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ABSTRACT:	21	

	22	

Identifying	the	genomic	regions	that	underlie	complex	phenotypic	variation	is	a	key	23	

challenge	in	modern	biology.		Many	approaches	to	quantitative	trait	locus	mapping	in	24	

animal	and	plant	species	suffer	from	limited	power	and	genomic	resolution.		Here,	I	25	

investigate	whether	bulk	segregant	analysis	(BSA),	which	has	been	successfully	applied	for	26	

yeast,	may	have	utility	in	the	genomic	era	for	trait	mapping	in	Drosophila	(and	other	27	

organisms	that	can	be	experimentally	bred	in	similar	numbers).		I	perform	simulations	to	28	

investigate	the	statistical	signal	of	a	quantitative	trait	locus	(QTL)	in	a	wide	range	of	BSA	29	

and	introgression	mapping	(IM)	experiments.		BSA	consistently	provides	more	accurate	30	

mapping	signals	than	IM	(in	addition	to	allowing	the	mapping	of	multiple	traits	from	the	31	

same	experimental	population).		The	performance	of	BSA	and	IM	is	maximized	by	having	32	

multiple	independent	crosses,	more	generations	of	interbreeding,	larger	numbers	of	33	

breeding	individuals,	and	greater	genotyping	effort,	but	is	less	affected	by	the	proportion	of	34	

individuals	selected	for	phenotypic	extreme	pools.		I	also	introduce	a	prototype	analysis	35	

method	for	Simulation-based	Inference	for	BSA	Mapping	(SIBSAM).		This	method	identifies	36	

significant	QTLs	and	estimates	their	genomic	confidence	intervals	and	relative	effect	sizes.		37	

Importantly,	it	also	tests	whether	overlapping	peaks	should	be	considered	as	two	distinct	38	

QTLs.		This	approach	will	facilitate	improved	trait	mapping	in	Drosophila	and	other	species	39	

for	which	hundreds	or	thousands	of	offspring	(but	not	millions)	can	be	studied.	40	

	 	41	
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INTRODUCTION:	42	

	43	

Connecting	phenotypic	diversity	to	the	genetic	variants	that	encode	it	is	a	fundamental	44	

challenge	for	modern	biology.		In	evolutionary	research,	there	is	strong	interest	in	45	

revealing	the	genetic	architecture	of	adaptive	phenotypic	change,	including	the	number	of	46	

causative	genes	and	mutations,	and	their	functional	and	population	genetic	properties.		In	47	

molecular	genetics,	the	mapping	of	phenotypic	differences	from	natural	or	induced	48	

mutations	has	great	utility	for	elucidating	genetic	pathways	that	underlie	specific	biological	49	

processes.		In	animal	and	plant	breeding,	localizing	the	genes	underlying	agronomically	50	

important	trait	variation	can	be	a	key	step	toward	genetic	improvement.		51	

Especially	in	species	that	can	be	experimentally	crossed,	quantitative	trait	locus	(QTL)	52	

mapping	provides	an	important	tool	for	identifying	genomic	regions	that	contain	causative	53	

genetic	variants	underlying	a	trait	difference.		Often,	the	F2	or	later	offspring	of	a	cross	54	

between	phenotypically	contrasting	parental	strains	are	genotyped,	individually	or	in	55	

groups,	to	identify	sections	of	the	genome	that	were	inherited	non-randomly	with	respect	56	

to	the	phenotype	(often	on	the	megabase	scale).		The	simplest	example	of	QTL	analysis	is	57	

F2	mapping,	in	which	individual	second	generation	offspring	are	phenotyped	and	58	

genotyped.		To	achieve	much	genomic	precision,	however,	this	method	requires	the	59	

individual	genotyping	of	a	large	number	of	F2	offspring.		Preparing	many	genomic	DNA	60	

libraries	for	next	generation	sequencing	is	often	a	time-	and	resource-intensive	61	

proposition,	although	progress	has	been	made	in	this	regard	(Andolfatto	et	al.	2011).			62	

