, relative to European BGA, Amerindian and African BGA is 
associated with lower SES. If this is typically the case, it would be prudent for researchers to include reliable 
measures of SES as covariates in analyses so to provide lower-bound estimates of the BGA-medical 
outcome associations. Moreover, it would be advisable to investigate the causal pathways along which the 
BGA-SES association run, so to identify possible unobserved non-genetic mediators of BGA-medical 
outcomes associations. However, no meta-analysis has been conducted to date to establish whether SES 
outcomes are associated with BGA in any consistent way. 

2 Methods 
2.1 Collecting Studies and Data Exclusion 
Papers were sought which reported quantitative or qualitative associations between European, African, or 
Amerindian BGA and socioeconomic outcomes. In 2014/15, a literature search was conducted using the 
PubMed and BIOSIS previews databases. Searches such as the following were used: ‘(admixture) AND 
(socioeconomic or education or income or SES or poverty) AND (African or European or Amerindian)’. A 
search, limited to the years 2003 to early 2016, was also conducted using Google Scholar. For the latter, 
phrases such as ‘(ses, OR income, OR education) AND (genomic OR biogeographical, OR ancestry, OR 
admixture) AND (African, OR European, OR Amerindian)’ were used. The Google Scholar search yielded 
over twenty thousand hits in descending order of relevance to the search terms; the first 1,500 abstracts were 
skimmed and approximately 250 papers were identified as potential sources and read. The references of the 
identified papers, from the PubMed, BIOSIS, and Google Scholar searches, were inspected for additional 
sources. In total, we identified 56 papers (53 from the database search and three from the reference search). 
Of these, six used redundant samples and thus were excluded. For nine of the papers, while SES was a 
covariate in an admixture analysis, no usable information was recoverable and authors did not reply to 
emails sent to their listed emails. The remaining 41 papers either contained directions of associations or 
these were provided by the authors when contacted; for 28 of the 41 papers, either effect sizes (or metrics 
that could be converted into effect sizes) were reported or provided by the authors. Figure 1 shows a 
flowchart of the procedure. 

[Insert Figure 1: Flowchart of study inclusion.] 

The identified studies and reasons for exclusions are listed in Supplementary File 2. Relevant information 
from each study and sample was recorded and is reported in Supplementary File 1. With respect to coding, 
two of this paper's authors reviewed studies and reached agreement on ambiguous cases. Many studies did 
not report effect sizes or statistics convertible to effect sizes; some studies failed to clearly report association 
directions. For studies that did not report effect sizes or directions of associations, lead authors were 
contacted. Contact dates, details, and notes are reported in Supplementary File 1 along with annotated 
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replies when forthcoming.  Seventy-three percent of our requests for data, elicited a reply.  For 38 percent of 
requests  the authors provided results not reported in the original papers. 

Most papers were published in the last few years, with the median year of publication being 2015 (range: 
1988 to 2016). Many studies had medical themes and often included both case and control samples. Table 1 
shows the independent samples broken down by sample type. Samples were coded as 'medical' versus 'non-
medical' based on the authors' research goal. As a result, for some samples, this classification was somewhat 
arbitrary. For example, Zou et al. (2015) explored genetic assortative mating using the Genes-Environments 
and Admixture in Latino Americans (GALA-II) community survey. Since the outcome of interest was 'non-
medical', the samples were classified as 'non-medical'. However, if the same authors had instead explored 
the relation between BGA and hypertension, using the same samples, and if results were undifferentiated by 
clinical conditions, the samples would have been classified as 'case and control'.    

Table 1: Independent samples by sample type. 

Sample type Direction of associations 
available 

Effect sizes available 

Case 10 8 
Case and control 24 19 
Control 8 4 
Non-medical 22 17 
Total 64 48 

 

For the meta-analysis, we report results based on associations for which the relevant BGA proportions are 
above 5%. For comparison, we also note the results with low admixture samples included. Associations in 
cases of low admixture were excluded because when means and thus variances (of admixture?) are low, 
effect sizes will be attenuated (Adhikari, personal communication, June 27, 2016). Regarding unreliability, 
one concern is that the present meta-analysis is based on correlation coefficients. As such, the statistical 
effects of other BGA components are not held constant and covariance between components can confound 
associations, leading to spurious results. Possible confounding is more of a concern when admixture 
components are low. With this exclusion, the total number of independent samples (64 for directions of 
associations and 48 for effect sizes) remained the same, but the number of samples when decomposed by 
specific BGAs was reduced. The number of samples is shown in Table 2. 

