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On the optimal response vigor and choice under variable motivational

drives

Amir Dezfouli
National ICT Australia (NICTA)

Within a rational framework, a decision-maker selects actions based on the reward-
maximisation principle, i.e., acquiring the highest amount of reward with the lowest cost.
Action selection can be divided into two dimensions: (i) selecting an action among several
alternatives, and (ii) choosing the response vigor, i.e., how fast the selected action should be
executed. Previous works have addressed the computational substrates of such a selection
process under the assumption that outcome values are stationary and do not change during
the course of a session. This assumption does not hold when the motivational drive of the
decision-maker is variable, becuase it leads to changes in the values of the outcomes, e.g.,
satiety decreases the value of the outcome. Here, we utilize an optimal control framework
and derive the optimal choice and response vigor under different experimental conditions. The
results imply that, in contrast to previous suggestions, even under conditions that the values
of the outcomes are changing during the session, the optimal response rate in an instrumental
conditioning experiment is a constant response rate rather than decreasing. Furthermore, we
prove that the uncertainty of the decision-maker about the duration of the session explains the
commonly observed decrease in response rates within a session. We also show that when the
environment consists of multiple outcomes, the model explains probability matching as well
as maximisation choice strategies. These results, therefore, provide a quantitative analysis of
optimal choice and response vigor under variable motivational drive, and provide predictions
for future testing.
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Introduction

According to the normative theories of decision-making,
actions made by humans and animals are chosen with the
aim of earning the maximum amount of future rewards while
incurring the lowest cost (Neumann & Morgenstern, 1947).
Within such theories, individuals optimize their actions by
learning about their surrounding environment and in order to
satisfy their long-term objectives. Such a problem, i.e., find-
ing the optimal actions, is argued to have two aspects: (1)
choice, i.e., which action among several alternatives should
be selected, (2) response vigor, i.e., how fast the selected ac-
tion should be executed. For example for a rat in a Skinner
box with two levers, where pressing each lever delivers a re-
ward with a certain probability, the problem of finding the
optimal actions involves selecting a lever (choice) and de-
ciding about the response rate on the chosen lever (response
vigor). High response rates can have high costs (e.g., in
terms of energy consumption), while on the other hand a low
response rate implies an opportunity cost since the experi-
ment session may end before the animal has earned enough
reward. Optimal actions provide the right balance between
these two factors, and based on the reinforcement-learning
(RL) framework and methods from optimal control theory,
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characteristics of the optimal actions and their consistency
with the experimental studies have been elaborated in pre-
vious works (Dayan, 2012; Niv, Daw, Joel, & Dayan, 2007;
Salimpour & Shadmehr, 2014).

A major assumption in the previous models is that the val-
ues of the outcomes are stationary, and they do not change
on-line in the course of a decision-making session. To see
the limitations of such an assumption, imagine the rat is in
a Skinner box and has started to earn outcomes (e.g., food
pellets) by taking actions. One can assume that as a result of
consuming rewards the motivation of the animal for earning
more outcomes will decrease (e.g., because of satiety effects)
and, therefore, the outcomes earned will have a lower value,
which can potentially affect the optimal choice and vigor
(Killeen, 1995b). Such effects, however, are not incorporated
in previous models of response vigor, and it is assumed that
the value of the outcomes is constant during the course of
the decision-making session. On the other hand, the effect of
such motivational changes on the choice between actions has
been addressed in some previous models (Keramati, 2011;
Keramati & Gutkin, 2014), however, their role in determin-
ing the response vigor has not yet been investigated. Here,
building upon the previous works, we formulate the problem
of response vigor and choice under changing motivational
drives in an optimal control framework, and we derive the
optimal response vigor and choice strategy under different
conditions. We will show that even when the motivational
drives are changing, the optimal response rate in an instru-
mental conditioning experiment is a constant response rate,
and then we will elaborate how this prediction can be rec-
onciled with the experimental data. The optimal predictions
under different choice situations is also explored, and their
relation to the empirical evidence is investigated.

The Model
The reward

It is assumed that at each point in time the decision-maker
has a position in the outcome space denoted by x,, which
represents the amount of outcomes gained up to time 7. For
example, if the outcome is water, x, = 1 indicates that one
unit of water has been gained up to time 7. For simplicity,
we assume that only one outcome is available, and thus the
outcome space is one dimensional. In the next sections the
model will be extended to the environments with multiple
outcomes. The rate of outcome earning is denoted by v,,
which represents how fast the decision-maker is moving in
the outcome space (i.e., the velocity in the outcome space);
for example if a rat is earning one unit of an outcome per unit
of time then v, = 1. Furthermore, we assume that there exists
a reward field, denoted by A, ,, which represents the per unit
value of the outcome for the decision-maker. For example if
the outcome is food pellets, then A, , represents the value of

one unit of the food pellet at time 7, given that the decision-
maker has already earned x units of food pellets. As such,
A, is a function of both time and the amount of outcome
earned. This represents the fact that (i) the reward can change
as a result of consuming previous outcomes (dependency on
x); for example the reward of food pellets can decrease as an
animal consumes more outcomes and becomes sated, and (ii)
the reward of an outcome can change purely by the passage
of time, as for example an animal can get more hungry by
the passage of time, and therefore the reward of food pellets
will increase (dependency on ?).
In general, we assume that A, , has two properties:

6Ax71
ox

<0, (D
which entails that the values of the outcomes decrease as

more outcomes are earned. Secondly, we assume that:

OAsi
ot

>0, 2)

which entails that the values of outcomes do not decrease
with the passage of time. This term, for instance, corre-
sponds to the metabolic rate of the decision-maker. Given the
reward field A, ,, the reward of gaining 6x units of outcome
will be A, ;0x.

