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Abstract

Changes in gene expression provide a valuable frame of reference for explaining the
development and progression of cancer. Many tissue types radically alter their gene
expression profile after becoming oncogenic. We evaluate this change in gene expression
in 8 different cancer lines by comparing their expression profiles to that of their
associated differentiated tissues as well as profiles for proliferative human embryonic
stem cells. We find that, for non-proliferative tissues, the alterations in expression after
oncogenesis result in a profile that is significantly more similar to the embryonic
expression profile than to the original tissue profile. We also find that the lists of
co-similar spots among embryonic and tumor cells are clustered within gene regulatory,
protein interaction and metabolic networks. There is however little overlap in these lists
between cancer lines and no pattern shared among all cancers in this analysis. We
conclude that the manner in which cancers instantiate a proliferative pattern of
expression following oncogenesis is diverse and we find no uniform proliferative program
among the cancers in this analysis.

Background 1

Multicellular organisms maintain numerous systems for controlling the organization and 2

development of their constituent cells [15]. These checks are necessary in organisms that 3

use cell differentiation to build complex organ systems and morphologies [24]. 4

Individual cells are programmed to first follow a developmental course and then assume 5

particular functions through a combination of genomic control, epigenetic imprinting 6

and various fate-determining signaling pathways [38]. As a result, relatively few cells in 7

an adult multicellular organism are programmed to grow and divide without 8

restriction [6]. However, one or a series of mutations, gene deletions, gene duplications, 9

or epigenetic changes can break this delicate control system, resulting in proliferative 10

cancer cells that follow a program of unrestricted division [44]. In the early stages of 11

this change, it is expected that tumor cells have not evolved a new proliferative cellular 12

program ad hoc, but through a series of mutations, primarily in the signaling and 13

regulatory pathways, that return these cell lines to an existing proliferative program 14

already encoded in the genome, a program that exists to facilitate embryogenesis. 15

However, while this general picture is reasonable, understanding the precise details 16

by which one or more mutations give rise to the known cancer phenotypes (the 17

genotype to phenotype mapping problem) has proven to be a distinct challenge. 18
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Moreover, such knowledge would be of more than academic interest, as improving our 19

understanding of this process could facilitate predictive phenotyping from tumor 20

resequencing or improved drug design and targeting [33] [1] [41]. 21

One approach to the problem has been genetic: the identification of risk alleles for 22

cancer in populations. For instance, GWAS studies should help identify loci involved in 23

the original oncogenic transition because individuals with pre-existing variation here 24

would be at higher risk of certain cancers. However, despite their promise, the risk 25

increase effect sizes in GWAS studies for cancers are low, with very few regions 26

co-occuring across cancers [13]. Furthermore, studies of genomic breakpoints (i.e., 27

common rearrangements) in resequenced cancer genomes are highly diverse and display 28

non-overlapping patterns among cancers [28]. The determination of a specific set of 29

genes, that in high or low copy number generally lead to oncogenesis is a current ‘dark 30

area’ in the data from the massive cancer genome projects [14]. 31

Strikingly, while the genetics of cancers have proven complex and dissimilar across 32

cancer types [41], there have been observed some important common phenotypes [22]. 33

One of the most important of these common changes is tumor cells’ switch in their 34

primary mode of sugar metabolism. In particular, while most (resting) cells in the body 35

prefer to respire sugars to carbon dioxide and water using oxidative phosphorylation in 36

the mitochondria, tumor cells are much more likely to ferment those sugars using only 37

glycolysis. This change is not minor: oxidative phosphorylation as a primary mode of 38

metabolism appears to have been ubiquitous in the 1-2 billion year historical span 39

covering eukaryotes and may well be the causal explanation for their uniquely complex 40

genomes [27]. The precise importance of this Warburg effect is still imperfectly 41

understood [29], but one surprising connection it suggests is to cells in the body that 42

are supposed to divide rapidly: embryonic stems. These cells also display Warburg-like 43

phenotypes [25] [37] 44

The extent to which this intimate connection between the metabolism of cancer and 45

embryonic cells is the result of an epiphenomenal coincidence or a necessary functional 46

convergence driven by natural selection pressure is unknown [2] Several studies have 47

drawn conclusions about this relationship through the comparison of a limited number 48

of cancers to normal tissues, but, to our knowledge, none has directly made the requisite 49

three-way comparison of tumor, tissue and embryonic cells, despite the existence of a 50

surfeit of next-generation sequencing and gene expression data now available. 51

Here, we seek to evaluate the expression profiles of various cancers with the 52

expression profile of embryonic stem cells and adopt an explicitly network-based 53

approach. Our goal is to evaluate the hypothesis that many tumor cells undergo a 54

reversion to an embryonic pattern of gene expression. In principle, such a change might 55

result from parallel changes in the expression in particular genes or by convergence at a 56

higher organizational level. 57

Methods 58

Microarray Data Collection 59

We used gene expression data from 3 cell classes in this analysis 1) human stem cell 60

expression data, 2) human tissue expression data and 3) associated tumor expression 61

data. Expression data were collected from Affymetrix microarrays. To standardize the 62

analysis, only experiments on the HG-U133 Plus 2 [NCBI: GPL570] platform were used. 63

Gene expression for proliferative stem cells involved 7 human embryonic stem cell lines, 64