Table 2. Number of independent associations by BGA without (w/o) and with (w) low-admixture samples. 

 Independent 
samples 

Associations 
(African)  

Associations 
(Amerindian) 

Associations 

(European) 

Directional 
associations (w/o low 

64 39 41 36 
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admix) 

Directional 
associations (w low 
admix) 

64 43 43 36 

Effect sizes (w/o low 
admix) 

48 28 31 28 

Effect sizes (w low 
admix)  

48 31 33 28 

 

Only a subset of the independent samples reported associations for all three BGAs. As a result, the number 
of associations for a particular BGA is less than the number of independent samples. When studies reported 
associations between outcomes and one or two BGA components, one could attempt to estimate association 
directions and effect sizes for the remaining BGAs since the three BGAs are directly related to one another, 
with ancestries adding up to unity. For instance, Bonilla (2015, extra information provided by the author) 
reported that European and Amerindian BGA correlated at -.82 and -.85 in two samples (ns = 148, 164). The 
correlations between European BGA and SES were .10 and .14, respectively; thus, one might infer that the 
Amerindian × SES correlations were -.10 and -.14. In this case, however, they were -.01 and -.13; the 
departure from expectation resulted from the association between African BGA and SES. To avoid 
estimation error, unreported associations and effect sizes were not estimated. 

2.2 Descriptive statistics of studies 
In some instances, associations with multiple outcome measures were reported for a single sample and the 
same BGA. Given this situation, treating BGA × outcome associations as independent data points would 
lead to double counting. Two recent meta-analyses encountered an analogous problem (Tucker-Drob and 
Bates, 2016; Tate and McDaniel, 2008). The method employed by the first was to use a complex weighting 
approach to avoid double counting, while Tate and McDaniel (2008) used a simpler approach of averaging 
results within samples before aggregating. An approach similar to the second was implemented in the 
present study. Median values, which are more robust to outliers than are means, were taken across outcome 
values for the same BGA within each sample before meta-analyzing the sample associations. Different 
classes of outcomes (e.g., education vs. income) were not weighted differently. As Tate and McDaniel 
(2008) point out, this method slightly throws off the standard errors, but this problem was judged to be 
minor. Henceforth, all results are reported for independent samples (with the exception of Table 3), with 
BGA × outcome associations having been first averaged within each sample. 

For the 64 independent samples, there were 179 BGA × outcome associations, since some samples included 
data for multiple BGAs and multiple SES indexes. Studies reported a large variety of specific outcome 
variables. As shown in Supplementary File 1, these variables were coded into broad categories. Table 1 
shows the breakdown of all outcomes by broad category. Measures were mostly of individual education, 
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income or occupation. A few BGA × SES associations were based on the socioeconomic level of the 
participant's neighborhood. Depending on the model of the proposed covariance, this could be a 
questionable index. For example, a recent study based on the UK Biobank (N ≈ 112k) found a modest 
phenotypic correlation between individual and neighborhood-level SES (.24) but a strong genetic one (.87) 
(Hill et al., 2016). While neighborhood-level measures are included in the meta-analysis, it is advisable that 
future investigators conduct moderator analyses to estimate the impact of using neighborhood versus 
individual indexes. Additionally, several studies reported parental SES. Because most children are the 
biological offspring of both of their parents, their admixture will index the average of their parents, and 
these results can then be seen as showing the correlation between the parents' SES and the parents' BGA. 

Table 3: Broad outcomes (specific outcomes) for all BGA × outcome associations with/without low 
admixture excluded. 