The dependency of the reward field on the amount of out-
come earned is indirect and it is through the motivational
drive. In a computational model based on RL framework,
Keramati and Gutkin (2014) provided a quantitative link be-
tween reward and motivation. In line with Hull (1943), they
conceptualized the motivational drive as the deviations of the
internal states of a decision-maker from their homeostatic
set-points. For example, let’s assume that there is only one
internal state, say hunger, where H denotes its homeostatic
set-point, and there is an outcome which consuming each
unit of it satisfies [ units of the internal state. In this con-
dition, the motivational drive at point x, denoted by D,, will
be:

I
DX_Z(H Ix)*. 3)

Keramati and Gutkin (2014) showed that such a definition
of the motivational drive has implications that are consistent
with the behavioral evidence. According to the framework,
the reward generated by earning dx units of the outcome is
proportional to the change in the motivational drive, which
can be expressed as:

Ax,t = -

. 4
EP “4)
The above equation will be used for linking the consumption
of outcomes to the changes in the motivational drive and the
reward field.
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The cost

Using RL framework, previous studies have derived the
optimal choice and response vigor in instrumental condition-
ing experiments, in which an animal is required to press a
lever to earn rewards (Dayan, 2012; Niv et al., 2007). The
optimal rate is argued to be the result of a trade-off between
two factors: the cost of lever presses, and the opportunity
cost of a certain response rate. The cost component is ex-
pressed as a function of the delay between consecutive lever
presses. That is, if the previous lever press has occurred 7
time steps ago, then the cost of the current lever press will
be:

a
cost = = + b, 5)

where a and b are constants. b is the constant cost of each
lever press, which is independent of the delay between lever
presses. The factor a, on the other hand, controls the rate-
dependent component of the cost. According to the above
relation, the higher the delay between lever presses the lower
the cost will be. However, a long delay has an opportunity
cost, i.e., by waiting a long time the animal is missing an op-
portunity to earn rewards that potentially could be obtained
during the delay between presses. The optimal rate, there-
fore, will be determined by a trade-off between the cost of a
certain response rate and its opportunity cost.

In the above framework, the target of the decision-making
process is to find the optimal value of 7. Here, we express
the cost as a function of the rate of outcome earning instead
of the rate of action executions. We denote the cost function
with K, which indicates the cost of earning one unit of the
outcome at rate v. In the case of a fixed-ratio (FR) schedule
of reinforcement, in which the decision-maker is required to
perform exactly k responses in order to earn an outcome, or
in the case of a random-ratio (RR) or a variable ratio (VR)
schedule, in which the decision-maker is required to perform
on average k responses to earn an outcome, the cost defined
in equation 5 will be equivalent to:

K, = ak*v + kb. (6)

See Appendix A for the proof. In general, we assume that K,
satisfies the following relation:

oK, . 0K,
e i}
Ay on?

The above relation is required for deriving the results pro-
vided in the next sections. For example in the case of the
cost function defined in equation 6, the above relation re-
quires that ak’> > 0, which implies that in the experiment
at least one response should be required to earn an outcome
(k > 0), and the cost of earning outcomes should be non-zero
(a>0).

Given K, the cost of gaining dx units of outcome will be
K,ox.

2 > 0. 7

The value

Based on the definition of the reward and the cost, the net
amount of reward earned at each time step will be the reward
earned (vA,,) minus its cost (vK,). We denote this quantity
by L:

L=—vK, +VvA,,. (8)

Now let’s assume that a decision-maker starts at point xp in
the outcome space, and the total duration of the experiment
session is 7. We denote the total reward gained in this period
with S 7, which is the sum of the net rewards earned at each
point in time:

T
Sor = f L. ©
0

The quantity S is called the value function, and the goal
of the decision-maker is to find the optimal rate of outcome
earning that yields the highest value (Sor). The optimal
rates can be found using different variational calculus meth-
ods such as the Eular-Lagrange equation, or the Hamilton-
Jacobi-Bellman equation (Liberzon, 2011). Here we use the
Eular-Lagrange form, which sets a necessary condition for
oS =0:

d oL OL
— === 1
dtdv  Ox’ (19)
which implies that:
dv (0K, 0*K, 0A,,
— 12 = ~. 11
( v U an ) ot b

See Appendix A for the proof. Furthermore, since the end-
point of the trajectory is free (the amount of outcomes that
can be gained during a session is not limited, but the dura-
tion of the session is limited to T'), the optimal trajectory will
also satisfy the transversality conditions:

0K,
oV li=r

v = (Aw - K))| (12)

=T

where as mentioned 7T is the total session duration. We will
use equations 11,12 in order to derive the optimal response
rates in different conditions.

Optimal response vigor

In this section, we analyze the optimal response vigor in
the condition that there is only one outcome and one response
available in the environment, i.e., the outcome space has only
one dimension. The analysis is divided into two sections. In
the first section, the decision-maker assumes that the dura-
tion of the session is fixed, which will be extended in the next
section to the conditions that the decision-maker assumes a
probabilistic distribution over the session length.
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Fixed session duration

The optimal rate of outcome earning should satisfy equa-
tion 11. In the equation, the term 0A,,/0t is the time-
dependent change in the value of the outcome, and the term
dv/dt is the rate of change in the rate of outcome earning.
In the particular case that the time-dependent change in the
outcome reward is negligible (0A,,/0t = 0), then the only
valid solution to equation 11 is dv/dt = 0 (see Appendix A).
Thus, the optimal rate of outcome earning (and the optimal
response rate) is constant throughout the session. This rela-
tion holds even in the condition that the reward of the out-
come decreases throughout the session as a result of earning
outcomes, e.g., because of the satiety effect. The following
theorem summarizes this result:

Theorem 1 If the reward field and the cost function satisfy
equations 2 and 7, then the optimal rate of outcome earn-
ing will be non-decreasing (dv/dt > 0). In the special case
that the time-dependent change in the reward field is zero
(0A,,/0t = 0), then the optimal rate of outcome earning is a
constant rate (dv/dt = 0). Furthermore, the optimal rate v*
satisfies the following equation:

L 0K,
y
ov*

See Appendix A for the proof. As an intuitive explanation for
why the constant rate is optimal, imagine a decision-maker
who chooses a non-constant rate of outcome earning, and it
earns in total x; amount of outcome during the session. If in-
stead of the non-constant rate, the decision-maker selects the
constant rate v = xr /T, then the amount of outcome earned
will be the same as before; however, the cost paid during the
session will be lower because the cost is a quadratic func-
tion of the outcome rate, and therefore, it is better to earn
outcomes at a constant rate.

As an example, let’s assume that there is one internal state,
say hungry, and the motivational drive, and the cost function
are the ones defined in equations 3 and 6. Using Theorem 1
the optimal rate of outcome earning will be!:

_ HI-bk
TR+ 2ak?’
The response rate, in the case of the FR schedule can be ob-

tained by multiplying the outcome rate by a factor of k, the
number of responses required to earn an outcome:

L HI - bk
TR +2ak®
Equations 14 and 15 layout a quantitative relation between
various parameters, and the optimal rate of outcome earn-
ing (equation 14), and the optimal rate of responding (equa-
tion 15), which can be compared against experimental evi-
dence. Unfortunately, experimental data on the effects of dif-
ferent parameters on response rates are not consistent across

= ATV*,T - Kv*- (13)

*

(14)

optimal response rate = (15)

studies, making it hard to compare the optimal actions with
empirical data. Besides that, there is a further complexity
due to the inconsistency in how different experiments have
calculated response rates. In general, in an instrumental con-
ditioning experiment, the duration of the session can be di-
vided into three sections: (i) outcome handling/consumption
time, which refers to the time that an animal spends on con-
suming the outcome, (ii) post-reinforcer pause, which refers
to a pause after consuming the outcome and before starting to
make responses (e.g., lever presses). Such a pause is consis-
tently reported in previous studies using the FR schedule, (iii)
run time, which refers to the time spent on making responses
(e..g, lever presses). Experimental manipulations have been
shown to have different effects on the duration of these three
sections of the session, and whether each of these sections
are included when calculating the response rates can affect
the measurement of the results. In the following sections, we
briefly review the currently available data from instrumental
conditioning experiments and their relation with the predic-
tions of the model.

