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Understanding the main determinants of species coexistence across space and time is a central question1

in ecology. However, ecologists still know little about the scales and conditions at which biotic interactions2

matter and their interplay with the environment to structure species assemblages. Here we develop ecolog-3

ical theory to analyze plant distribution and trait data across Europe and find that plant height clustering is4

related to evapotranspiration and gross primary productivity. Our analysis suggests competitive dominance5

as a plausible mechanism underlying community assembly patterns over these continental scales. In par-6

ticular, we find a clear signal of plant-to-plant competition in mid-latitude ecoregions, where conditions for7

growth (reflected in actual evapotranspiration rates and gross primary productivities) are optimal. Under se-8

vere conditions, either climate is too harsh and overrides the effect of competition or other interactions play9

a relevant role. Our approach bridges the gap between modern coexistence theory and large-scale species10

distribution data analysis.11

Classical coexistence theory [1, 2] assumes that the more similar two species are in their niche requirements, the12

more strongly they will compete over shared resources, an idea that can be traced back to Darwin [3]. Ever since,13

competition-similarity hypotheses have been at the front line of theoretical explanations for species coexistence [2, 4],14

exploring community assembly based on phylogenetic or functional similarity. This framework predicts that large15

species differences should be selected during community assembly to reduce competition. Therefore, trait and/or16

phylogenetic overdispersion have often been regarded as signatures of competitive interactions. However, progress17

in our understanding of how species differences influence the outcome of competitive interactions [5, 6] shows that18

this theoretical framework is too simplistic because it disregards the balance between stabilizing and equalizing19

species differences [5]. Stabilizing mechanisms are based on trait differences that cause species to be limited more20

by their own con-specifics than by their competitors, favoring species when they drop to low densities, which, in21

turn, promotes species coexistence. Equalizing mechanisms, by contrast, promote species dominance over potential22

competitors. In the absence of stabilizing species differences, superior competitors would drive other species to23

extinction through competitive exclusion. In communities controlled by equalizing mechanisms, species with similar24

trait values should be selected through competitive dominance, resulting in high levels of trait clustering even in the25

absence of environmental filtering [6]. This theoretical framework suggests that significant trait clustering at local sites26

may be a fingerprint of biotic (competitive) interactions controlling the composition of ecological communities.27

Accurately separating the effect of biotic interactions from environmental filters as structuring agents of commu-28

nity assembly is not trivial. Despite the undeniable success of species distribution models [7], there is an increasing29

recognition of the need for simple, process-based models to make robust predictions that help understand species30

responses to environmental change [8]. However, we still lack clear evidence for the role of biotic interactions in shap-31

ing species assemblages at large spatial scales. Studies based on species randomization models have attempted32
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to separate the outcomes of competitive exclusion and environmental filtering by assuming the competition-similarity33

hypothesis as a given [9, 10]. Empirical studies, while they may be able to independently assess environmental stress34

and species competitive abilities, are often limited to small community sizes [11] or restricted to single habitats [12].35

Very few studies have explored the idea of competition as a driver of community assembly across biogeographic36

regions [13, 14]. Here we report the results of the first macro-ecological study, based on theoretical predictions37

from modern coexistence theory [5, 6], aimed at separating the combined effects of biotic (competition) and abiotic38

(environmental) factors shaping plant community assemblages at large geographical scales.39

Light and water availability impose significant limitations on gross primary productivity which is reflected in actual40

evapotranspiration rates [15]. These two resources vary at regional scales, placing strong, but opposing constraints41

on how tall a plant can grow within the limits of structural stability [16, 17, 18, 19]. In addition, plants have to compete42

strongly for these resources. The resulting plant height is a trait that reflects the ability of the individual to optimize43

its own growth within these regional environmental and biotic constraints (see [20, 21] and references therein). We44

analyzed presence-absence matrices of floral taxa across different European ecoregions to determine if competitive45

ability (reflected in maximum stem height) could help explain assemblage patterns at local scales across gradients of46

relevant environmentally-driven factors such as evapotranspiration. We examined how macro-ecological plant data47

match up to theoretical predictions generated by a synthetic, stochastic framework of community assembly [22, 23].48