8 human induced pluripotent cell lines, and 2 fibroblast cell lines [NCBI GSE23402 65

reported in [17]]. To minimize cross-lab experimental error, only studies that included 66

expression data from both a tumor and its associated host tissue were selected were 67
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selected. This resulted in 8 distinct cancer types (gastrointestinal cancer GSE13911, 68

oral squamous cell carcinoma GSE30784, pancreatic cancer GSE16515, prostate cancer 69

GSE17951, colorectal cancer GSE23878, leukemia GSE15061, breast cancer GSE10780 70

and lung cancer GSE19198). Each experiment had a sizeable number of independent 71

replicates from different individuals (16-134 individuals produced the normal tissue 72

samples and tumorous tissues were drawn from 35-181 different individuals). Affymetrix 73

microarray experiments are prone to particular kinds of visualization errors (i.e., 74

smears). Because of this, we manually inspected each experimental CEL file to discount 75

the presence of smears and smudges using the affy package in Bioconductor [20]. Code 76

for image-generation is at https://github.com/coreymhudson/AffyDistance in the 77

function createImage in AffyDistance. 78

Statistical comparison of expression profile distance 79

Each microarray experiment was normalized and error corrected using a robust
multi-array average [21]. To allow values to be comparable among arrays the value for
each spot intensity was then transformed by taking the intensity of spoti and dividing it
by the sum of the intensity of all spots in that experiment:

transformedi =
spoti

spotcount∑
j=1

spotj

code for this transformation is in the function transformAffyData in AffyDistance. 80

For each probe id in each class of experiment (tumor, normal and proliferative), a 81

3-way pairwise comparison was made using a Kolmorogov distance measure (see 82

Algorithm 1). 83

84

Data: C := TransformedCancerMatrix
Data: T := TransformedTissueMatrix
Data: P := TransformedProliferativeMatrix
Result: VCT := VectorOfCancerTissueDistances
Result: VCP := VectorOfCancerProliferativeDistances
Result: VTP := VectorOfTissueProliferativeDistances
for i← 1 to spotcount do

V TCi ← K-SDistance(T [i, :], C[i, :]) V CPi ← K-SDistance(C[i, :], P [i, :])
V TPi ← K-SDistance(T [i, :], P [i, :])

end
Algorithm 1: 3-WayDistance

85

Kolmorogov distance was used because it has statistical properties that do not assume 86

the underlying distribution is known in advance. For each cancer type (gastric, oral, 87

pancreatic, prostate, breast, lung, leukemia and colorectal), 3 distances have been 88

produced: cancer-normal, cancer-proliferative and normal-proliferative for each of the 89

54,675 probe ids in the Affymetrix HG-U133 Plus 2 microarray platform. Code for this 90

transformation is built-in to the function getDistance in AffyDistance. 91

P-values for lists of co-similar genes 92

We would like to know if the lists of co-similar embryonic and tumor genes are higher 93

than would be expected. One null hypothesis here is that there are no genes that are 94

significantly closer in expression between embryonic and tumor cells, when compared to 95

both tumor and normal, (i.e., V TCi = min
i

(V TCi, V CPi, V TPi)). A second null 96
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hypothesis is that 1/3 of the genes are closer in expression between embryonic and 97

tumor cells, i.e.,: |genelist| = spotcount
3 . These two null hypotheses cover a continuum, 98

going from a state in which no gene shares an expression profile between all three 99

conditions to a state where one gene is always more similar in one of the conditions. 100

Ideally, the co-similar genelist would contain all the genes that share an embryonic and 101

tumor expression profile, without any spurious genes. One of the challenges in framing 102

this test in terms of the previous null hypotheses and in comparing distances among 103

experimental classes of different size and an unknown underlying distribution is in 104

choosing p-values for significance in the difference in distances α. In the presence of 105

multiple tests, the least conservative approach is to set α to 0.05 or 0.01. Given the 106

number of statistical tests (k=54,675), per dataset, there is a high likelihood of 107

generating false-positives. One way of to reduce the number of potential false-positives 108

is the Bonferroni-correction where α′ = 1− (1− α)1/k, the value of which is exceedingly 109

low for this set of experiments, of the order α′ = 1.83x10−7. There is a high likelihood 110

of generating false-negatives under this strategy. To minimize the trade-off between 111

missing coexpressed genes and spuriously reported coexpression among embryonic and 112

tumor expression profiles, we randomly reassigned the three cell classes (cancer, normal, 113

and proliferative) for each expression value for each gene 1000 times. For each dataset, 114

we used a 2-sample Wilcoxon-test of difference to compare the randomly reassigned 115

”embryonic” and ”cancerous” cell classes to the ”normal” class. We then sought to 116

determine the highest α-value that resulted in no pair of randomly reassigned genes 117

being judged as statistically significant (see Figure 1). This α-value was then used for 118

each cancer-normal paired dataset. In cases in which the cancer and embryonic 119

expression values were found to be closer than the cancer and normal expression sets and 120

normal and embryonic expression sets, a 2-sample Wilcoxon-test (using the previously 121

determined α-value for significance) was used to compare the embryonic and tumor 122

expression with the normal expression values. The genes that significantly differ in 123

distribution were then assumed to be co-similar (see Algorithm 2 Supplemental Figure 124

1). Code for BootStrapGeneList is at AffyDistance in the function significantSpot. 125

126

Data: C, T, P
Data: TestP
Result: RandomizedTrials
k := 0

while k < 1000 do
count := 0;
(C ′, T ′, P ′) = shuffle(C, T, P )