Broad outcomes (specific outcomes) Frequency Broad outcome (specific 
outcomes) 

Frequency 

Education (education, years of schooling) 69/73 Parental SES (parental 
Hollingshead index, running 
water, had a car) 

6/6 

Income (income, wealth index, household 
income per capita) 

49/53 Parental education 2/2 

SES (SES, SES + education, occupation, 
general factor of SES, Hollingshead 
index, Yost index, home property band, 
household asset index) 

34/35 Parental income 1/1 

nSES 18/19 Total 179/189 

 

Of the 64 independent samples, roughly sixty percent of the samples came from the US. Studies often 
divided their samples into SIRE groups. Table 4a and 4b shows a breakdown by country and SIRE group. 

Table 4a. The number of independent samples and the sample sizes for directional association analysis by 
SIRE group and country. Low admixture excluded. 

SIRE group 

 

K N SIRE group K N SIRE group K N 

African American 
(US) 

10 20581 Multi-ethnic 
(Chile) 

2 1967 African-descent 
(T&T) 

1 107 
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Hispanic (US) 10 9983 Multi-ethnic 
(Mexico) 

2 1991 Multi-ethnic 
(Argentina) 

1 220 

Mexican (US) 5 1050 Multi-ethnic (US) 2 2031 Multi-ethnic 
(Colombia) 

1 2092 

Multi-ethnic (Brazil) 6 6696 Mestizo (Chile) 2 2381 Not stated (Costa 
Rica) 

1 1998 

Puerto Rican (PR) 7 2368 Native American 
(US) 

2 741 Puerto Rican (US) 1 122 

Not stated (Mexico) 3 1831 Not stated 
(Uruguay) 

2 312 White American 
(US) 

1 73 

Multi-ethnic (Peru) 3 1979 Not stated 
(Colombia)  

2 1971 Total  64  

Note:  N = participant sample size; K = number of independent samples. PR = Puerto Rico and T&T = 
Trinidad and Tobago. 

Table 4b. The number of independent samples and the sample sizes for effect size analysis by SIRE group 
and country. Low admixture excluded. 

SIRE group K N SIRE group K N SIRE group K N 

African American 
(US) 

7 13589 Multi-ethnic 
(Chile) 

2 1967 African-descent 
(T&T) 

  

Hispanic (US) 6 8041 Multi-ethnic 
(Mexico) 

2 1991 Multi-ethnic 
(Argentina) 

1 220 

Mexican (US) 5 1050 Multi-ethnic (US) 2 2031 Multi-ethnic 
(Colombia) 

1 2092 

Multi-ethnic 
(Brazil) 

5 6518.5 Mestizo (Chile)   Not stated (Costa 
Rica) 

  

Puerto Rican (PR) 3 1943 Native American 
(US) 

2 741 Puerto Rican (US) 1 122 

Not stated (Mexico) 3 1831 Not stated 
(Uruguay) 

2 312 White American 
(US) 

1 73 

Multi-ethnic (Peru) 3 1979 Not stated 
(Colombia)  

2 1971 Total  48  
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3 Directions of associations 
As shown in Table 2, directions of associations were more frequently available than were actual effect sizes. 
Association directions can provide some indication as to whether the findings are in line with a null 
hypothesis. Other meta-analyses have included analyses of association directions (e.g., Van der Meer and 
Tolsma, 2014). 

3.1 Statistical Analysis 
For each sample, directions (negative, null, positive) were assigned to associations. With respect  to this 
assignment, neither p-values nor the magnitude of effects were taken into account. Thus, for example, the 
correlation between African BGA and education for Bonilla et al.’s (2015) sample 1 was -.16 (n = 164, p = 
0.08), while the correlations between African BGA and education for Bonilla et al.’s (2015) sample 2 was 
0.04 (n = 148, p = 0.59); the first association was coded as 'negative' and the second as 'positive' despite the 
difference in effect size. Those samples coded as 'null' were ones where the effect size was zero. After 
directions were assigned, they were quantified (i.e., negative = –1, null = 0, and positive = 1). If a sample 
had consistent directions (across multiple SES indicators), it received a score of either -1 or 1. If a sample 
had mixed results, it received an intermediate score equivalent to the mean of the different associations (e.g., 
a sample reporting three positive and one negative associations received a score of (3-1)/4=0.5.) The results 
are reported unweighted; weighted by the square root of the sample sizes; and weighted by the sample sizes. 
We consider square root n-weighted results to be preferable as they strike a good balance between taking 
into account the effect of sample size and not obscuring results from smaller samples; other researchers have 
employed this weighting strategy (for example, Kan et al., 2013). 