Introgression	mapping	(IM)	provides	another	alternative	for	QTL	analysis.		Here,	63	

following	an	initial	cross	between	parental	strains	A	and	B,	offspring	of	subsequent	64	
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generations	are	repeatedly	selected	for	strain	A’s	phenotype,	but	are	back-crossed	to	strain	65	

B	(Figure	1).		To	allow	recessive	variants	to	be	selected,	this	selection	and	introgression	can	66	

be	performed	in	every	second	generation.		The	desired	result	is	an	introgression	line	that	is	67	

largely	similar	to	strain	B	across	the	genome,	but	that	matches	strain	A	at	loci	that	were	68	

selected	along	with	the	phenotype.		A	notable	modern	example	of	this	approach	is	69	

described	by	Early	and	Jones	(2011),	who	introgressed	a	behavioral	difference	from	D.	70	

simulans	into	D.	sechellia.		Here,	30	F2	females	were	tested	for	simulans-like	behavior,	and	a	71	

subset	was	then	back-crossed	to	D.	sechellia.		After	repeating	this	process	for	15	72	

generations,	next-generation	sequencing	was	used	to	identify	genomic	regions	that	73	

introgressed	with	the	trait	from	D.	simulans.	74	

In	bulk	segregant	analysis	(BSA),	large	numbers	of	progeny	(from	F2	or	later	75	

generations)	are	sorted/selected	by	phenotype,	then	contrasting	phenotypic	pools	of	76	

individuals	are	each	genotyped	(Figure	1)	(Michelmore	et	al.	1991).		Compared	to	IM,	BSA	77	

may	allow	for	a	larger	number	of	unique	recombination	events	to	be	generated	and	78	

sampled,	which	could	yield	sharper	QTL	peaks.		Like	IM,	BSA	does	not	require	large	79	

numbers	of	offspring	to	be	individually	genotyped	–	instead	each	phenotypic	extreme	can	80	

be	sequenced	as	a	single	pool.		BSA	has	been	applied	very	successfully	for	selectable	traits	81	

in	yeast	(e.g.	Ehrenreich	et	al.	2010;	Magwene	et	al.	2011;	Parts	et	al.	2011),	facilitated	by	a	82	

small	genome	and	the	ease	of	generating	millions	of	segregants.		BSA	has	also	seen	diverse	83	

applications	to	trait	mapping	in	multicellular	organisms	(e.g.	Michelmore	et	al.	1991;	Wicks	84	

et	al.	2001;	Baird	et	al.	2008;	Van	Leeuwen	et	al.	2012;	Haase	et	al.	2015),	including	85	

Drosophila	(Lai	et	al.	2007).			86	
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Here,	I	use	simulations	to	examine	the	mapping	signals	of	BSA	and	IM	under	a	wide	87	

range	of	experimental	parameters	for	the	mapping	of	multi-gene	traits.		I	find	that	BSA	88	

produces	stronger	and	better-localized	mapping	signals	for	all	studied	experimental	89	

designs.		The	tradeoffs	of	effort	and	performance	indicated	by	these	results,	along	with	the	90	

new	simulation	programs	that	produced	them,	will	help	researchers	design	more	effective	91	

mapping	experiments.			92	

I	also	use	this	BSA	simulation	approach	to	devise	a	new	QTL	inference	method.		Existing	93	

BSA	analysis	methods	effectively	identify	QTLs	from	yeast	data	(e.g.	Magwene	et	al.	2011;	94	

Edwards	et	al.	2012).		However,	these	methods	do	not	allow	the	discrimination	of	two	95	

nearby	QTL	peaks	versus	a	single	peak	with	noisy,	ragged	contours	–	an	issue	that	may	be	96	

more	problematic	for	organisms	in	which	many	fewer	segregants	can	be	surveyed	relative	97	

to	yeast.		These	methods	also	do	not	estimate	the	relative	strength	of	each	QTL.		The	BSA	98	

inference	method	proposed	here	uses	a	multi-step	simulation	process	to	(1)	identify	99	

significant	QTLs	and	their	genomic	confidence	intervals,	(2)	separate	single	from	multiple	100	

linked	QTLs,	and	(3)	provide	a	rough	estimate	of	the	effect	sizes	of	the	identified	QTLs.		101	