(V TC, V CP, V TP ) = 3−WayDistance(C ′, T ′, P ′)

for i← 1 to spotcount do
if V TCi = min

i
(V TCi, V CPi, V TPi) and

WilcoxTest((C ′i, P
′
i ), T

′
i ) < TestP then

count = count + 1
end

end
RandomizedTrialsi ← count

k ← k + 1
end

Algorithm 2: BootStrapGeneList

127
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Figure 1. P-value minimization for 2-sample Wilcoxon-test. Embryonic and
tumor vs. normal gastrointestinal tissue. The x-axis corresponds to the various
p-values chosen for this analysis, the y-axis corresponds to the number of probes in the
sample. The black line and boxplots illustrate a 1000 sample reshuffling of embryonic,
normal and cancer classes. The green line shows the observed gene list size at given
p-values. A log-log linear regression (r2 = 0.999, P<10e-7) of the random bootstrapped
samples shows the number of probes by random error (the false-positive count) is
expected to be < 1 at P<3.497e-05. At this p-value the observed number of probes is
6351.

Network evaluation 128

We used four networks in our evaluation of tumor/embryonic co-expression 129

(protein-protein [34], gene regulatory [39], metabolic [11], and functional 130

annotation [19]). The goal of our network analysis is to ascertain if the shared genes of 131

a pair of cell classes also cluster in these networks [12]. Since protein-interactions, 132

metabolic reactions and gene regulation all work in concert to form the cells underlying 133

machinery [23], we also evaluated the combination of the protein interaction (PPI), 134

metabolic (MN) and regulatory networks(GRN). This combined network (hereafter CN) 135

is formally defined formally as G(v, e) =
⋃
edges ⊃ {PPI,MN,GRN} . 136

We used several methods to evaluate the clustering in these networks. We measured the 137

transitivity (also known as the average clustering coefficient [43]) for the CN, PPI, MN, 138

and GRNs. We also measured the number of connected components [18]. The statistical 139

significance of these values were evaluated by bootstrapping 107 random iterations of 140

the network and recalculating these statistics. Fully random networks tend to be a poor 141

representation of real-world networks [7]. One of the primary characteristics of real 142

networks are their power-law degree distributions [46]. Our randomization preserved the 143

number of interactions for each node, while randomized which nodes interacted. This 144

allowed us to retain each networks power-law degree distributions while still 145
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randomizing the topology [42]. 146

In addition to measuring transitivity and the number and size of connected components 147

(all of which can be measured directly), we also evaluated the fit of these networks into 148

highly interconnected communities [31]. The methods for detecting these are not exact, 149

since the fit of vertices into communities is known to be NP-hard [5]. The strength of 150

communities was evaluated using a modularity statistic, which essentially measures the 151

number of edges within communities versus the number of edges between communities. 152

There were several classes of heuristics used in this approximation of maximum 153

modularity [26]. Since we are essentially choosing among heuristics we implemented 154

several of these classes, including iterative removal of edges based on betweenness [32], 155

greedy modularity maximization [8], label propagation [36] , and random walk [35] 156

methods. The statistical significance of these was evaluated by generating 107 157

randomized degree-preserving networks and calculating the maximum modularity for 158

using each heuristic for both the observed and random networks. Network analysis was 159

conducted using the igraph package in R [9] 160

Functional analysis of network neighbors 161

We took the list of coexpressed genes for the combined network for each cancer type and 162

evaluated the over-representation of functional classes among the largest 3 communities 163

from the using the DAVID Bioinformatics Resource [19]. We limited the annotations to 164

the Gene Ontology Biological Process and Metabolic Function annotations, and KEGG 165

Pathway annotations. We ranked and evaluated the significance of annotations using 166

Benjamini p-values (one of a variety of False Discovery Rate (FDR) minimization 167

techniques - this version of the FDR does not assume independence of gene lists [3]), 168

which are robust to multiple tests, false positives and hierarchical annotations and 169

evaluated the 10 highest ranking annotation clusters [40]. The statistical significance for 170

any given community in the network was evaluated by taking the number of edges 171

within the community for each node and the number of edges between communities for 172

each node and calculating a Wilcox rank sum statistic. 173

Results 174

Statistical comparison of expression profile distances 175

We found that expression distances between cancers and embryos were closer than 176

expression distances between normal tissues and embryos for most genes in almost all 177

the cancers (excluding pancreatic cancer: see Table 1). This being despite the fact that 178

cancer and normal tissue expression values were collected from the same lab and embryo 179

expression measurements were taken in numerous other labs. This trend suggests a 180

pattern of shared expression between cancer and embryo for most genes. To evaluate 181

the statistical significance of this trend, we used a binomial test with the null hypothesis 182

that the tumor and normal tissue cell classes were equally likely to have genes that were 183

close to the embryonic pattern (e.g., 50% of the time the tumor would be closer vs. 50% 184

of the time normal tissue would be closer). For tissues that can be said to be 185

proliferative in their healthy tissue state (white-blood cell and pancreatic B-cell) the 186

proportion of spots where the expression distance between embryo and cancer is less 187

than the expression distance between embryo and healthy tissue varies between 0.481 188

and 0.543. For cancers in which the associated healthy tissues are non-proliferative 189

(colorectal, oral squamous, prostate, gastrointestinal, breast, and lung cancers) these 190

proportions range from 0.568 to 0.664 and are all statistically greater than 0.5 (i.e., 191

genes are more likely to be similar in expression between tumor and embryonic cells 192
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than normal and embryonic cells; P<0.001, Table 1). 193

Table 1. Distance measures between cancer, normal and embryonic cells among proliferative (i.e.,
leukemia and pancreatic) associated tissue and non-proliferative associated tissues (i.e., colorectal, oral
squamous, prostate, gastro-intestinal, breast and lung).