The effect of response cost (¢ and b). Experimen-
tal studies in rats in a FR schedule (Alling & Poling,
1995), indicate that increasing the force required to make
responses causes increases in both inter-response time and
post-reinforcement pause. The same trend has been reported
in Squirrel monkey (Adair & Wright, 1976). Consistently,
the present model implies that increases in the cost of re-
sponses, for example by increasing the effort required to
press the lever (increases in a and b), lead to a lower rate
of outcome earning and a lower rate of responses (Figure 1).

The effect of ratio-requirement (k). Experimental
studies mainly imply that the rate of outcome earning de-
creases with increases in the ratio-requirement (Aberman &
Salamone, 1999; Barofsky & Hurwitz, 1968), which is con-
sistent with the general trend of the optimal rate of outcome
earning implied by the present model (as suggested by equa-
tion 14).

Experimental studies on the rate of responses, in the FR
schedule, indicate that the post-reinforcer pause increases
with increases in the ratio-requirement (Ferster & Skin-
ner, 1957, Figure 23)(Felton & Lyon, 1966; Powell, 1968;
Premack, Schaeffer, & Hundt, 1964). In terms of the over-
all response rates, some experiments report that response

'In equation 14 the optimal outcome rate is dependent on the ini-
tial drive (H) and the session duration (7'), and therefore one might
intuitively think that if for example half-way through the session
the decision-maker re-calculates the optimal rate using equation 14,
then it will get a different constant rate than the one it got initially
at the beginning of the session, as H and 7" will be different from
the ones at the start of the session. This argument, however, is not
correct, and under the optimal rate, the motivational drive and the
remaining time in the session change in opposite directions, in a
way that the optimal rate remains invariant throughout the session,
irrespective of what time in the session equation 14 is calculated.
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Figure 1. Effect of response cost on response rates. (a)
Empirical data. Inter-response intervals when the force re-
quired to make a reponse is manipulated. Figure is adopted
from Adair and Wright (1976). (b) Model prediction. Inter-
response interval (equal to the inverse of response rates) as a
function of cost of responses (b). Parameter values used for
the simulationare 7 =50, k=1,/=1,a=1, H = 8.

rates increase with increases in the ratio-requirement up to
a point and beyond that point the response rates will start to
decrease, in rats (Barofsky & Hurwitz, 1968; Kelsey & Al-
lison, 1976; Mazur, 1982), pigeons (Baum, 1993) and mice
(Greenwood, Quartermain, Johnson, Cruce, & Hirsch, 1974),
although other studies have reported inconsistent results in
pigeons (Powell, 1968), or a decreasing trend of response
rates with increases in the ratio-requirement (Felton & Lyon,
1966; Foster, Blackman, & Temple, 1997). The inconsis-
tency is partly due to the way that the response rates are cal-
culated in different studies; for example in some studies the
outcome handling and the consumption time are not excluded
when calculating response rates (Barofsky & Hurwitz, 1968),
in contrast to the other studies (Foster et al., 1997). As such
any implication of the experimental data about the relation-
ship between response rates and the ratio-requirement is not
conclusive.

With regard to the present model, it predicts the relation-
ship between response rates and the ratio-requirement is an
inverted U-shaped pattern (Figure 2a), consistent with some
of the studies mentioned before. The exact relationship be-
tween the two factors depends on the value of the parame-

response rate
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(a) Effect of ratio-requirement
2.0 4
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5 o
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(b) Effect of H

15
2
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0}
n
5
Q 5
7]
o
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1 1
0.00 0.25 0.50 0.75 1.00
reward magnitude (1)

(c) Effect of reward magnitude

Figure 2. (a) The effect of ratio-requirement on the response
rates. Paramters used for the simulations are 7 = 50, [ = 1,
a =0.3,b =0.05 H = 100. (b) The efffect of the initial
motivational drive on response rates. Parameters used are
T=50,k=1,1=1,a=0.3,b=0.05. (c) The effect of
the reward magnitude on response rates. Parameters used are
T=50,k=1,a=0.1,b=0.1, H = 100.

ters. Generally speaking, if the rate-dependent cost of the
responses is negligible (a = 0), the response rates will peak
at k = HI/(2b) and will start to decrease after that. As such,
the prediction of the model can be consistent with the ex-
periments mentioned before, depending on the initial moti-
vational drive (H), the constant cost of responses (b), and the
range of tested ratio-requirements.

The Effect of initial motivational drive (H). Experi-
mental studies in the case of a FR schedule suggest that
response rates increase with increases in deprivation levels
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(Ferster & Skinner, 1957, Chapter 4)(Sidman & Stebbins,
1954). However, such increases are mainly due to decreases
in the post-reinforcement pauses, and not due to the increases
in actual rate of responses after the pause (see (Pear, 2001,
Page 289) for a review of other reinforcer schedules). Con-
sistently, the model predicts that with increases in the initial
motivational drive (H), the rate of responses and outcome
earning will increase (Figure 2b).

The effect of reward magnitude (/). Some studies
show that post-reinforcement pauses increase as the mag-
nitude of the reward increases (Powell, 1969), while other
studies conclude that the post-reinforcement pause decreases
(Lowe, Davey, & Harzem, 1974), although in the later study
the magnitude of the reward is manipulated within a ses-
sion and a follow-up study showed that at the steady state,
the post-reinforcement pause increases with increases in the
magnitude of the reward (Meunier & Starratt, 1979). The
reward magnitude, however, does not have a reliable effect
on the overall response rates (Keesey & Kling, 1961; Lowe
et al., 1974; Powell, 1969). Regarding the prediction of the
model, the effect of the reward magnitude on the outcome
and response rates is an inverted U-shaped relationship (Fig-
ure 2c), with the peak at [ = 2bk/H (assuming a = 0), and
therefore depending on the value of the parameters the pre-
dictions of the model can be consistent with the experimental
data.