3.2 Results 
The aggregated within-sample directions are shown in Table 5. In general, the directions are positive for 
European BGA and negative for the other two ancestries. With respect to African and Amerindian BGA, the 
weighted results are substantially stronger when low-admixture samples are excluded. This is not the case 
with respect to European BGA. 
 
Table 5. Directions of associations by BGA. 

BGA N K Mean 
direction 

(unweighted
) 

Mean direction 
(SQRT(n) -
weighted)  

Mean 
direction (n-
weighted)  

African (w/o low 
admix) 

40931.5 39 -0.67 -0.82 -0.94 

African (w low admix) 47742.5 43 -0.75 -0.64 -0.56 

Amerindian (w/o low 
admix) 

35577.5 41 -0.76 -0.81 -0.85 
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Amerindian (w low 
admix) 

47107.5 43 -0.72 -0.65 -0.41 

European (w/o low 
admix) 

39548.5 36 0.72 0.83 0.89 

European (w low 
admix) 

39548.5 36 0.72 0.83 0.89 

4 Effect sizes  
4.1 Statistical Analysis 
For 92% of the samples with effect sizes, Pearson correlations or other effect sizes that could be directly 
converted into these were available (i.e., r2, Spearman's rho, beta coefficients and odds ratio). For other 
samples, effect sizes needed to be computed from t-tests (N= 1), F-tests (N= 4), and frequency tables (N= 
5); conversions were made using the formulas and methods noted in Supplementary File 1. To provide an 
overview of the effect sizes, a density-histogram plot was made of the correlations for each BGA 
component. Additional statistics for the effect sizes were also computed. For the meta-analysis, because 
samples were from different populations in different countries, a random effects model was appropriate 
(Schmidt and Hunter, 2014). We conducted the analysis using the metafor package for R (Viechtbauer, 
2015). 

4.2 Results 
The studies varied substantially in sample size. Figure 2 shows the distribution of the sample sizes for the 
effect size analysis with low-admixture samples excluded. The density-histogram plot of the effect sizes is 
shown in Figure 3.  

[Insert Figure 2: Density-histogram of sample sizes.] 

[Insert Figure 3: Density-histogram plot for effect sizes by BGA.] 

Descriptive statistics for the effects sizes with and without low admixture samples excluded are shown in 
Table 6. 

Table 6. Descriptive statistics for the effect sizes.  

BGA N K Mea
n 

Median Max Min SD 10. 
centile 

90. 
centile 

African (w/o 
low admix) 

32710.5 28 -.11 -.12 .14 -.35 .11 -.21 .03 

African (w 
low admix) 

37523.5 31 -.09 -.10 .14 -.35 .11 -.20 .08 
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Amerindian 
(w/o low 
admix) 

28937.5  31 -.13 -.13 .17 -.39 .12 -.31 .00 

Amerindian 
(w low 
admix) 

40467.5  33 -.13 -.12 .17 -.39 .12 -.30 .00 

European 
(w/o low 
admix) 

35476.5 28 .17 .19 .53 -.24 .16 .02 .33 

European (w 
low admix) 

35476.5 28 .17 .19 .53 -.24 .16 .02 .33 

Note: n = participant sample size; K = number of independent samples. With/without BGA > 5%. 

There are two clear outliers for European BGA at -.60 and -.20. The first one was based on an extremely 
small sample (n = 15). The second one was both an outlier for European BGA (Zou et al. sample 6, N = 158) 
and for Amerindian BGA.1 When these outliers are excluded, the mean correlations changed little (rs = .16, 
-.14, and -.11 for European, Amerindian and African BGA respectively).  

Figures 4, 5, and 6 show the forest plots for the random effects models. 

[Insert Figure 4: Forest plot for European BGA results. Based on random effects model.] 

[Insert Figure 5: Forest plot for Amerindian BGA results. Based on random effects model.] 

[Insert Figure 6: Forest plot for African BGA results. Based on random effects model.] 