This	method	is	validated	using	simulations	in	the	present	study,	and	applied	to	data	in	an	102	

accompanying	article	(Bastide	et	al.	2016).	103	

	104	

MATERIALS	AND	METHODS	105	

	106	

Preliminary	simulations	for	BSA	and	IM	107	

Simulation	programs	were	written	to	assess	the	QTL	signals	of	BSA	and	IM	(software	108	

related	to	this	article	is	available	at	https://github.com/JohnEPool/SIBSAM1).		BSA	109	
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simulation	analyses	focused	on	a	summary	statistic,	“ancestry	difference”	(ad).		For	a	given	110	

genetic	marker	locus	or	genomic	window	of	sequence,	ad	refers	to	the	difference	between	111	

the	high	and	low	phenotypic	pools	in	the	proportion	of	ancestry	from	the	parental	strain	112	

with	the	higher	phenotypic	value.		For	example,	if	the	high	phenotypic	pool	is	estimated	to	113	

have	60%	of	its	ancestry	from	this	parental	strain	at	a	particular	locus,	and	the	low	114	

phenotypic	pool	40%,	then	ad	=	0.6	–	0.4	=	0.2.		For	IM,	the	proportion	of	ancestry	in	the	115	

mapping	population	from	the	non-backcross	parental	strain	(ap)	was	evaluated.		This	116	

quantity	may	approach	zero	for	non-causative	loci	after	many	generations	of	back-crossing	117	

to	the	other	parental	strain.		For	each	statistic,	I	examined	how	often	the	tallest	local	QTL	118	

peak	was	observed	within	0.5	centiMorgans	(cM)	of	the	true	simulated	target	locus,	and	the	119	

average	(median)	distance	between	the	QTL	peak	and	the	target	locus.			120	

The	BSA	and	IM	simulators	are	largely	similar.		These	programs	track	parental	strain	121	

ancestry	along	the	chromosomes	of	each	individual	in	the	mapping	population,	from	the	F1	122	

generation	until	the	end	of	the	experiment.		A	Poisson-distributed	number	of	123	

recombination	events	happen	each	generation,	with	the	expected	number	for	each	124	

chromosome	being	its	length	in	Morgans	(interference	is	not	modeled).		To	focus	on	the	125	

case	of	Drosophila,	chromosomes	X,	2,	and	3	were	explicitly	simulated,	and	no	126	

recombination	was	allowed	in	males.		A	total	of	5,000	markers/windows	were	simulated	127	

on	each	chromosome.		In	the	BSA	simulation,	a	specified	number	of	individuals	exist	in	each	128	

new	generation,	and	each	one	draws	random	parents	from	the	previous	generation,	with	129	

no	phenotypic	selection	until	the	last	generation.		In	the	IM	simulations,	individuals	were	130	

subject	to	phenotypic	selection	in	every	second	generation.	131	
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Phenotypes	for	each	individual	were	modeled	based	on	genotypes	and	random	variance	132	

(the	latter	may	stem	from	environmental	effects,	measurement	error,	or	other	causes).		For	133	

most	of	these	preliminary	simulations,	the	same	number	of	equal-effect	loci	were	simulated	134	

on	each	chromosome	arm	(X,	2L,	2R,	3L,	3R).		Random	variance	was	added	by	modifying	135	

each	individual’s	phenotypic	value	by	a	normally-distributed	random	effect	with	mean	zero	136	

and	standard	deviation	(SD)	equal	to	the	average	trait	value.		For	example,	if	each	of	the	137	

five	arms	holds	a	single	QTL	that	adds	1	to	a	diploid	individual’s	phenotypic	value	for	each	138	

allele	inherited	from	the	high	parental	strain,	the	range	of	genetic	contributions	could	139	

range	from	0	to	10,	with	a	mean	of	5,	and	the	SD	for	environmental	variance	would	also	be	140	