Within session pattern of responses. It has been es-
tablished that in various schedules of reinforcement (Mc-
Sweeney & Hinson, 1992; McSweeney, Weatherly, &
Swindell, 1995), including the VR schedule (McSweeney,
Roll, & Weatherly, 1994), the rate of responses within a ses-
sion has a particular pattern: the response rate reaches its
maximum within a short delay after the session starts (warm-
up period), and then it gradually decreases toward the end of
the session (Figure 3a). Killeen (1994) proposed a mathe-
matical description of this phenomenon, which can be ex-
pressed as follows (Killeen & Sitomer, 2003):

B

_ r
Cor+ /e’

(16)

where 8 is the response rate, ¢ is the minimum delay be-
tween responses, r is the rate of outcome earning, and « is
called specific activation®>. The model suggests that as the
decision-maker earns outcomes during the session, the value
of a gradually decreases because of the satiety effect, which
will cause decreases in response rates. Here satiety refers
to both post-ingestive factors (such as blood glucose level;
Killeen (1995a)) and/or pre-ingestive factors (for example
sensory specific satiety; McSweeney (2004)). This model
has been shown to provide a quantitative match to the ex-
perimental data. This explanation, however, is not consistent
with Theorem 1, which posits that even in the condition that
the motivational drive is changing within a session the opti-
mal response rate is non-decreasing throughout the session,

(a) Experimental data
60

9 50
©
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© 40 -
(2]
5 30 -
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N
9 20 +

10 -

T T T
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time

(b) Model simulations
Figure 3. The pattern of within-session response rates. (a)
Experimental data. The rate of responding per minute during
successvie intervals (each interval is 5 minutes) in a variable-
ratio (VR) schedule. The figure is adopted from McSweeney
et al. (1994). (b) Theoretical pattern of within-session re-
sponses predicted by the model. Parameters used for the
simulations are k = 15,/ =0.1,a = 0.002, b = 0.1, H = 900.

and, therefore, according to the present model the cause un-
derlying the decreases in within-session response rates can-
not be purely the changes in the motivational drive.

The optimal response rates provided by Theorem 1 are not
consistent with the behavioral observations showing that the
rate of responses for earning an outcome in actual fact de-
crease, and therefore, there is a clear inconsistency between
predictions of the model and empirical data. Based on this,
some of the assumptions made to develop the model should
be violated by the decision-maker. The form of the cost and
reward functions is reasonably general. However, we as-
sumed that the duration of the session, 7', is fixed and known
by the decision-maker. In the next section, we show that
relaxing this assumption to the condition that the decision-
maker is uncertain about the duration of the session will lead
to predictions similar to the experimental data.

ZNote that in the original notation in Killeen and Sitomer (2003),
a is denoted by a and 8 is denoted by b.
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Uncertain session duration

In the previous sections we considered conditions in
which the duration of the session was fixed and known by
the decision-maker. In this section we focus on the condi-
tions that the decision-maker is uncertain about the session
duration, i.e., the session duration follows a probability dis-
tribution function, that we denote by p(7"). Under this as-
sumption, the value of a trajectory starting at time ¢t = 0 will
be:

So=Er-pn[Sorl, 17

where E is the expectation. The value, therefore, is the av-
erage of the value of all the trajectories starting from point
t = 0 and ending at time ¢t = T, for all T > 0, weighted by
the probability that the session will end at time 7'. The opti-
mal trajectory that maximizes the above value is presented in
Appendix A. However, here we use a more intuitive approx-
imation of the above value function:

So = Sorm, (18)

which implies that the decision-maker calculates the values
based on the assumption that the session will end att = E[TT],
i.e., it sets an expectation on how long the session will last
and calculates the optimal response rates based on that ex-
pectation. Based on this, if ¢’ time step has passed since the
beginning of the session, the value of the rest of the session
will be as follows:

Sy =Sy Emirse- 19)

The following theorem maintains that the optimal rate of out-
come earning that maximizes S, is a decreasing function of
'

Theorem 2 Given the following value function:
Sy =SvETTsr)s (20)

and assuming that (i) the reward field and cost function sat-
isfy equations 2 and 7, (ii) the time dependent change in the
reward field is zero (0A,,/0t = 0), and (iii) the probabil-
ity that the session ends at each point in time is non-zero
(p(T) > 0), then the optimal rate of outcome earning is a
decreasing function of t':

dvy,
dr

See Appendix A for the proof. As an intuitive explanation,
it is apparent from equation 14 that the optimal rate of out-
come earning is a decreasing function of the session length,
i.e., when the session duration is long the decision-maker can
take its time and earn outcomes more slowly. On the other
hand, when the decision-maker is uncertain about the ses-
sion duration, as time passes within the session the decision-
maker’s expectation of the session duration increases. This

<0. 21

phenomenon, which has been previously elaborated within
the context of delay gratification (McGuire & Kable, 2013;
Rachlin, 2000), is more significant if the decision-maker as-
sumes a heavy-tail distribution over 7. In this condition as
the time passes, the decision-maker will expect the session
to last longer. This property, in addition to the fact that the
optimal response rate is a decreasing function of the session
duration, entails that as the time passes the optimal response
rate will decrease. Based on this explanation, what underlies
decrements in response rates within a session, in a normative
perspective, is in fact the uncertainty in the duration of the
session, and not the satiety effect.

For the simulation of the model, following McGuire and
Kable (2013), we characterized the session duration using a
Generalized Pareto distribution. Simulations of the model
are depicted in Figure 3b, which shows that as time passes
the optimal rate of responses decreases, consistent with the
experimental data (see Appendix A for details).

Optimal choice and response vigor

In the previous sections we assumed that the environment
contained only one outcome, and the decision-maker only
needed to decide about the response rates along one dimen-
sion. In this section we assume that there are multiple out-
comes available in the environment, and the decision-maker
needs to make decisions about the response rates along each
outcome dimension. The position of the decision-maker
instead of being a scalar will be a vector, denoted by x,
which represents the amount of outcomes earned along each
outcome dimension. Similarly, the reward field, Ay,, will
be a vector, where each element of the vector denotes the
amount of reward generated by earning a unit of the out-
come along the corresponding dimension. As such, the to-
tal amount of reward earned by earning 6x outcome will be
0x1[Ax]1 + 0x2[Ax ]2 + ... , which can be summarized as
0X.Ay,. Similarly, the cost of earning outcomes will be a
vector, where each element of the vector represents the cost
of earning the corresponding outcome at the corresponding
rate. Therefore the cost of earning 6x amounts of outcome
will be 6x.Ky. The net amount of reward will be:

L=-v.K,+VAy,, 22)

and the optimal trajectory will satisfy the Eular-Lagrange
equation along each outcome dimension:

d BV.KV _ BAX,[ n (aAX,l (23)

aA;,
—_ = - A\
dt ov ot

ox ox

Furthermore since the end point of the trajectory is free (the
total amount of outcomes is not fixed) we have:

oL

| =0 24)

t=T
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Here for simplicity we make the assumption that the cost
of earning outcomes along each dimension is independent of
the outcome rate on other dimensions, i.e.,

IKy]i

=0,i# ] 25
o, L# ] (25)

The above assumption implies that changing the rate of out-
come along one outcome dimension will not affect the cost of
earning outcomes along other dimensions. We will relax this
assumption in the following sections. Under this assumption,
the optimal speed will satisfy the following equation:

T
- 6A"*’) v, (26)

—_ + =
dt® ov v ov? ot

dv 2(’)Kv
ox ox

o asz) _ 0Ax .\ (6qu,

where © is the entrywise Hadamard product. See Appendix
B for the proof.