Competition between hetero-specifics was measured by signed height differences, so that clustering could emerge49

by competitive exclusion of sub-dominant species. We find large fractions of local communities where clustering in50

maximum stem height is significant at intermediate latitudes, coinciding with a mid-latitude peak in evapotranspiration51

rates. Across Europe, actual evapotranspiration is lower at more southern latitudes (due to reduced precipitation52

levels) as well as at more northern latitudes (due to colder temperatures and low levels of sunlight). Species trait clus-53

tering is significant only in a latitudinal band where environmental constraints to plant growth are weaker, suggesting54

that it is only in these mid-latitude ecoregions that a clear signature of competitive dominance can be found in species55

assemblage patterns.56

Results57

European plant ecoregions58

Plant community data were drawn from Atlas Florae Europaeae [24]. The distribution of flora is geographically de-59

scribed using equally-sized grid cells (∼ 50× 50 km) based on the Universal Transverse Mercator projection and the60

Military Grid Reference System, see Fig. 1. Each cell was assigned to a dominant habitat type based on the WWF61

Biomes of the World classification [25], which defines different ecoregions, i.e., geographically distinct assemblages62

of species subject to similar environmental conditions. We consider each cell in an ecoregion to represent a species63

aggregation (which we name ‘local community’). We also refer to ecoregions as ‘metacommunities’. A total of 323364

plant taxa were extracted from data sources.65

Each species in an ecoregion was characterized by its maximum stem height H, an eco-morphological trait66

that relates to several critical functional strategies among plants. It represents an optimal trade-off between the67

gains of accessing light [16, 17], water transport from soil [18, 19], and sensitivity to biomass loss from mechanical68

disturbances [26], and is therefore a good proxy for competitive interactions at the local level under light- or water-69

limited conditions [21, 27]. Thus, within the limits of plant structural stability, stem height results from the interplay of70

two opposing forces: competition for light and competition for water resources. In situations of low water availability,71

the cost of transport water to height increases [18, 19] and hydric stress tends to make individuals shorter. On72

the contrary, if water resources are abundant, individual plants compete for light and taller individuals are more73

favored than neighbors [16, 17]. In front of these opposing constraints, depending on environmental conditions,74

plants optimize their strategy, which, therefore, must be reflected in the selection for large (competition for light) or75
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a

Figure 1. Geographical description of plant data across European ecoregions. a, 25 different habitats covering
most of Europe are shown in the map and listed below. Ecoregions are regarded as metacommunities comprising all
plant species observed in that region. b, The Military Grid Reference System divides ecoregions in grid cells, each
one considered as a local community formed by a species sample of the metacommunity.

small (competition for water) individuals at local scales [21], see Fig. 2a. Height values were compiled from the LEDA76

database [28] (Methods).77

Competition for light is asymmetric [17, 29]. Given that the costs of transporting water in situations of hydric stress78

increase with height [30], competition for water can also be regarded as asymmetric. Therefore, species competitive79

dominance was measured by signed height differences, ρij = ρ̂(ti− tj ), where ti are height values standardized across80

metacommunities and are sorted in increasing order (Methods). This choice assumes the subsequent selection for81

low-trait valued species (Fig. 2b). Alternatively, the opposite choice [ρij = ρ̂(tj − ti )] implies that large traits will be82

over-represented in local communities (see Fig. 2b and Supporting Information, Secs. S2.3 and S3.2). The scale83

factor ρ̂ measures the ratio between inter- vs. intraspecific competition. For all the species reported in an ecoregion,84
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Figure 2. Conceptual framework for height as a trade-off between accessing light and water resources. a,
Here we illustrate the influence of light and water availability profiles in the resulting plant height. To simplify we
assume that light access and water availability exhibit opposing latitudinal gradients. Hence, plants in southern
latitudes will be selected by competition-for-water mechanisms, which tend to give advantage to smaller individuals,
whereas competition for light (favoring tall plants) will dominate over northern latitudes. This conceptual framework
is consistent with the height profile represented in the third panel (the vertical axis stands for the species index i). b,
According to the trait profile, competitive dominance matrices can be chosen either as ρij = ρ̂(ti−tj ) or as ρij = ρ̂(tj−ti ).
Given that a competitive strength ρij < 0 increases the growth rate of species i (Supporting Information, Sec. S2.1),
the two choices lead to the selection of low- and large- trait values, respectively. Positive (negative) matrix entries have
been marked in black (red). Rows associated to dark red areas indicate the species indices that will be preferentially
present in local communities.

we formed a competition matrix with the pairwise ρij values. The advantage of having these values represent trait85

differences between pairs of species is that any trend in competition strengths can be immediately translated into86

patterns of functional clustering or overdispersion. For a metacommunity with S species, we calculated the average87

competitive strength as 〈ρ〉 = 2
S(S−1)