Cancer type
Number of cases of tumor
and embryonic expression

profiles being closest

Number of cases of tissue
and embryonic expression

profiles being closest

Proportion
(tumor/tissue)

Colorectal 31549** 19650 0.616
Oral squamous 34683** 17946 0.659

Prostate 32978** 18184 0.645
Gastro-intestinal 27933** 21176 0.568

Breast 28418** 18598 0.604
Lung 35580** 17950 0.664

Leukemia 28665** 24152 0.543
Pancreatic 24345 26269 0.481

**statistically significant for Binomial difference in equal proportions (proportion = 0.5) at 0.001

Lists of co-similar genes 194

For each of the non-proliferative tissues, the empirically determined α-values that 195

evaluate whether similarity in expression between two classes is statistically significant 196

are of a similar order (from 2.07e-05 to 5.77e-05). They are all also close to roughly 2 197

orders of magnitude higher than the Bonferroni-corrected α′-values (1.83e-07). The 198

number of genes that were found to be co-similar between the cancer cells and 199

embryonic cells varies between 5514 and 9972 (Table 2 and Figure 1). The expected 200

number of genes in these lists is <1 (P<0.001) and are based on 1000 random 201

reassignments of cancer, normal and embryonic expression values. These data strongly 202

suggests that there is a much larger than expected gene cohort in which the expression 203

profile between cancer and embryonic cell types are more similar than between cancer 204

and tissue cell types in the cancers of non-proliferative tissues. 205

Table 2. The number of probes with co-similar expression between tumor and embryonic
tissue for each cancer type at P-values determined to have fewer than 1 false positive.

Cancer type Significant probes Empirically determined P-values

Gastrointestinal 6351 3.49e-05
Oral squamous 6394 2.07e-05

Colorectal 6625 5.77e-05
Prostate 8959 3.25e-05
Breast 5514 3.27e-05
Lung 9972 3.07e-05

Gene overlap 206

Given the similarities between six different non-proliferative cancers and the embryonic 207

cell samples, one might expect that a common set of genes would have changed in 208

expression across these six cancers. However, our results do not illustrate this trend: for 209

the 6 sets of experiments reported in this study, no one gene was shared across the 210

7

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 1, 2016. ; https://doi.org/10.1101/056523doi: bioRxiv preprint 

https://doi.org/10.1101/056523
http://creativecommons.org/licenses/by/4.0/


embryonically-similar sets of all six cancers. These 19,210 genes are enriched for an 211

embryonic expression profile in at least 1 experiment. This includes 8,916 that are more 212

highly expressed than in the normal tissue and 10,294 that are more lowly expressed in 213

the normal tissue. The overlap among experiments is considerably lower. With 2465 214

genes sharing expression between 2 or more experiments, 285 sharing expression 215

between 3 or more experiments, 36 sharing expression between 4 or more experiments, 216

and 0 sharing expression in 5 or more experiments. The decrease in overlap is similarly 217

dramatic when the Affymetrix spots associated with these genes are mapped onto 218

Uniprot protein ids. When the Uniprot enzymes and transporters are mapped to the H. 219

sapiens Recon 1 metabolic model [11], the overlap decreases dramatically as well, with 220

the exception that 2 reactions (K+-Cl- cotransport and 3’,5’-cyclic-nucleotide 221

phosphodiesterase) which overlap expression in 5 different cancers (see Figure 2). 222

Gene expression

spots Proteins Reactions
Shared

between

1 or more

2 or more

3 or more

4 or more
5 or more

19210

2465

285

36
0

10924

1603

193

18
0

1292

322

75

12
2

Figure 2. Overlap in significant gene lists among different cancer types for
genes, proteins, and reactions. The size of spots corresponds to the number of
probes shared between two experiments. Gene expression spots are from Affymetrix
HG-U133 Plus 2 Microarrays. Protein values have been mapped onto Uniprot IDs.
Reaction values have been mapped onto the H. sapiens Recon 1 metabolic model.

Cancer networks 223

For each of the 6 cancers in non-proliferative tissues, the combined networks, 224

protein-interaction networks and metabolic networks have higher than expected average 225

transitivity (P<1e-06), meaning that the co-similar gene lists in these networks form 226

tight-knit interacting clusters (see Supplemental Table 1). All of the combined networks, 227

protein-interaction networks and metabolic networks also have a smaller than expected 228

number of clusters (P<0.01). This suggests a dense clustering (i.e., a small number of 229

large, highly interacting clusters), of genes that change in expression upon conversion to 230

an oncogenic phenotype (Figure 3). 231

Unlike the previous three networks, the gene regulatory networks behave very 232

differently. In particular, the gene regulatory networks have either non-significant or 233

lower than expected transitivity and a lower than expected number of gene clusters 234