To get a better intuition about the above equation and the
optimal trajectory, here we present a geometrical interpreta-
tion. Let us assume that the cost function has the form in-
dicated in equation 6, and also the time dependent changes
in Ay, are negligible (0Ax,/0t = 0). Under these conditions,
if the outcome space is three dimensional, then equation 26
will be:

v (0Ax,  9AY,
dt \ ox ox (27)
= -vXxB,

where X is the cross product, B is the curl of the reward field
(B = curlAy,), and m = 2ak*.> Based on equation 27
the trajectory that the decision-maker takes in the outcome
space can have two different forms, depending on whether B
is zero. We will show in the next section that whenever the
reward field is conservative (i.e., outcomes are substitutable
for each other), then B will be zero and therefore the rate
of earning outcomes will be constant throughout the session
(dv/dt = 0). In contrast, in the condition that the reward field
is non-conservative (i.e., outcomes are not substitutable for
each other), B will be non-zero, and based on equation 27,
the change in the rate of outcome earning will be perpendic-
ular to the current rate of outcome earning. It can be shown
that in this condition the decision-maker will take a circular
trajectory in the outcome space (more details are provided in
the next sections). Each of these two conditions are analyzed
in turn in the next two sections.

Conservative reward field

In line with the previous sections, let’s assume that Dy rep-
resents the motivational drive, and the amount of reward that
consuming each outcome produces is equal to the amount of
change that it makes in the motivational drive:

B 0Dy

Ax = ,
g 0x

(28)

where Dy is a scalar field. We maintain the following theo-
rem:

Theorem 3 [f the reward field is conservative, i.e., there ex-
ists a scalar field Dx such that equation 28 satisfies, and as-
suming that the time-dependent term of the reward field is
zero (0Ax/0t = 0), then the optimal rate of earning out-
comes will be constant (dv/dt = 0), and it satisfies the fol-
lowing equation:

0Ky
ov*
See Appendix B for the proof.

Therefore, if a reward field is conservative, then the opti-
mal rate of earning outcomes is a constant rate. In the spe-
cial case that the environment consists of two outcomes, the
reward field being conservative implies that:

IAx D1 0lAx/2

= , 30
6)62 6x1 ( )

A 4NO)

=Ary 1 — Ky, (29)

which suggests that the amount of decrement in the reward
of the first outcome due to the consumption of the second
outcome (0[Ax,]1/0x2), is equal to the decrement in the re-
ward of the second outcome due to the consumption of the
first outcome (0[Ax]2/0x1); in other words, the reward field
being conservative implies that the two outcomes have the
same degree of substitutability for each other.

As an example, assume that the outcome space is two-
dimensional, and both outcomes satisfy the same internal
state, say hunger. Consuming one unit of the first outcome
decreases hunger by one unit, but consuming one unit of the
second outcome reduces hunger by [ units. As such, the mo-
tivational drive will be as follows:

1
D, = 5(H —x1 = Ix)?, 31)

where H is the homeostatic set-point of hunger. Using equa-
tion 28 we have:
0Dy
ox
Based on Theorem 3, B will be zero (0A,/dx, = 0A,/dx1)
implying that the outcomes have substitutability for each

other, and the response rate along each outcome dimension
will be:

AX,, = - = [H - X1 — IXQ,I(H - X1 — IXQ)]. (32)

| H IH
TR+ m+T TR+ mT|

v (33)
where m = 2ak? and for simplicity it is assumed that b = 0.
The above relation shows that the rate of earning each out-
come is proportional to its rewarding effect, and inversely re-
lated to the cost of earning the outcome. Similar results can

3t is interesting to note that equation 27 in fact lays out the
motion of a unit charged particle (negatively charged) with mass m
in a magnetic field with magnitude B.
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OPTIMAL RESPONSE VIGOR AND CHOICE 9

be obtained in the condition that the reward properties of the
outcomes are the same, but the costs of earning the outcomes
are different. For example, under a concurrent FR schedule
in which an animal needs to make k responses on one of the
levers to earn outcomes, and [k responses on the other lever to
earn the same outcome, the optimal rate of earning outcomes
will be as follows:

PH H
= , ) (34)
TP +mP+T TP +ml?+T
and the rate for each response will be:
kI*H kIH
response raie = TE+mP+T TE+mP+T| (3)

which states that the rate of responding for the first outcome
(the outcome with the lower ratio-requirement) is / times
greater than the second outcome. These results are gener-
ally in line with the probability matching notion, which states
that a decision-maker allocates responses to outcomes based
on the ratio of responses required for each outcome (Estes,
1950). Probability matching is generally considered as a vi-
olation of the rational choice theory, since within this the-
ory it is expected that a decision-maker exclusively works
for the outcome with the higher probability (the lower ratio-
requirement). However, based on the model proposed here,
probability matching is the optimal strategy and therefore
consistent with rational decision-making.

The above results, in fact, stem from the assumption that
the cost of earning each outcome only depends on the rate
of outcome earning in the same dimension, as expressed in
equation 25. That is, the total cost of earning outcomes at
rates vy and v, will be $m(v3 +v3), which implies that chang-
ing the response rate for one of the outcomes will not af-
fect the cost of earning the other outcomes. As an example,
imagine a concurrent instrumental conditioning experiment
in which there are two levers available (left lever and right
lever) and each lever leads to a different outcome. Here, the
independence assumption entails that the cost of the current
right lever press is determined by the time elapsed since the
last right lever press and it does not matter whether there was
a left lever press in between. Alternatively, one can assume
what determines the cost is the delay between subsequent re-
sponses, either for the same or for a different outcome, i.e.,
the cost is proportional to the rate of earning all of the out-
comes, and therefore, the cost takes the form %m(vl + )2,
This alternative captures the fact that the cost is a function of
the delay between subsequent responses, either for the same
or for a different outcome. In this condition equation 25 does
not hold anymore and the cost of earning outcomes will not
be independent. Such a cost function can be achieved by
defining the cost as follows:

1
Ky = zm vy + v, vy +v2). 36)

Given the above cost function, the optimal strategy is max-
imisation, i.e., to take the action with the higher reward
(lower ratio-requirement), and to stop taking the other action:

H
v=[0 L

TR +m| 37)

See Conservative reward field for the proof.