∑S
i=1

∑S
j=i+1 |ρij |.88

Two predictions from theory89

Community assembly results from the interplay of four fundamental processes: speciation, ecological drift, dispersal,90

and selection acting across space and time [31]. New species are added to local communities through speciation91

and/or immigration, species abundances are then shaped by stochastic births and deaths (ecological drift), ongoing92

dispersal and differential growth driven by species interactions and/or specific adaptations to local environment (se-93

lection). Our stochastic approach disregards speciation, does not account for environmental factors and assembles94

communities based only on dispersal, ecological drift and asymmetric competition processes. The community model95

is defined by four parameters representing elementary processes, namely: α+ (local birth), α− (local death), µ (im-96

migration of newcomers to local communities), and K (interspecific competition is proportional to αρij/K , where K is97

interpreted as a carrying capacity and α = |α+−α−|). In model simulations, trait values ti are drawn from a Gaussian98

distribution with zero mean and variance σ2, and trait differences are transformed to competitive strengths afterwards99

(Methods).100

The stochastic dynamics predicts the identities of species selected by competition in local communities, as well as101

the observed local diversity relative to the metacommunity richness (we refer to this ratio as ‘coexistence probability’102
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Figure 3. Two theoretical predictions tested against data. a, Left: Average fraction pc of coexisting species in local
communities as a function of the scaled competitive strength, 〈ρ〉S. Simulation parameters are α+ = 50, α− = 0.1,
µ = 5, σ = 0.2 and K = 50 (down triangles, inset) or K = 1000 (up triangles). Right: The model predicts a power-law
decay pc ∼ (〈ρ〉S)−γ regardless of the metacommunity size S, which permits fitting a power law to data (r2 = 0.52,
p < 10−3, 95% prediction intervals shown). In order for model curves to match empirical data, we need to choose
ρ̂ = 0.039 in the calculation of ρij (Supporting Information). b, Model randomization tests for different immigration
rates and carrying capacities; here 〈ρ〉 = 0.06 and S = 100 (Supporting Information, Sec. S2.5). The closer the
distribution is to 0, the larger is the fraction of cells where trait clustering is significant. For parameter values that fit
data in the low immigration regime (µ ∼ 5, µ/αK � 1, panel a), the model indicates a clear signature of clustering.
c, Empirical randomization tests. The majority of ecoregions are consistent with model predictions as the distributions
(Tukey boxplots) lie in the 5% range of significant clustering. Color codes for data in panels a and c match codes in
Fig. 1.

and denote it as pc, see Methods). We used the variability in coexistence probability as a function of the average103

competitive strength 〈ρ〉 and the distribution of pairwise competitive strengths observed in real communities to test104

how closely they confirm the predictions of the stochastic community assembly model.105

A first theoretical prediction from the model is that, as competition increases, coexistence probability shows106

a power-law decay whose exponent is controlled by the immigration rate µ (Supporting Information, Fig. S4). In107

particular, the curves for different metacommunity sizes collapse when represented as a function of the competitive108

strength scaled by the metacommunity richness S, pc ∼ (〈ρ〉S)−γ (see Fig. 3a and Supporting Information, Sec. S2.3,109

for a theoretical derivation of the curve collapse). This collapse eliminates the variability in S, so that empirical110

coexistence probabilities, which arise from different metacommunity sizes, can be fitted together (Fig. 3a).111

To test the significance of competitive dominance in local communities, we generated a second model prediction112

applying randomization tests to model communities. Null models for community assembly [9] compare the properties113

of actual communities against random samples of the same size extracted from the metacommunity. This approach114

assumes that local communities are built up through the independent arrival of equivalent species from the metacom-115
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munity [32, 33] regardless of species preferences for particular environments or species interactions (see Supporting116