5.		Phenotypic	selection	was	then	based	on	choosing	a	defined	quantile	(q)	of	individuals	141	

from	the	mapping	population	with	the	highest	and	the	lowest	phenotypic	values.			142	

For	BSA,	phenotypic	selection	happens	only	at	the	end	of	the	experiment,	followed	by	143	

sequencing/genotyping	of	both	high	and	low	phenotypic	pools.		For	IM,	the	last	batch	of	144	

selected	individuals	is	sequenced	and	compared	against	the	parental	strains.		The	145	

simulations	model	“depth”	of	sequencing	coverage	(or	genotype	sampling),	drawing	an	146	

appropriate	number	of	random	ancestry-informative	reads	from	the	selected	pool	of	147	

individuals	for	each	window/marker.		The	proportion	of	ancestry	from	each	parental	strain	148	

is	then	calculated,	and	thus	depends	on	both	the	sampling	of	individuals	and	the	sampling	149	

of	sequence	reads.	150	

To	facilitate	consistent	analysis,	QTLs	in	these	preliminary	simulations	were	spaced	151	

uniformly	and	each	was	assigned	a	specific	analysis	zone	along	the	chromosome.		For	152	

example,	if	the	X	chromosome	had	five	QTLs,	they	would	be	placed	at	relative	positions	0.1,	153	

0.3,	0.5,	0.7,	and	0.9	(representing	the	chromosome	as	a	0	to	1	interval).		Their	zones	of	154	
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analysis	would	then	be	0	to	0.2,	0.2	to	0.4,	and	so	on.		The	assessment	of	QTL	signal	155	

strength	and	precision	was	based	on	the	location	within	its	zone	of	the	highest	QTL	peak	156	

(i.e.	the	maximum	ad	or	ap),	relative	to	the	true	QTL	position.			157	

Most	simulation	analyses	assumed	that	each	mapping	experiment	would	be	analyzed	158	

separately,		However,	I	also	investigated	cases	where	multiple	independent	mapping	159	

populations	were	constructed	from	parental	strains	sharing	the	same	causative	genetic	160	

differences.		Here,	ad	or	ap	for	each	window	was	summed	across	replicated	mapping	161	

populations.		162	

For	a	wide	variety	of	experimental	parameter	combinations,	1,000	independent	163	

replicates	were	simulated	and	analyzed,	and	statistical	performance	was	compared	164	

between	these	scenarios	to	aid	in	the	optimization	of	experimental	design.	165	

	166	

Simulation-based	inference	of	QTL	from	BSA:		Overview	167	

Preliminary	empirical	BSA	data	from	the	Pool	laboratory	indicated	the	need	for	a	QTL	168	

inference	method	capable	of	dealing	with	neighboring	QTLs	that	have	wide,	overlapping	169	

statistical	signals.		Such	scenarios	are	difficult	to	account	for	in	most	analysis	approaches,	170	

but	the	simulation	framework	described	above	offers	a	potentially	flexible	foundation	for	171	

QTL	inference.		I	therefore	developed	a	method	of	“Simulation-based	Inference	for	Bulk	172	

Segregant	Analysis	Mapping”	(SIBSAM).		SIBSAM	uses	BSA	simulations	analogous	to	those	173	

described	above,	in	order	to	identify	and	localize	significant	QTLs,	estimate	their	strength,	174	

and	distinguish	individual	QTL	among	clusters	of	linked	causative	loci.	175	

Throughout	the	SIBSAM	pipeline,	the	distinction	between	primary	QTL	peaks	and	176	

secondary	QTL	peaks	is	relevant.		A	primary	QTL	peak	is	defined	based	on	the	highest	value	177	
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of	ad	across	a	continuous	interval	in	which	this	statistic	remains	above	zero	(which	is	the	178	

null	value	expected	in	the	absence	of	causative	loci).		A	secondary	QTL	peak	within	that	179	

same	interval	has	a	lower	height	than	its	associated	primary	peak.		An	important	quantity	180	

in	assessing	the	significance	of	a	secondary	peak	is	its	“secondary	deviation”	(v),	defined	as	181	