Therefore, whether the rate of outcome earning reflects
probability matching or maximization strategy, depends on
the cost function, and seemingly in the instrumental condi-
tioning experiments, the cost that reflects the maximization
strategy is better applicable. Regarding the experimental ev-
idence, within the concurrent instrumental conditioning ex-
periments, evidence in pigeons tested under the VR sched-
ule (Herrnstein & Loveland, 1975) is in-line with the max-
imization strategy, and consistent with the prediction of the
model. Within a wider scope of the decision-making tasks,
some studies are consistent with the probability matching no-
tion (Grant, Hake, & Hornseth, 1951) (see Vulkan (2000) for
a review), while other studies provide evidence in-line with
the maximization strategy (Edwards, 1961; Myers, Reilly,
& Taub, 1961; Shanks, Tunney, & McCarthy, 2002; Siegel
& Goldstein, 1959). Here, in most of the experiments the
decision-making task used involves making a single choice
(e.g., single button press) and receiving the feedback imme-
diately (about whether the choice is rewarded), and after that
the next trial starts. Such disjoint actions are unlikely to
convey a rate-dependent cost, and, therefore, the structure
of such studies do not readily fit in the model proposed here.

Non-conservative reward field

In this section we assume that the reward field is non-
conservative, i.e., there does not exist a scalar field Dy such
that Ay, satisfies equation 28. An example will be when the
amount of reward that consuming an outcome produces is
greater or smaller than the change in the motivational drive.
For example, assume that there are two outcomes available,
and the consumption of both outcomes has a similar effect on
the motivational drive:

1
Dy = 5(H =x - %), (38)
but the reward that the second outcome generates is [ times
larger than the change it creates in the motivational drive:
oD oD
AXI — |: X X

— s -1
6X] 6)(2

}:[H—xl—xZ,l(H—Xl_XZ)]-

(39)
In this condition, 0[Ax]1/0x, = 1 and 9[Ax,]»/0x; = [, and
therefore the reward of the second outcome due to the con-
sumption of the first outcome decreases more sharply than
the reward of the first outcome would, due to the consump-
tion of the second outcome. The reward field will be non-
conservative and we have B = curlA, = (0,0, 1 — ), which
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will make the decision-maker take a circular trajectory in the
outcome space. The exact characteristics of the optimal tra-
jectory depend on the session duration and factor /, which is
stated in the following theorem:

Theorem 4 [f the reward field follows equation 39 and the
cost is as follows:

1 1
K, = [zmvl, zmvz] s 40)

then the optimal trajectory in the outcome space will be:

0, 4=b T-t>T,
[vi, ] = [ T-Te ] , 4D
arcofacircle T—-t<T,
where
T - marctan(l/l) @2)

-1

See Appendix B for the proof and more details about the op-
timal trajectory.

The above theorem implies that when the duration of the
session is short (T < T.), then the trajectory in the outcome
space is composed of a single segment, which is an arc of a
circle. The response rate for both outcomes will be non-zero,
and initially v, > Iv;, but at the end of the session the rate
of earning the outcomes will be proportional to their reward
effects (v, = Ivy), as indicated by equation 35 (Figure 4a,b).
When the session duration is long, the trajectory in the out-
come space will be composed of two segments. In the initial
segment, the response rate for the outcome with the lower re-
ward effect will be zero, and the decision-maker only works
for the outcome with the higher reward effect. This segment
continues until the time remaining to the end of the session is
less than T,.. After this time the second segment starts, which
is an arc of a circle (Figure 4c).

A test of the prediction of Theorem 4, would be an ex-
periment with two outcomes corresponding to the same food
(and therefore having the same impact on the motivational
drive) but with different levels of the desirability (e.g., two
different flavors), and, therefore, having a different reward
effect. We were not able to find such an experiment in the
instrumental conditioning literature and, therefore, the pre-
diction of Theorem 4 will be left for future testing.

Discussion

We formulated the problem of finding the optimal choice
and response vigor in an optimal control framework by intro-
ducing the novel concept of reward field and using variational
calculus methods. This formulation allowed us to derive the
analytical solutions of the optimal rate of outcome earning in
a wide range of experimental conditions. The analysis was
divided into two sections: (1) the situations in which the en-
vironment contains only one outcome, and (2) the situations

40

o1

20

T T T T 1
0 10 20 30 40 50

02

(a) Short session

60 -

40 -

o1

20

T T T
20 40 60

02

o -

(b) Medium session

90

< 60 -
o

30

0 -

1
50 75 100
02

T
0 25

(c) Long session

Figure 4. The optimal trajectories in the outcome space when
the reward field is non-conservative. ol and o2 are two dif-
ferent outcomes, where the amount of reward that o, gener-
ates is larger than the decrement it creates in the motivational
drive. Parameters used for simulations are k = 1,/ = 1.1,
a=1,b=0,H =100, m = 2ak? (a) Short session druation
T = 7. (b) Medium session duration 7' = T, ~ 14.75. (¢)
Long session duration 7 = 23.

in which multiple outcomes can be earned in the environ-
ment. In the first condition, the results indicate that if the
session duration is deterministic and known by the decision-
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maker, then the optimal rate of outcome earning is a constant
rate throughout the session. Although these results are con-
sistent with the majority of empirical results, they are incon-
sistent with the studies showing that the response rates de-
crease throughout an experiment session. We further showed
that the uncertainty of the decision-maker about the session
duration can explain this effect. In the conditions that the
environment contains multiple outcomes, the results indicate
that the optimal trajectory in the outcome space can take two
different forms: (1) if the outcomes in the environment are
substitutable for each other (equivalent to the reward field
being conservative) then the optimal trajectory is a straight
line in the outcome space; we discussed that these results are
consistent with both probability matching and maximization
notions of decision-making; (2) if the outcomes in the envi-
ronment are not substitutable for each other, then the optimal
trajectory is a straight line followed by a circular trajectory.
To our knowledge, these results are the first analytical solu-
tion to the problem of choice and response vigor in the condi-
tion that the values of the outcomes can vary in the decision-
making session.