Information, Sec. S2.5, for details). Local species richness is determined by inherent site-level differences in the abil-117

ity to harbor different numbers of species [34]. Our randomization tests were based on average competitive strengths118

observed in local communities, which are compared to random samples of the same size drawn from the metacom-119

munity. Observed trait differences can be, on average, significantly larger than the average measured for random120

metacommunity samples, signifying that average trait differences in local communities are larger than expected at121

random. On the other hand, empirical trait differences can be significantly smaller than those obtained for random122

metacommunity samples. In either case the null hypothesis (i.e., local communities are built as random assemblages123

from the metacommunity) can be rejected, which implies clear signals of ‘significant trait overdispersion’ or ‘signifi-124

cant trait clustering’, respectively. Applying the statistical test to every local community in a metacommunity leads to125

a distribution of p-values (Methods).126

Fig. 3b shows the distribution of p-values observed when simulated local communities are compared to meta-127

community samples (Supporting Information, Sec. S2.5). The model predicts high levels of trait clustering for low128

immigration rates and high carrying capacity values (Fig. 3b), as well as the selection for low/large-trait valued species129

(depending on how ρij is defined, see Fig. 2 and Supporting Information, Sec. S2.3). When immigration increases,130

local communities show a broad distribution of p-values. At the highest immigration rates, model communities are es-131

sentially random samples of the metacommunity since immigration overrides competition in this regime [35]. Fig. 3a132

provides a hint of the range in which model parameters best fit real data. For a realistic fit, the exponent of the133

empirical power law is obtained for µ/α ∼ 0.1 individuals per generation. Since plant communities operate in a134

low-immigration regime, the non-dimensional immigration rate λ = µ/αK must satisfy λ = 0.1/K � 1, hence the135

carrying capacity must be large. In a regime of low immigration rate and high carrying capacity, which best fits136

empirical coexistence probabilities, the model predicts a significant degree of species clustering (Fig. 3b).137

Testing model predictions against data138

Regarding the first prediction, we found a significant correlation between coexistence probability and the scaled139

competitive overlap based on empirical data (r2 = 0.52, p < 10−3, Fig. 3a). Apparently, a model driven solely by140

dominant competitive interactions reliably predicts the average richness of local plant communities across different141

ecoregions. In addition, this theoretical prediction allowed an indirect estimation of the relative importance ρ̂ of inter-142

vs. intraspecific average effects: the average ratio of inter- to intraspecific competition strength is about 4% (see143

Supporting Information, Sec. S2.1, for details on the estimation procedure).144

On the other hand, we calculated p-values for randomization tests applied to all local communities in each ecore-145

gion, which represent the empirical metacommunity distribution of p-values (Fig. 3c). At the parameter values that146

make plant data consistent with the first prediction, our model predicts significant trait clustering (see Fig. 3b). When147

this prediction is compared with empirical data, we observe that some ecoregions fit best with our model, based on148

competitive dominance, while others clearly do not. In addition, no ecoregion is consistent with trait overdispersion149

(Fig. 3c). We have also conducted randomization tests based on height values, not differences, to check whether the150

clustering observed in local communities is due to the selection for large or low trait values (Fig. 2). In ecoregions151

where height clustering is significant, we obtain consistent signatures of small plant selection (see Fig. S8 in Sup-152

porting Information and Sec. S3.2). Therefore, we conclude that local community assembly in those ecoregions is153

plausibly driven by competitive differences biased towards selection for smaller plants.154

Ecoregion clustering and actual evapotranspiration rates155

In order to better quantify the propensity of an ecoregion to exhibit clustering in maximum stem height, we define156

a clustering index q for an ecoregion as the fraction of its local communities that lie within the 5% range of sig-157
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Figure 4. Linking height clustering to geographical and environmental variables. a, Variation in the clustering
index (q) with latitude (ϕ). Quadratic fit: r2 = 0.77, p < 10−3. b, Latitudinal variation in mean annual actual
evapotranspiration (ET) data. Quadratic weighted regression: r2 = 0.63, p < 10−3. The shaded areas in panels a
and b represent the latitudinal range for which the adjusted dependence q(ϕ) ≥ 1/2, where both height clustering and
evapotranspiration are maximal. c, Linear weighted regression for ET as a function of the clustering index; r2 = 0.60,
p < 10−3. d, Correlation between mean gross primary productivity (GPP) and mean annual ET; linear weighted fit:
r2 = 0.73, p < 10−3. In the first four panels, the radius of each circle is proportional to the clustering index. Symbol
colors refer to different ecoregions (Fig. 1). All the fits show the 95% prediction intervals. e, Geographical distribution
of clustering indices for ecoregions across Europe.