the	difference	between	secondary	peak	height	and	the	minimum	ad	value	between	the	182	

primary	and	secondary	peaks	(Figure	2).		Multiple	secondary	peaks	may	be	associated	with	183	

the	same	primary	peak,	impacting	the	calculation	of	v,	as	discussed	below.			184	

A	schematic	of	the	SIBSAM	pipeline	is	illustrated	in	Figure	3.		First,	primary	and	185	

secondary	peaks	of	ad	are	identified	from	the	empirical	data.		To	determine	which	primary	186	

peaks	are	unexpected	in	the	absence	of	true	QTLs,	null	simulations	are	conducted	in	which	187	

phenotypes	are	determined	by	non-genetic	factors	only.		P	values	can	then	be	obtained	for	188	

each	primary	peak.		Next,	simulations	with	a	single	causative	QTL	are	conducted.		Based	on	189	

a	rejection	sampling	approach,	estimates	of	the	strength	and	genomic	confidence	intervals	190	

of	each	significant	primary	peak	are	obtained,	along	with	a	P	value	for	each	secondary	peak.		191	

Lastly,	simulations	involving	a	cluster	of	linked	QTLs	are	conducted,	reflecting	a	primary	192	

peak	and	its	associated	secondary	peak(s).		This	phase	allows	for	the	refinement	of	193	

strength	estimates	and	genomic	confidence	intervals	for	each	peak	in	the	cluster.			194	

All	of	the	above	simulations	operate	with	user-defined	windows	of	variable	cM	length.		195	

These	windows	could	also	be	viewed	as	markers	separated	by	various	cM	distances,	but	196	

this	article’s	terminology	mainly	assumes	that	QTL	mapping	data	comes	from	the	full	197	

resequencing	of	mapping	population	genomes.		In	the	examples	presented	here,	the	198	

window	bp	spans	were	based	on	D.	melanogaster	polymorphism	data	(Lack	et	al.	2015)	and	199	

cM	distances	were	calculated	from	empirical	recombination	rate	estimates	(Comeron	et	al.	200	
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2012).		Windows	were	defined	to	each	contain	200	non-singleton	variable	sites	from	the	201	

Zambia-Siavonga	population	sample.		The	user	can	also	define	the	“informative	depth”	for	202	

each	window	in	each	phenotypic	pool.		This	quantity	refers	to	the	number	of	sequence	203	

reads	that	contain	information	about	parental	strain	ancestry.		The	simulator	will	draw	a	204	

corresponding	number	of	alleles	at	this	window	for	ancestry	proportion	calculations.			205	

	206	

SIBSAM	identification	of	primary	and	secondary	peaks	from	empirical	data	207	

Primary	and	secondary	peaks	of	ad	are	identified	from	data	based	on	preliminary	208	

thresholds	for	primary	peak	height	and	secondary	peak	deviation	(adt	and	vt,	respectively),	209	

plus	an	optional	smoothing	step.		The	two	thresholds	should	represent	values	low	enough	210	

that	no	shorter	peak	would	be	statistically	significant	(the	default	value	for	both	is	0.1).		211	

The	smoothing	enabled	here	is	a	simple	weighted	average.		On	each	side	of	the	focal	212	

window,	m	flanking	windows	are	included	(the	default	used	here	is	m	=	4).		The	focal	213	

window	receives	a	weight	of	m	+	1,	the	adjacent	window	on	each	side	receives	a	weight	of	214	

m,	the	next	windows	receive	a	weight	of	m	–	1,	and	so	on	until	the	mth	window	to	each	side	215	

receives	a	weight	of	1.		Alternative	smoothing	schemes	are	not	a	focus	of	this	study;	the	216	

optimal	strategy	should	depend	on	the	data	being	analyzed.		Empirical	and	simulated	ad	217	

values	must	be	smoothed	using	the	same	procedure.	218	

Primary	peak	identification	is	straightforward:	the	highest	value	of	ad	in	a	continuous	219	

block	of	windows	with	ad	>	0,	conditional	on	the	peak	value	of	ad	exceeding	adt.		To	identify	220	

secondary	peaks,	local	minima	and	maxima	of	ad	moving	away	from	the	primary	peak	are	221	

noted.		A	recovery,	beyond	vt,	from	the	low	point	since	the	last	peak	signifies	a	new	222	

secondary	peak.		When	ad	drops	more	than	vt	below	this	secondary	peak’s	maximum	value,	223	