(P<1e-06). The source of this difference may lie in the structural differences between 235

regulatory networks and the other types of networks considered. Thus, it appears that 236

regulatory networks are seldom highly interconnected [16] because, unlike 237

protein-interaction and metabolic networks that have interacting functional modules, 238
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Gene regulatory 
network

Protein interaction
network

Metabolic
network

Combined
interaction

network

Figure 3. Visualization of each network in gastrointestinal cancer. These
visualizations show the fundamental features of each of these four networks. The gene
regulatory network is has a small number of clusters and is not very highly interconnected.
The protein interaction network has one large very highly interconnected cluster and
many small satellite clusters (mostly made of pairs of proteins). The metabolic network
has very few clusters, which are highly modular and highly interconnected. The combined
network has one large highly interconnected cluster and many small satellite clusters.

gene regulatory networks instead show a strongly hierarchical structure in addition to 239

being modular. For these networks modularity refers to a distinct and non-overlapping 240

groups of co-regulated genes and their shared regulators. 241

Each of the 4 heuristics for estimating modularity (greedy, edge betweenness, label 242

propagation, and random walk) strongly support the hypothesis of modularity across 243

the 4 network types (Supplemental Table 1). In other words, each type of network, 244

whatever their other differences in structure, tend to consist of distinct units with few 245

interconnections between those units. 246

Annotation of network features 247

The 3 largest combined network clusters share many of the same annotation categories 248

across all 6 cancers in non-proliferative tissues (see Supplemental Table 2). All of the 3 249

largest network clusters are statistically significant (within cluster edges > between 250

cluster edges: Wilcox Test: P<2.2e-16). Taking the 10 highest scoring annotation 251

clusters (based on Benjamini p-value), there are 44 categories shared between all 6 types 252

(Supplemental Table 3). These fall broadly into the categories: transcription, nucleic 253

acid metabolism, regulation of biosynthesis, and ATP binding; all of which are primary 254

cellular functions. There are also 21 categories that are shared by 5 cancer types (see 255

Supplemental Table 4), which fall broadly into the categories: apoptosis, mitotic cell 256

cycle, and phosphorylation. There are also 115 categories unique to each cancer (see 257

Supplemental Table 5). This includes categories like “negative regulation of DNA 258

binding”, which is a specialization of transcription and DNA binding; uninformative 259

categories like “spliceosome”; and categories like “mTOR signaling” which are expected 260

to be important in both oncogenesis and embryonic stem cell differentiation [45] [10]. 261
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Discussion 262

In this study, we found that breast, colorectal, gastrointestinal, lung, oral squamous and 263

prostate cancers showed a distinct expression pattern similar to the expression pattern 264

in embryonic cells. This strategy gives us a window into the genetic underpinnings of 265

proliferative behavior in cancer. We find that the genes that share expression between 266

cancer and embryonic cells form distinct clusters. This occurs in terms of gene 267

regulation, protein interaction, and metabolism and suggests that these clusters are 268

functionally significant. Despite this similarity in the formation of gene clusters, the 269

clusters themselves and the genes of similar expression underlying them show, very little 270

overlap between the different types of cancer. It is unknown whether this lack of overlap 271

is due to the random nature of oncogenic events, (e.g., mutation, gene duplication and 272

deletion, or epigenetic changes) the selective microenvironment in which the cell resides 273

or the limited overlap in expression among the original associated tissue. However, each 274

of these cancers express a large set of genes in patterns similar to those seen in embryos. 275

Despite this similarity, we find very few patterns emerging in cancers generally. This is 276

not solely a function of scale, since we consider variation in gene, protein, and metabolic 277

reaction. At each of these scales, the overlap sometimes shared across two or more 278

cancer types but rarely across more than that. 279

We assert that cancer cells are individuals, from an evolutionary point of view [30], and 280

that cancer phenotypes are, at that scale, not only functional, but potentially selectively 281

advantageous [4]. This presents something of a paradox. This year millions of people 282

will get cancer. Yet, the manner in which cancer emerges is due to complex interactions 283

between a large number of heterogeneous external factors (smoking, solar rays, 284

pollutants, etc.) and various internal genetic predispositions. Importantly, the initial 285

cancer or tumor development takes a relatively short period of time (as measured in 286

numbers of cell divisions) and hence occurs in a small population of cells. Given this 287

relatively limited space for evolution to operate, it may be surprising that cancers are 288

often able to dramatically change their expression profiles and phenotypes. 289

One possible explanation for why cancers do rapidly evolve and share so many aspects 290

of their phenotype (the so-called hallmarks of cancer) is that cancer is the result of a 291

small and simple set of aberrant genetic/protein/metabolic changes. Our results argue 292

against this, as do the low effect sizes among GWAS studies. We find very little overlap 293

in gene expression among the cancers in our study, whether we consider individual gene 294

coexpression, proteins co-occurrence, or metabolic interactions. We hope that further 295

analysis will be able to follow up this work and evaluate the extent to which the 296

similarities between the programs of proliferation in embryos and tumors are superficial 297

or causal. We also hope that work in this area will lead to a more thorough and 298

mechanistic understanding of the manner in which cancerous cells canalized to 299

preexisting embryonic phenotypes. Such work would help in understanding whether 300

these observations of an ’embryonic gene program’ are phenomenological or 301

preconditioned. 302
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Supplemental Figures and Tables
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Figure S1. Pipeline for statistical analysis of tumor / embryo co-similarity.
d1, d2, d3 correspond to Kolmorogov distance between the expression vectors for
tumors, embryos and associated healthy cells. If d1 is less than d2 and is less than d3
perform a Wilcox test. This test is for both embryo and cancer expression vs. normal
expression. If the value is less than α (see Figure 1), the expression is co-similar
between tumor and embryo.
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Supplemental Tables

Table S1. Network statistics for each cancer type and biological network.