nificant clustering (randomization tests yield p-values smaller than 0.05 for those cells). An ecoregion for which158

significant clustering is found in most of its local communities will tend to score high in the q index. We examined159

how the clustering index varied across the continent (geographical location of ecoregion centroids) as well as with160

actual evapotranspiration (Fig. 4). Evapotranspiration maps were obtained from data estimated through remote sens-161

ing [36]. Water availability acts as a factor limiting plant growth at geographical scales, and correlates with gross162

primary productivity [15], see Fig. 4d. Therefore, for a given region, mean annual evapotranspiration is a distinct163

measure of environmental constraints on plant growth [15]. Panels a and b of Fig. 4 show a clear latitudinal trend:164

there is an intermediate range of ecoregion latitudes where both clustering indices and evapotranspiration are large,165

indicating that evapotranspiration measures can robustly predict clustering indices (Fig. 4c). More importantly, since166

evapotranspiration is a powerful proxy of environmental constraints on plant growth, this clustering in maximum stem167

height appears to be strongest at ecoregions less limited by environmental conditions. As environments become168

harsher and less optimal for plant growth, these clustering patterns disappear. This is particularly true for the severe169

climatic conditions characteristic in the Mediterranean (with erratic rainfall, limited water availability and drought), as170

well as of boreal zones (with low radiation incidence and cold temperatures). The harshness of these conditions171
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likely override the effects of competition, and other processes such as species tolerances and facilitation [37] may be172

critical community drivers at climatic extremes. According to model predictions, the overall clustering patterns found173

at middle-range latitudes are consistent with species competitive dominance driven by height differences, resulting in174

a local over-representation of competitive dominant species characterized by relatively lower maximum stem heights.175

Discussion176

To the best of our knowledge, this is the first time that predictions from modern coexistence theory [5] and the177

competition-similarity paradigm [6] have been tested with macro-ecological trait data at large spatial scales. While178

potential evapotranspiration decreases with latitude, actual evapotranspiration peaks at intermediate latitudes, and is179

strongly associated with higher levels of local trait clustering. Critically, actual evapotranspiration is positively corre-180

lated with gross primary productivity (GPP) across terrestrial ecosystems (see Fig. 4d and [15]), which also peaks181

at intermediate latitudes across Europe (Supporting Information, Fig. S3). The confrontation of model predictions182

against plant community data across Europe reveals a clear signature of competition in local communities in the en-183

vironmentally conducive middle-range latitudes; as environmental conditions get increasingly extreme, they override184

competitive effects resulting in non-significant clustering in plant heights.185

Harsh environments either interfere with competitive interactions or create conditions for other types of interactions186

to drive community assembly. In either case, plant trait clustering is not apparent. Although competition may play a187

role, particularly at small spatial scales, facilitation is likely to be more important under stressful conditions [38]. By188

contrast, the mild environments characteristic of mid-latitude ecoregions impose less stringent limits to plant growth189

and the effect of species interactions through competitive dominance can be observed even at large biogeographic190

scales. At these intermediate latitudes, differences in competitive ability tend to be weaker, on average, and trait191

clustering is likely to arise from competitive interactions. In these ecoregions, competition, by filtering out subdominant192

species, leaves a significant trace on local community assembly and, as empirical data confirm, species tend to193

cluster around smaller height values (Supporting Information, Fig. S8). According to the conceptual framework that194

explains plant height as a trade-off between light and water availability, the over-representation of small heights195

is interpreted as a fingerprint that accessing water resources could influence plant growth more importantly than196

accessing light at mid-range latitudes. Interestingly, the relevant role of competitive dominance driven by species trait197

hierarchies has been also reported at much smaller spatial scales for forest trees in the French Alps [12]. In addition,198

a recent study of the assembly of forest communities across East Asia shows that a phylogenetic-based species199

similarity index tends to be smaller the higher the minimum temperature of the coldest month is [39]. Together with200

our results, these studies suggest that trait clustering is generally likely to occur where conditions for plant growth are201

less restrictive. Our model indicates that the process underlying this pattern is competitive dominance, although it202

is likely that community assembly for other taxa may be driven by other biotic or environmental filters. For instance,203

phytoplankton communities appear to be driven by limiting similarity creating clumpy species coexistence in estuarine204

ecosystems [40].205

This analysis uncovers a new macro-ecological empirical pattern involving the relationship between trait clustering206

in maximum stem height of plant species and plant primary productivity (and actual evapotranspiration) over large207

spatial scales. The intensity of this clustering increases with primary productivity, this is, it is more significant in regions208

with better conditions for plant growth. Conversely, in harsh environments this clustering disappears. Our theoretical209

investigations point to the role of competitive dominance as a plausible explanation underlying this pattern at the210

local level. The relevance of this mechanism at driving community assembly, which tends to equalize differences211

in competitive ability, should increase with gross primary productivity. Our strategy provides a clear direction for212

quantitatively assessing the generality of this prediction in other regions, for different taxa, and for other traits.213