The random effect meta-analytic mean effect sizes are .18, -.14, and -.11 for European, Amerindian and 
African BGA, respectively. European BGA shows a stronger association with SES than do Amerindian and 
African BGA, presumably because it is the largest ancestry component (mean European BGA = 54.41%). 
The difference could be due to the higher variation in the proportion of European BGA in the subjects. The 
mean standard deviation of admixture (18.01, 11.18, and 14.50 for European, Amerindian, and African, 
respectively) was lower for the non-European ancestries, and less variation is expected to lead to smaller 
effect sizes owing to restriction of range (Schmidt and Hunter, 2014).  

The exclusion of samples with a mean BGA below 5% had only a slight impact on the results. When all 
samples are included, the meta-analytic effect sizes are r = .18 [.13, .24], r = -.13 [-.17, -.09], and r = -.09 [-
.13, -.05] for European, Amerindian and African BGA, respectively. Results for African BGA are impacted 
the most owing to the presence of a positive association between African BGA and outcomes for several 

                                                 
1 The lead author (James Zou) was contacted to verify the data. He checked the code and data and reported that there were no 
errors. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 12, 2016. ; https://doi.org/10.1101/055681doi: bioRxiv preprint 

https://doi.org/10.1101/055681


 

10 

 

 

samples with very low African admixture (e.g., Adhikari et al. (2016)_Chile Afr_Admix M= 2.61%, r BGA 
× SES = .08). It is notable that for two of the same countries, namely Chile and Mexico, Fuerst and 
Kirkegaard (2016a, 2016b) found that regional African BGA is associated with higher SES on a regional 
basis. 

5 Discussion 
The results of the meta-analysis are consistent with those reported in earlier narrative reviews in that 
European BGA was statistically associated with more favorable socioeconomic outcomes relative to 
Amerindian and African BGA. When low-admixture samples were excluded, the random effects meta-
analysis gave a mean SES × BGA correlation of r = .18, r = -.14, and r = -.11 for European, Amerindian and 
African BGA, respectively; furthermore,  the analysis of SES × BGA association directions gave square root 
n-weighted means of M = 0.83, M = -0.81, and M = -0.82 for European, Amerindian and African BGA, 
respectively. For the random effects meta-analysis, the heterogeneity, or the percentage of variance due to 
variance between samples as opposed to error, was considerable (I2 

mean = 92%, I2 
European = 95%, I2 

Amerindian = 
91%, I2 

African = 89%) by conventional standards (Higgins and Green, 2008). Due to the limited number of 
samples, it is difficult to evaluate the cause of this pattern of results. Some possibilities are as follows: 

1. Discretization: Many outcome variables were ordinal instead of continuous, even when continuous values 
were available (e.g., income). Pearson correlations assume that the data are normally and continuously 
distributed, so the use of non-continuous data induces a downwards bias in the results. Corrections for 
discretization were not attempted, although one could attempt to apply these corrections (Schmidt and 
Hunter, 2014). 

2. The number of BGA-informative markers: There were large differences in the number of genomic 
markers used to estimate individual BGA. Figure 6 shows a density histogram of the distribution for the 
effect size analysis with low-admixture samples removed. Using fewer markers results in more measurement 
error with respect to true BGA (Russo et al., 2016). Ruiz-Linares et al. (2014) reported correlations between 
admixture estimates using different numbers of markers. They noted that a recent study (Scharf et al., 2013) 
had found that using 15 markers resulted in correlations of about .60 with estimates derived from 50k 
markers. Furthermore, using 30 and 152 markers resulted in r = .70 and r = .85, respectively, with respect to 
estimated admixture based on 50k markers. It is clear that there are diminishing returns to using more 
markers, but also that using more reduces measurement error with respect to true BGA. It would be difficult 
to correct for measurement error with respect to BGA. One option would be to acquire a sufficient number 
of datapoints from one study to allow for the estimation of a predictive model. One could then use that 
model to estimate the measurement error in other studies based on the number of reported markers used. 
However, we failed to find a study which had sufficient datapoints, so a correction was not attempted. 

[Insert Figure 7: Density histogram of the number of genetic markers in each sample.] 