Cancer type Graph Vertices Edges Transitivity Modularity† Number of Clusters
Breast Combined 1313 3388 0.312** 0.686** 33

Gene-Regulatory 302 421 0.053 0.669** 12**
Protein-Protein 1007 1651 0.081** 0.611** 44
Metabolic 303 1557 0.527** 0.711** 2

Colorectal Combined 1694 4169 0.221** 0.641** 44
Gene-Regulatory 493 688 0.015 0.616** 7**
Protein-Protein 1402 2362 0.047** 0.597** 58
Metabolic 292 1396 0.553** 0.703** 6

Gastrointestinal Combined 1490 3375 0.296** 0.668** 46
Gene-Regulatory 321 398 0.03 0.684** 34*
Protein-Protein 1190 1760 0.046** 0.600** 57
Metabolic 309 1458 0.523** 0.710** 5

Lung Combined 2371 6824 0.293** 0.633** 45
Gene-Regulatory 579 803 0.03 0.652** 16**
Protein-Protein 1964 3694 0.056** 0.542** 64
Metabolic 331 838 0.523** 0.685** 4

Oral squamous All 1444 3993 0.312** 0.681** 40
Gene-Regulatory 279 304 0.022 0.780* 24**
Protein-Protein 1141 1868 0.068** 0.686** 64
Metabolic 340 1962 0.482** 0.718** 2

Prostate Combined 2020 5331 0.216** 0.625** 44
Gene-Regulatory 488 631 0.038** 0.711** 18**
Protein-Protein 1668 3062 0.057** 0.533** 56
Metabolic 363 1939 0.441** 0.732** 5

* in 10000 degree distribution-preserving random networks, fewer than 100 had a higher value (for
transitivity/modularity) or a lower value for number of clusters ≈ P < 0.01
** in 10000 degree distribution-preserving random networks, fewer than 10 had a higher value (for
transitivity/modularity) or a lower value for number of clusters ≈ P < 0.001
† Maximum value of iterative removal of edges based on betweenness [32], greedy modularity maximization [8], label
propagation [36] , and random walk [35] heuristics
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Table S2. Annotation Term Clustering.

Cell Type
Annotation

Cluster
Enrichment

Score
Term Count

Benjamini
P-value

Breast 1 11.14 Phosphorylation 126 3.70E-12
Phosphorous metabolic process 144 1.00E-11

2 8.66 Apoptosis 96 1.00E-09
Programmed cell death 97 1.00E-09
Death 108 3.90E-09
Cell death 107 5.30E-09

3 8.14 Regulation of kinase activity 66 1.70E-09
Regulation of protein kinase activity 64 2.70E-09
Regulation of phosphorylation 77 1.20E-08
Phosphate metabolic process 79 1.50E-08

Colorectal 1 16.56 RNA-splicing via transesterification reactions 71 2.70E-17
2 12.21 RNA-splicing 99 1.50E-13

mRNA metabolic process 118 6.50E-13
mRNA processing 105 2.40E-12

3 10.58 Regulation of programmed cell death 209 2.10E-11
Regulation of apoptosis 207 2.60E-11

Gastro-intestinal 1 14.45 Phosphorylation 149 3.20E-16
Phosphorous metabolic process 167 1.20E-14

2 11.41 Regulation of apoptosis 138 3.50E-12
Regulation of cell death 139 4.80E-12

3 8.71 Positive regulation of cell death 82 1.50E-09
Positive regulation of apoptosis 81 2.50E-09

Lung 1 18.52 Phosphate metabolic process 250 2.20E-20
Phosphorylation 206 5.80E-17

2 12.78 Purine nucleoside binding 351 3.40E-15
Adenyl nucleotide binding 345 9.10E-15
Nucleoside binding 351 1.00E-14
Adenyl ribonucleotide binding 329 2.40E-14
ATP binding 324 5.10E-14
Purine nucleotide binding 393 2.50E-12
Nucleotide binding 448 2.90E-12
Purine ribonucleotide binding 377 6.00E-12

3 10 Regulation of kinase activity 102 2.30E-11
Regulation of protein kinase activity 99 3.60E-11
Regulation of phosphorous metabolic process 126 9.70E-11
Regulation of phosphorylation 121 2.50E-10

Oral 1 25.13 Phosphorylation 170 1.40E-26
Phosphate metabolic process 191 1.70E-25

2 9.23 Regulation of kinase activity 73 9.50E-11
Regulation of transferase activity 74 2.60E-10
Regulation of protein kinase activity 69 8.90E-10
Regulation of phosphorylation 85 9.60E-10
Regulation of phosphate metabolism 87 1.40E-09

3 8.48 Regulation of programmed cell death 126 3.00E-09
Regulation of apoptosis 125 3.10E-09

Prostate 1 20.22 Phosphorous metabolic process 227 1.90E-21
Phosphorylation 193 6.20E-20

2 10.25 Protein localization 186 7.10E-13
Establishment of protein localization 159 2.00E-10
Protein transport 155 1.20E-09