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 9, 2016. ; https://doi.org/10.1101/057984doi: bioRxiv preprint 

https://doi.org/10.1101/057984
http://creativecommons.org/licenses/by-nc/4.0/


	 11	

this	peak	ends	and	its	maximum	value	and	associated	window	position	are	noted.		224	

Statistical	significance	of	these	primary	and	secondary	peaks,	along	with	their	confidence	225	

intervals	and	relative	strengths,	will	be	assessed	in	subsequent	stages	of	this	pipeline.	226	

	227	

SIBSAM	identification	of	significant	primary	peaks	228	

The	false	positive	probability	(P)	for	each	primary	peak	is	estimated	by	comparing	229	

empirical	peak	heights	against	simulations	under	the	null	hypothesis	of	no	true	QTLs,	in	230	

which	all	phenotypic	variance	in	the	mapping	population	is	random	with	respect	to	231	

genotype.		All	primary	peaks	exceeding	adt	from	each	simulation	replicate	are	noted.		The	232	

enrichment	(e)	of	peaks	equal	to	or	greater	than	a	given	peak’s	height	in	the	real	data	is	233	

given	by	the	ratio	of	the	frequency	of	peaks	of	this	height	in	the	real	data	relative	to	the	234	

simulated	data.		If	there	is	an	enrichment	(e	>	1),	an	estimate	of	the	proportion	of	real	235	

peaks	of	this	height	representing	false	positives	is	then	given	by	1	/	e.			For	example,	if	ad	236	

peaks	of	at	least	0.2	in	height	are	three	times	more	common	in	the	empirical	data	than	in	237	

null	simulations,	then	on	average	one	out	of	three	such	empirical	peaks	can	be	explained	by	238	

the	expected	false	positive	rate.		Primary	peaks	with	an	estimated	P	less	than	some	239	

threshold	(by	default,	0.05)	are	carried	forward	for	subsequent	analysis.	240	

	241	

SIBSAM	inferences	from	single	QTL	simulations	242	

Genomic	simulations	with	a	single	QTL	are	used	to	estimate	the	genomic	confidence	243	

intervals	and	strength	of	each	primary	peak,	along	with	a	P	value	for	each	secondary	peak.		244	

Single	QTL	simulations	are	performed	with	each	fixed	genomic	positions	corresponding	to	245	

the	window	with	the	peak	maximum	ad	for	each	QTL,	thus	conserving	local	window	246	
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patterns	of	depth	and	cM	distance.		For	a	given	set	of	simulated	genomes	from	the	mapping	247	

population	(pre-selection),	a	random	QTL	effect	size	is	drawn.		Such	a	QTL	is	then	248	

separately	simulated	at	each	position	corresponding	to	an	empirical	primary	peak,	with	249	

phenotype	simulation	and	read	sampling	performed	separately	in	each	case.		The	simulated	250	

cage	ancestries	are	reused	for	each	separate	QTL	simulation	as	a	time-saving	efficiency.			251	

The	simulated	QTL	strength,	s,	ranging	from	0	to	1,	is	the	estimated	proportion	of	252	

variance	that	a	QTL	explains	among	the	mapping	population	individuals.		In	these	single	253	

locus	simulations,	all	other	phenotypic	contributions	are	modeled	as	random	variance,	254	

which	here	is	intended	to	encompass	the	effects	of	unlinked	QTLs	in	addition	to	non-255	

genetic	effects	on	phenotypic	measurements.		The	amount	of	random	variance	simulated	is	256	

fixed	to	approximate	the	variance	contributed	by	a	codominant	locus	in	which	each	allele	257	

adds	1	to	the	phenotypic	score.		This	effect	was	implemented	by	obtaining	Gaussian	258	

random	values	with	mean	0	and	standard	deviation	1,	and	then	multiplying	each	value	by	259	