3. Variance in admixture: Based on the samples for which standard deviations of BGA were reported, 
variability in BGA differed considerably between samples. For instance, for Uruguayans, Bonilla et al. 
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(2015) found a standard deviation of African BGA of 7.52; in contrast, for Brazilians, Schlesinger et al. 
(2011) found one of 24.08. As mentioned earlier, the magnitude of associations between outcomes and BGA 
will be impacted by variance in BGA. Thus, between-sample heterogeneity in BGA variance is expected to 
contribute to heterogeneity in BGA × SES associations. 

4. Heterogeneous origin: The studies in the meta-analysis came from many countries. It is probable that the 
statistical effect of one's BGA depends on local cultural norms or practices that differ between countries or 
even between regions within countries. 

5. Sampling: Most of the studies used convenience samples, an approach that can have an impact on 
associations. Adhikari et al.’s (2016) samples, for example, were recruited mostly at universities, meaning 
that individuals were selected with respect to educational status. Thus, the correlations they obtained are 
expected to be attenuated relative to those derived from more representative samples. 

5.1 Implications for epidemiological studies 
Fairly robust associations between BGA and SES were found. Given this, to avoid spurious associations in 
regression analyses due to omitted variable bias, it is potentially important to include reliable measures of 
SES in studies of medical outcomes. Studies reviewed in this analysis employed a wide variety of specific 
measures (see Table 3), some of which may be better indices of medically relevant SES than others. It would 
be worthwhile to investigate which measures (e.g., neighborhood SES, education, income, etc.) are generally 
associated to a greater degree with BGA and with medical outcomes, so that future studies could attempt to 
incorporate these measures into analyses.  

Further, it is also important to identify the factors mediating the BGA-SES associations, as these could 
incrementally explain the BGA-medical outcome associations. Figure 8 shows one possible model. In this 
model, local ancestry is a subset of global ancestry. Both local and global ancestry correlate with disease 
loci which, in turn, are causally related to health outcomes. Global ancestry is also related both to an 
individual's SIRE and to cultural practices associated with SIRE, and to an individual's race/ethnicity-
associated phenotype, and social reactions, perhaps in the form of “colorism” (e.g., Hunter, 2007; Telles, 
2014), associated with that phenotype. In this model, both direct and indirect pathways run from cultural 
practices and social reactions to health outcomes. An example of a direct pathway would be through 
observed race/ethnicity-related differential treatments by providers (as discussed by, e.g., Van Ryn, 2002). 
Indirectly, these factors potentially impact both individuals' human capital and SES, which are reciprocally 
related to one another and to health outcomes.  

[Insert Figure 8: Model of possible relations between BGA and SES.] 

This model is similar to that proposed by Marden et al. (2016); a notable exception is that we include human 
capital or cognitive ability as a mediating variable. Regarding human capital, cognitive epidemiology studies 
have shown that measures of cognitive ability (one component of human capital) can explain a portion of 
medical-related outcomes, independent of SES (Deary, 2009; Der, Batty and Deary, 2009; Wraw et al., 
2015). Because, throughout the Americas, SIRE groups are known to differ in mean levels of phenotypic 
cognitive ability (Roth et al., 2001; Fuerst and Kirkegaard, 2016b), it would be reasonable to include 
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measures of cognitive ability in admixture analyses to see if such measures explain some of the health 
outcome differences independent of SES. However, we could not find any study that did this. On the other 
hand, we did locate one recent admixture paper (Akshoomoff et al., 2014) which reported that BGA was 
associated with cognitive ability. On inquiry, as expected given the SIRE differences, European BGA was 
positively associated with cognitive ability, while African and Amerindian BGA was negatively associated 
(Akshoomoff, personal communication[s?], November 9, 2014). If cognitive ability mediates the 
relationship between BGA and SES, not including measures of it constitutes omitted variable bias. 

A potential ancestry × SES moderator not previously mentioned is participant sex. Sex, wages, and skin 
color interactions have been found, for example, in Hispanic American populations (e.g., Gomez, 2000); 
since skin color and ancestry correlate within admixed populations, similar sex × SES interactions might be 
present with regards to ancestry. Clarify As some samples are exclusively either male or female, if enough 
data points are collected this issue could be explored meta-analytically. Alternatively, a possible interaction 
between participant sex, ancestry, and SES could be explored using multiple individual-level data sets, and 
the results could then be incorporated into future meta-analyses. 
 