3 9.26 Regulation of cell death 166 2.60E-10
Regulation of programmed cell death 165 3.50E-10
Regulation of apoptosis 161 1.80E-09
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Table S3. Terms in All Six Cell Types

Functional annotation Number of shared cell types
GO:0016563∼transcription activator activity 6
GO:0051172∼negative regulation of nitrogen compound metabolic process 6
GO:0051173∼positive regulation of nitrogen compound metabolic process 6
GO:0032559∼adenyl ribonucleotide binding 6
GO:0016481∼negative regulation of transcription 6
GO:0032555∼purine ribonucleotide binding 6
GO:0003712∼transcription cofactor activity 6
GO:0030554∼adenyl nucleotide binding 6
GO:0051254∼positive regulation of RNA metabolic process 6
GO:0010628∼positive regulation of gene expression 6
GO:0032553∼ribonucleotide binding 6
GO:0045449∼regulation of transcription 6
GO:0006357∼regulation of transcription from RNA polymerase II promoter 6
GO:0010605∼negative regulation of macromolecule metabolic process 6
GO:0001883∼purine nucleoside binding 6
GO:0031327∼negative regulation of cellular biosynthetic process 6
GO:0010604∼positive regulation of macromolecule metabolic process 6
GO:0045893∼positive regulation of transcription; DNA-dependent 6
GO:0010557∼positive regulation of macromolecule biosynthetic process 6
GO:0045944∼positive regulation of transcription from RNA polymerase II promoter 6
GO:0003700∼transcription factor activity 6
GO:0031328∼positive regulation of cellular biosynthetic process 6
GO:0009891∼positive regulation of biosynthetic process 6
GO:0010629∼negative regulation of gene expression 6
GO:0000122∼negative regulation of transcription from RNA polymerase II promoter 6
GO:0000166∼nucleotide binding 6
GO:0017076∼purine nucleotide binding 6
GO:0045934∼negative regulation of nucleobase; nucleoside; nucleotide and nucleic
acid metabolic process

6

GO:0016564∼transcription repressor activity 6
GO:0001882∼nucleoside binding 6
GO:0008134∼transcription factor binding 6
GO:0003713∼transcription coactivator activity 6
GO:0010558∼negative regulation of macromolecule biosynthetic process 6
GO:0045892∼negative regulation of transcription; DNA-dependent 6
GO:0005524∼ATP binding 6
GO:0006355∼regulation of transcription; DNA-dependent 6
GO:0006350∼transcription 6
GO:0009890∼negative regulation of biosynthetic process 6
GO:0045935∼positive regulation of nucleobase; nucleoside; nucleotide and nucleic
acid metabolic process

6

GO:0051253∼negative regulation of RNA metabolic process 6
GO:0051252∼regulation of RNA metabolic process 6
GO:0045941∼positive regulation of transcription 6
GO:0003677∼DNA binding 6
GO:0030528∼transcription regulator activity 6
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Table S4. Terms in Five Cell Types

Functional annotation Number of shared cell types

GO:0006796∼phosphate metabolic process 5

GO:0016265∼death 5
GO:0022403∼cell cycle phase 5
GO:0000278∼mitotic cell cycle 5
GO:0006917∼induction of apoptosis 5
GO:0010942∼positive regulation of cell death 5
GO:0010941∼regulation of cell death 5

GO:0008219∼cell death 5
GO:0012501∼programmed cell death 5
GO:0043068∼positive regulation of programmed cell death 5
GO:0006468∼protein amino acid phosphorylation 5
GO:0006915∼apoptosis 5
GO:0042981∼regulation of apoptosis 5
GO:0043067∼regulation of programmed cell death 5
GO:0004672∼protein kinase activity 5
GO:0016310∼phosphorylation 5
GO:0012502∼induction of programmed cell death 5
GO:0043065∼positive regulation of apoptosis 5
GO:0007049∼cell cycle 5
GO:0004674∼protein serine/threonine kinase activity 5
GO:0006793∼phosphorus metabolic process 5
GO:0022402∼cell cycle process 5
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Table S5. Terms in Five Cell Types.

Functional Annotation Number of shared cell types
GO:0043086∼negative regulation of catalytic activity 1
GO:0016573∼histone acetylation 1
GO:0032990∼cell part morphogenesis 1
GO:0000.95∼RNA splicing; via transesterification reactions 1
GO:00.9059∼chromosome segregation 1
GO:0016407∼acetyltransferase activity 1
GO:0016071∼mRNA metabolic process 1
hsa0.922:Neurotrophin signaling pathway 1
hsa04666:Fc gamma R-mediated phagocytosis 1
GO:0060537∼muscle tissue development 1
GO:000.913∼protein tyrosine kinase activity 1
GO:0033673∼negative regulation of kinase activity 1
GO:0051099∼positive regulation of binding 1
GO:0014706∼striated muscle tissue development 1
GO:0004402∼histone acetyltransferase activity 1
hsa03040:Spliceosome 1
GO:00.9411∼axon guidance 1
GO:0010740∼positive regulation of protein kinase cascade 1
GO:0032355∼response to estradiol stimulus 1
GO:0060538∼skeletal muscle organ development 1
hsa04150:mTOR signaling pathway 1
GO:0018212∼peptidyl-tyrosine modification 1
GO:00.9519∼skeletal muscle tissue development 1