Theoretical approaches to understand the forces shaping ecological communities rely on mathematical models214
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of species interactions in order to predict community assembly rules, species coexistence, and community stability.215

Empirical approaches rely, instead, on sampling existing ecological communities to collect as much information as216

possible on species composition, abundances, and associated environmental variables across temporal and spatial217

scales in order to infer regularities using statistical models. Finding a theoretically robust and ecologically meaningful218

rapprochement between these longtime independent approaches at relevant scales remains a challenge for ecology,219

and we trust that our work will inspire new contributions in this direction.220

Methods221

Additional information on methods is provided as a single Supporting Information document containing notes clarifying222

statistical analyses, a full assessment of the robustness of the results, and a detailed description of the stochastic223

community model.224

Plant species data225

Mean height values were obtained from the LEDA database [28] for as many species as there were available in that226

source. Missing values were taken from [41]. According to plant growth forms, 2610 species were grouped as herba-227

ceous (aquatic, herbs, or graminoid) and 623 as woody (shrub or tree). Here we reported results for herbaceous228

plants, although similar conclusions were obtained for the entire data set (see Figs. S5, S6, and S7 in Supporting229

Information). Height values spanned several orders of magnitude, so we used a log-transformed variable (h = log H)230

to measure species differences (using non-transformed heights yielded comparable results, see Supporting Informa-231

tion, Figs. S5, S6, and S7). The values of h were standardized within ecoregions as t = (h − hmin)/(hmax − hmin) so232

that 0 ≤ t ≤ 1.233

In a metacommunity with richness S, a number sk ≤ S of species will form a local community assemblage at cell234

k . The coexistence probability is defined as the average fraction pc = 〈s〉/S = 1
SNL

∑NL
k=1 sk , with NL representing the235

number of cells in the ecoregion. This quantity, together with the distribution of trait differences in cells, was used to236

compare model predictions with real data.237

Stochastic community model238

Community dynamics is mathematically described as a birth-death-immigration process in continuous time (Support-239

ing Information, Sec. S2.2). Let n = (n1, ... , nS) be a vector of population numbers for all species in the metacommu-240

nity. At each time step, one of the following events can take place: (1) immigrants arrive from the metacommunity at241

rate µ, (2) local births and deaths occur at rates α+ni and α−ni , respectively, for species i , (3) two individuals of the242

same species i compete at a rate αn2
i /K , where α = |α+−α−|, (4) two individuals of distinct species i and j compete243

at a rate αρijninj/K , resulting in an increase of population size ni if ρij < 0 and a decrease if ρij > 0 (Supporting244

Information, Sec. S2.1). For the sake of simplicity, in simulations trait values were drawn from a Gaussian distribution245

with zero mean and variance σ2. Trait differences were transformed to interaction strengths as ρij = 〈ρ〉
√
π

2σ (ti − tj ).246

With this choice, the expected value of |ρij | is precisely 〈ρ〉, and we simply varied 〈ρ〉 in model simulations to produce247

the curves shown in Fig. 3a (Supporting Information, Sec. S2.1).248

Randomization tests249

Our randomization tests were based on the average competitive strength observed in a local cell formed by s species,250

〈ρ〉L = 2
s(s−1)

∑s
i=1

∑s
j=i+1 |ρL

ij |, where (ρL
ij ) is the submatrix of the metacommunity competition matrix restricted to the251

species present in the local community. Compared to metacommunity samples, the lower (higher) the empirical252
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local average 〈ρ〉?L is, the higher (lower) is the degree of species clustering in the local community. For each local253

community we calculated the probability p = Pr(〈ρ〉L ≤ 〈ρ〉?L) that the empirical local average is smaller than the254

randomly-sampled competition average. At a 5% significance level, if p > 0.95 the empirical competition average is255

significantly larger than the average measured for random metacommunity samples, which implies that average trait256

differences in local communities are larger than expected at random. On the other hand, if p < 0.05, observed trait257

differences are significantly smaller than expected at random. Therefore, if p > 0.95, the local community exhibits258

‘significant trait overdispersion’, whereas if p < 0.05, there is evidence for ‘significant trait clustering’ in the local259

assemblage.260
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