5.2 Untangling the statistical effects of BGA and SIRE 
In many of the samples included in this meta-analysis, individual SES outcomes are associated with BGA 
within SIRE groups. Hence, SIRE membership does not mediate the relationship. In other cases, particularly 
in Latin America, the issue is less clear and BGA may be confounded with SIRE. For instance, Leite et al. 
(2011) found that European BGA was positively correlated with SES in Brasília. This could be because SES 
was positively correlated with BGA independently of SIRE, or because it was positively correlated with 
SIRE but not with BGA independent of SIRE. The analysis by Ruiz-Linares et al. (2014) has helped to 
clarify the issue. The authors looked at the association between genotype, skin pigmentation and SIRE in a 
multi-country sample from Brazil, Chile, Colombia, Mexico and Peru (mean age 20 to 25, depending on 
country). The authors found modest correlations between BGA and SIRE (e.g., 0.48 in the case of both 
European and Amerindian BGA/SIRE). They reported that wealth and educational attainment correlated 
with European BGA (r = .12 for the full sample). However, when the statistical effect of BGA was 
controlled for, education was not significantly associated with SIRE, and wealth was only related to SIRE 
within to the European/White color group. Similar results in this regard were found with Menezes et al.'s 
(2015) sample from the 1982 Pelotas Birth Cohort study (F. Hartwig, personal communication, March 4, 
2016). Details pertaining to this sample can be found in Menezes et al. (2015). The results pertaining to self-
identified color and interviewer-rated color are shown in Supplementary File 3. For this sample, the positive 
association between European BGA and household asset, schooling, and income was robust to controls for 
interviewer-observed race/ethnicity and SIRE. Contrary to a simple colorism model, Black (preta) and 
Brown (parda) interviewer-rated race/ethnicity were generally positively related to outcomes, controlling for 
European BGA. Taken together, the results suggest that the associations between BGA and SES is 
substantially independent of SIRE and thus SIRE-related cultural factors. Quite possibly, phenotype-based 
social reactions, which would differentially impact individuals within SIRE groups, affect outcomes. 
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Consistent with this possibility, Telles (2014), for example, found, in a large multinational sample, that 
interviewer-related skin brightness was related to SES controlling for SIRE. 

5.3 Limitations and suggestions for future research 
The number of effect sizes used in the present meta-analysis is limited. This is because many studies did not 
report effect sizes and, in some cases, the authors either did not reply to emails or were unable to provide 
results or data. Meta-analyses would be more reliable and easier to perform if, in future, scientists were more 
willing to publish their data. The results significantly varied across studies (mean effect size heterogeneity = 
92%), which means that there are probably effect size moderators. A moderator analysis was not conducted 
due to the relatively small number of studies in the dataset. We suggest that moderator analyses be 
conducted as relevant data accumulates. Analyses for publication bias were also not conducted because the 
number of effect sizes was too small for a reliable analysis. This concern should be investigated in future 
meta-analyses. 
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Figure 1: Flowchart of study inclusion.  
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Figure 2: Density histogram of sample sizes.  

 

Figure 3: Density-histogram plot for effect sizes by BGA. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 12, 2016. ; https://doi.org/10.1101/055681doi: bioRxiv preprint 

https://doi.org/10.1101/055681


 

18 

 

 

 

Figure 4: Forest plot for European BGA results. Based on random effects model. 
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Figure 5: Forest plot for Amerindian BGA results. Based on random effects model. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 12, 2016. ; https://doi.org/10.1101/055681doi: bioRxiv preprint 

https://doi.org/10.1101/055681


 

20 

 

 

 

 

Figure 6: Forest plot for African BGA results. Based on random effects model. 
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Figure 7: Density histogram of the number of genetic markers in each sample. 
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Figure 8: Model of possible relations between BGA and SES. The stippled lines represent correlations and 
the arrowed lines represent causal associations. 
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