There are two significant differences between the model
proposed here and the previous models of response vigor
(Dayan, 2012; Niv et al., 2007). Firstly, although the effect
of between-session changes in the motivational drive on re-
sponse vigor has been addressed in the previous models (Niv,
Joel, & Dayan, 2006), the effects of the on-line changes in the
motivational drive within a session are not addressed in the
previous works, which we address in this model. Secondly,
previous works conceptualized the structure of the task as a
semi-Markov decision process, and derived the optimal ac-
tions that maximize the average reward per unit of time (av-
erage reward). Here, we used a variational analysis to cal-
culate the optimal actions that maximize the reward earned
within the session. One benefit of the approach taken in the
previous works is that it extends naturally to a wide range of
instrumental conditioning schedules such as interval sched-
ules, while the extension of the model proposed here to the
case of interval schedules is not trivial. Optimizing the av-
erage reward (as adopted in the previous works) is equiva-
lent to the maximization of the reward in an infinite-horizon
time scale, i.e., the session duration is unlimited; in contrast,
the model used here explicitly represents the duration of the
session, which as we showed plays an important role in the
pattern of responses.

We assumed that the cost is only a function of the rate of
earning outcomes, and it is time-independent (0K /0t = 0).
However, in general one can assume that as time passes
within a session, the cost of taking actions will be increased
because of factors such as effector fatigue. Here we made
the time-independence assumption based on previous stud-
ies that showed factors such as effector fatigue have a negli-
gible effect on response rates (McSweeney, Hinson, & Can-

non, 1996). Similarly, in the derivation of Theorem 2-4 we
assumed that the time-dependent component of the reward
field is zero (0Ax,/0t = 0), which seems to be a reason-
able assumption, given the typical duration of an instrumen-
tal conditioning experiment.

The value of the outcomes can change because of factors
other than changes in the motivational drive, such as specific
satiety. In fact, the definition of the reward field is general
and as long as it satisfies equations 1 and 2, the results ob-
tained will be valid, irrespective of whether the underlying
reason in the variability of the reward field is the motiva-
tional drive or other factors. Here, the reason that we used the
motivational drive as the underlying cause of changes in the
outcome values was because of the existence of the previous
studies that link the quantity of outcome consumption to the
reward of outcomes (Keramati & Gutkin, 2014); however,
the model is general and can be applied to any other source
that can cause changes in the value of the outcomes.
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Appendix A
Optimal trajectory in a single dimensional outcome space

Derivation of cost earning outcomes. The aim is to de-
rive equation 6 from equation 5 under the assumption that k
responses are required to earn one unit of the outcome.

K, is the cost of earning one unit of outcome at rate v.
Earning the outcome at rate v implies that the time it takes
to earn the outcome is 1/v, and since k responses have been
executed in this period, the delay between responses is:

1
T=—, 43
o (43)
and therefore using equation 5, the cost of making one re-
sponse will be akv + b. Since k responses are required for
earning one unit of the outcome, the total cost will be k times
the cost of one response:

K, = k(akv + b), 44)

which is equivalent to equation 6.

In the case of non-deterministic schedules such as VR and
RR schedules of reinforcement, the effect of actions on the
rate of outcome earning will be non-deterministic, and there-
fore, the net reward (L) should be defined based on the ex-
pected rewards and costs:

L = E[-vK, +vA,;] = —E[vK,] + E[v]A.,. (45)
In the main text and in the following sections we use v instead
of E[v] for simplicity of notation. Given this, the aim is to
show that equation 45 is equivalent to equation 8. The second
term in equation 45, i.e., E[v]A,,, will be equivalent to vA,,
mentioned in equation 8. For the first term, i.e., E[vK,], we
maintain that:

E[vK,] = E[VIKgp,- (46)
To show the above relation, let’s assume the subject performs
N responses, and receives r outcomes. Since according to
the definition of RR and VR schedules, out of N responses

on average N/k will be rewarded, we have E[r] = N/k and
the expected rate of outcome earning will be:
E[]—E[r]—l 47
W= EA N T ke
Therefore:
N +b
EvK,]1=E, [NLM = EIKakEDV]+b) = EVIKpy,
T r

(48)
which proves equation 46.

Fixed session duration. The aim is to derive equa-
tion 11 and also to provide a proof for Theorem 1. By sub-
stituting equation 8 in equation 10 we will have:

d OK

-k, -
dt av

dAx,
dx

| =V (49)
The term dA,,/dt has two components: the first component
is the change in A, due to the change in x and the second
component is due to the time-dependent changes in A ,:

dAy, dx0Ay, 0Ay,
dr dr ox o (50)
Furthermore we have:
dK, dv ik,
= — , 51
dt dt dv D
and similarly:
d K, dvok, 0K,
_ @ (52)

—— = + .
di v dr av o

Substituting equations 50,51 and 52 in equation 49 yields:

dv (ZGKV 62Kv) _0Ay,

+ s 53
v e )T Tar )
which is equivalent to equation 11. Given equations 2, 7 and

11 we will have: p
v
— >0, 54
7 (54)
which proves the first part of Theorem 1. Assuming that
0A,,/0t = 0, we are interested to find solutions to equa-
tions 11 and 12. One of the solutions to equation 11 is

dv/dt = 0, and the other solution is:

K, K,
v ez T

which is inconsistent with equation 7, and thus the only so-
lution is dv/dt = 0. Given that the rate is constant we have
xr = vT, which by substituting in equation 12 yields equa-
tion 13, which proves the second part of Theorem 1.

Uncertain session duration. Here we aim to derive the
optimal trajectory when the duration of the session is proba-
bilistic. The value function defined in equation 17 is as fol-
lows:

(55)

Sy =Erpa[Sy 1T > 1]

f f Lp(T|T > t')dtdT
T=t Jt=t

:f L[ p(T|T > t’)dT} dt (56)
t=t' T=t

1-Fpr (1)
T=Fp(7)

= f LG, dt,
t=t



https://doi.org/10.1101/057208
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/057208; this version posted June 5, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

14 AMIR DEZFOULI

where Fr is the cumulative probability distribution of 7', and

1 - Fr(5)

Gy=—"7-—".
- Fr(@)

(57)

Using the Eular-Lagrange equation, the stationary solution
for S’ will be:

Ok,

Q(zam 621{1,)_ 0Ay; 0logG,y

a\" o T ot T o av

(58)

In the next section we provide an alternative method for
approximating the optimal actions under uncertain session
duration.

Expecation of session duration. The aim is to prove
Theorem 2, and also to provide the details of the simula-
tions. Assuming that the total session duration (7) has the
probability density function f(7") and that f(7") > 0, here we
show that the expectation of the session duration never de-
creases as time passes throughout the session. Let’s denote
the expectation of the session duration at time " with 7”:

T = E[T|T >1]. 59)
‘We have:
or’" _OE[TIT >t]  f(T) , ,
o = o = T_FD) (E[TIT >7]1-1)>0,

(60)
which implies that the expected duration of the session in-
creases as time passes.