GO:0016337∼cell-cell adhesion 1
GO:0031175∼neuron projection development 1
GO:0048666∼neuron development 1
hsa04660:T cell receptor signaling pathway 1
GO:0048667∼cell morphogenesis involved in neuron differentiation 1
GO:0043543∼protein amino acid acylation 1
GO:0010647∼positive regulation of cell communication 1
GO:0008080∼N-acetyltransferase activity 1
GO:0030522∼intracellular receptor-mediated signaling pathway 1
GO:0051092∼positive regulation of NF-kappaB transcription factor activity 1
hsa04012:ErbB signaling pathway 1
GO:0043388∼positive regulation of DNA binding 1
hsa04662:B cell receptor signaling pathway 1
GO:0030.94∼protein binding; bridging 1
GO:0006352∼transcription initiation 1
GO:00.9169∼transmembrane receptor protein tyrosine kinase signaling pathway 1
hsa04650:Natural killer cell mediated cytotoxicity 1
GO:0006469∼negative regulation of protein kinase activity 1
GO:0046332∼SMAD binding 1

GO:00.9155∼cell adhesion 1
GO:0000.97∼RNA splicing; via transesterification reactions with bulged adeno-
sine as nucleophile

1

GO:0004112∼cyclic-nucleotide phosphodiesterase activity 1
GO:0030518∼steroid hormone receptor signaling pathway 1
GO:0004114∼3’;5’-cyclic-nucleotide phosphodiesterase activity 1
GO:0051091∼positive regulation of transcription factor activity 1

Continued on next page
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Table S5 – continued from previous page
Functional Annotation Number of shared cell types

GO:0051345∼positive regulation of hydrolase activity 1
GO:0035257∼nuclear hormone receptor binding 1
GO:0006338∼chromatin remodeling 1
GO:0000902∼cell morphogenesis 1
GO:0043407∼negative regulation of MAP kinase activity 1
GO:0016410∼N-acyltransferase activity 1
GO:0043392∼negative regulation of DNA binding 1
GO:0043122∼regulation of I-kappaB kinase/NF-kappaB cascade 1
GO:00.9166∼cell surface receptor linked signal transduction 1
GO:00.9179∼transforming growth factor beta receptor signaling pathway 1
GO:0060090∼molecular adaptor activity 1
GO:0043968∼histone H2A acetylation 1
GO:000.923∼RNA binding 1
hsa04810:Regulation of actin cytoskeleton 1
GO:0018108∼peptidyl-tyrosine phosphorylation 1
GO:0048858∼cell projection morphogenesis 1
hsa04062:Chemokine signaling pathway 1
GO:000.956∼somitogenesis 1
GO:0051336∼regulation of hydrolase activity 1
GO:0004468∼lysine N-acetyltransferase activity 1
GO:0008380∼RNA splicing 1
GO:0035258∼steroid hormone receptor binding 1
GO:0048812∼neuron projection morphogenesis 1
GO:0051098∼regulation of binding 1
GO:0032989∼cellular component morphogenesis 1
GO:0044092∼negative regulation of molecular function 1
GO:0009967∼positive regulation of signal transduction 1
GO:0043123∼positive regulation of I-kappaB kinase/NF-kappaB cascade 1
GO:0051090∼regulation of transcription factor activity 1
hsa04630:Jak-STAT signaling pathway 1
GO:0030521∼androgen receptor signaling pathway 1
GO:0006397∼mRNA processing 1
GO:0035282∼segmentation 1
hsa04914:Progesterone-mediated oocyte maturation 1
GO:0005496∼steroid binding 1
GO:0008081∼phosphoric diester hydrolase activity 1
GO:0005070∼SH3/SH2 adaptor activity 1
GO:0000904∼cell morphogenesis involved in differentiation 1
hsa04620:Toll-like receptor signaling pathway 1
GO:0050681∼androgen receptor binding 1
hsa04210:Apoptosis 1
GO:00.9517∼muscle organ development 1
hsa04910:Insulin signaling pathway 1
GO:0043433∼negative regulation of transcription factor activity 1

GO:0030182∼neuron differentiation 1
GO:0000398∼nuclear mRNA splicing; via spliceosome 1
GO:0051427∼hormone receptor binding 1
GO:0051348∼negative regulation of transferase activity 1

GO:0031589∼cell-substrate adhesion 1
Continued on next page
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Table S5 – continued from previous page
Functional Annotation Number of shared cell types

GO:0005114∼type II transforming growth factor beta receptor binding 1
GO:0051101∼regulation of DNA binding 1
GO:0051100∼negative regulation of binding 1

GO:00.9160∼cell-matrix adhesion 1
GO:00.9178∼transmembrane receptor protein serine/threonine kinase signaling
pathway

1

hsa04664:Fc epsilon RI signaling pathway 1
GO:0008286∼insulin receptor signaling pathway 1
GO:0030030∼cell projection organization 1
GO:00.9409∼axonogenesis 1
GO:0010627∼regulation of protein kinase cascade 1
GO:0006396∼RNA processing 1
GO:0043967∼histone H4 acetylation 1
GO:000.915∼non-membrane spanning protein tyrosine kinase activity 1
hsa04370:VEGF signaling pathway 1

hsa00230:Purine metabolism 1
GO:0005160∼transforming growth factor beta receptor binding 1
GO:0006473∼protein amino acid acetylation 1
GO:0010843∼promoter binding 1
GO:0022610∼biological adhesion 1
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