Next, we show that the optimal response rate is a decreas-
ing function of #. Based on equation 12, the optimal re-
sponse rate satisfies the following equation:

oK,

el I G K)|_,. - (61)
Taking the derivative w.r.t to ¢’ we get:
dv (L0K, 0*K,\ OT' ([ 0A., OA,,
— | 2— _ == — ~ + . s 62
dt’( o o ) or (V ox | aT 62)

which given equations 1,60,7, and that v > 0, and assuming
0A,,/0T’ = 0 yields:

dav*
O,
dr <

(63)

which implies that the rate of earning outcomes decreases as
time passes within a session.

For the simulation of the model, following McGuire and
Kable (2013) we assumed that 7 follows a Generalized
Pareto distribution:

" —1/k
F(T)=1 —(1 + —) , (64)
o

(_KV - v_v + Ax,t) .

where k is a shape parameter and o is a scale parameter, and
the third parameter (location i) was assumed to be zero. Fur-
thermore we have:

o \V
B

F(T|T>t’)=1—(1+
which has the following expected value:

o+ kt’
1-k°

E[TIT >1]= (66)

which as we expect is an increasing function of #'. For the
simulation of the model we assumed that k = 0.9 and o = 6,
which represents that the initial expectation for the session
duration is 60 minutes.

Appendix B
Optimal trajectory in a multi-dimension outcome space

The aim is to derive the optimal trajectory in the outcome
space when there are multiple outcomes available (equa-
tion 23). The net reward at each point in time will be:

L=—v.Ky + V.Ay,. (67)

The Eular-Lagrange equation implies:

d oL OL
—— =, 68
dtov  0x (68)
and therefore we have:
d(d d(v.Ax,)
— | —(V.Ky +V.Ax)) ]| = —. 6
dt(dv( VATV ”)) dx (69)
For the right hand side we have:
d(v.A 0A
(dex,t) —vT 8;1. (70)
We also have:
dAx; 0Axs O0Ax:
== . . 71
o ox (71
which by substitution into equation 69 we get:
dov.K, dAy, [(0Ax, OAL,
— = . =~ — = |v. 72
i ov o ( ax  ox )" (72)

Conservative reward field. The aim is to prove Theo-
rem 3, and also to derive equation 37. If the reward field
is conservative, i.e., there exists a Dy such that equation 28
holds, we have:

0A],

_ 0 (73)
T oox ox
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which is the consequence of the following:

6[Axt]i 8[Axt]j
M) = — - —=>
[ ]"I 6xj [)x,-
_ 9Dy . 0’Dy (74)
ijax,» BX,'BXJ‘
=0,

where we used equation 28 to derive the last equation. Based
on equation 73, and assuming that dAx,/dt = 0, equation 72

will be: 1 OvE
v.Ky

— =0. 75

dt ov (73

In the special condition that K, /v is a diagonal matrix (i.e.,
equation 25 holds), equation 72 can be written as:

dv 0K, vo &K,
dt ov ov?

=0, (76)

where 0K, /dv is a vector representing the diagonal terms of
the matrix. For the derivation of the above equation we used
the following relations:

dK] _ dvT K]
a Car C v a7
and:
d OKT\ dvT (OKT KT
—|vT A v Y By
dt(v © av) dr Q(av VO 5w ) (78)

Given equation 7 the only admissible solution to equation 76
is dv/dt = 0, which shows that the optimal rate of earn-
ing outcomes is constant. By substituting equation 67 in the
boundary conditions implied by equation 24 we get equa-
tion 29.

If 0K, /dv is not diagonal, and it is equivalent to the cost
function shown in equation 36, then the Lagrangian (L) will
be as follows:

1
L==sm(v + va)2 +viAx i + valAx e (79)

Using equation 75 we have:

dv1 dV2

—_—=——, 80

dt dt (80)
implying that

vy =B -, (81)

where £ is a constant. Using boundary conditions in equa-
tion 24 we get at time 7T':

[Axe]i = [Axs]2 = mB. (82)

Given equation 32 and assuming that / # 1 the only solution
to the above equation is § = 0, which entails that v = —v,,

which given the constrain that v; > 0 and v, > 0 is not an
admissible solution. Assuming that v; takes the boundary
value v| = 0, the problem degenerates into a problem involv-
ing only one outcome (since v; = 0) which can be solved
using Theorem 1. Solving equation 13, assuming b = 0 and
m = 2ak?, yields equation 37.

Non-conservative reward field. The aim is to prove
Theorem 4. We have:

0Ayx, aAIt 0 -1
= — = = , 83
Ox Ox 1-1 0 (83)
and based on equation 26 we get:
dV] _ [ - lv
dr - m
dvo  1-1 84)
a - m "

Defining w = (I — 1)/m, the solution to the above set of dif-
ferential equations has the form:

X = g1 + r/wsinwt + @), g2 + r/wcos(wt + @)|,  (85)

which is an arc of a circle centered at [q, ¢»], and r and « are
free parameters. The parameters can be determined using the
boundary condition imposed by equation 24, and also assum-
ing that the initial position is x = 0. The boundary condition
in equation 24 implies:

mv = Ax/|,_, = [ V2Dx.1N2Dy]. (86)

which implies that at the end of the trajectory the rate of
earning the second outcome is / times larger than the first
outcome. Therefore, the general from of the trajectory will
be an arc starting from the origin and ending along the above
direction. Given the constrain that v > 0 only the solutions
in which ¢, < 0 are acceptable ones (i.e., the center of the
circle is below the x-axis). Solving equation 85 for ¢, < 0
we get:

T<T,, 87)
where san(1/i
1, =m0, (88)

and therefore T is independent of H (the initial motivational
drive). As such if T satisfies equation 87 then the optimal
trajectory will be an arc of a circle starting from the origin.
Otherwise, if T > T, the optimal trajectory will be com-
posed of two segments. In the first segment, v; will take the
boundary condition v; = 0 and the decision-maker earns only
the second outcome (the outcome with the higher reward ef-
fect). The first segment continues until the remaining time in
the session satisfies equation 87 (the remaining time is less
than T,.), after which the second segment starts, which is an
arc of a circle defined by equation 85. The rate of earning
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the second outcome, v,, in the first segment of the trajectory
(when v; = 0) can be obtained by calculating the rates at the
beginning of the circular segment. The initial rate at the start
of the circular segment is as follows:

_H(I-1)

r_—Tl—TC’ (89)

which implies that at the first segment of the trajectory we
have:
H(l-1)

[vi,v] = [0, TTC}’ (90)

which completes the proof of Theorem 4.
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