0.5	to	obtain	the	random	variance	effect	on	each	individual’s	phenotypic	score.		The	260	

simulated	effect	size	of	each	QTL,	e,	describes	the	quantity	that	each	allele	of	this	locus	261	

(inherited	from	the	high	parental	strain)	adds	to	an	individual’s	phenotypic	score.		Since	262	

random	effects	correspond	to	the	variance	contributed	by	a	locus	with	e	=	1,	the	proportion	263	

of	variance	contributed	by	a	single	QTL	(s)	is	equal	to	e	/	(1	+	e).		And	correspondingly,	a	264	

single	QTL	intended	to	have	strength	s	is	simulated	with	an	effect	size	e	=	s	/	(1	+	e).			265	

For	each	simulated	replicate,	the	simulated	strength	is	recorded,	along	with	each	QTL’s	266	

maximum	height,	peak	window	location,	and	maximum	secondary	deviation.		To	analyze	267	

the	one	locus	simulation	data	for	each	primary	peak,	a	rejection	sampling	approach	is	used	268	

to	identify	simulation	replicates	in	which	maximum	ad	falls	within	a	specified	tolerance	269	
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(default	0.025)	of	the	empirical	peak’s	maximum	ad.		For	each	accepted	simulation	270	

replicate,	the	strength	of	the	simulated	locus	goes	into	the	posterior	distribution	for	the	271	

empirical	QTL’s	strength	(from	which	strength	values	corresponding	to	the	0.05,	0.5,	and	272	

0.95	quantiles	are	returned).		A	genomic	confidence	interval	is	similarly	obtained	by	273	

examining	the	far	left	and	far	right	quantiles	for	the	simulated	peak	locations	resulting	274	

from	a	QTL	simulated	at	the	empirical	peak	location.		This	assumes	a	certain	transitivity.		275	

Here,	we	are	simulating	QTLs	with	fixed	positions	and	observing	how	far	away	the	276	

maximum	ad	falls	in	these	simulations.		In	the	empirical	data,	we	observe	the	location	of	the	277	

maximum	ad,	and	we’d	like	to	know	how	far	from	this	window	the	true	QTL	might	be.		278	

Thus,	we	assume	the	distances	from	true	QTL	to	maximum	ad	in	the	simulated	data	are	a	279	

good	proxy	for	the	distances	between	maximum	ad	and	true	QTL	in	the	empirical	data.	280	

Lastly,	the	secondary	deviations	from	each	accepted	simulation	enable	P	values	to	be	281	

calculated	for	each	of	the	empirical	primary	peak’s	associated	secondary	peaks.		If	more	282	

than	one	secondary	peak	is	present	on	the	same	side	of	the	primary	peak	in	the	empirical	283	

data,	the	tallest	secondary	peak	is	tested	first,	and	its	v	is	based	on	the	difference	between	284	

its	height	and	the	lowest	ad	value	between	itself	and	the	primary	peak	(even	if	other	285	

secondary	peaks	exist	between	this	peak	and	valley;	Figure	2).		For	a	shorter	secondary	286	

peak	between	a	primary	peak	and	a	taller	secondary	peak,	v	would	be	defined	as	the	287	

difference	between	its	height	and	the	higher	of	the	valleys	on	either	side	of	it.		Giving	taller	288	

peaks	this	priority	avoids	the	situation	of	a	shorter	secondary	peak	being	deemed	289	

significant	and	a	taller	peak	beyond	it	missing	this	threshold	(as	might	occur	if	secondary	290	

peaks	were	simply	evaluated	sequentially	by	position).		After	such	adjustments,	each	291	

secondary	peak	deviation	in	the	empirical	data	associated	with	this	primary	peak	is	292	
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compared	to	the	distribution	of	v	from	accepted	simulations.		The	proportion	of	293	

simulations	with	a	v	greater	than	observed	for	a	given	empirical	secondary	peak	becomes	294	

the	P	value	for	that	peak	(i.e.	the	probability	of	getting	a	secondary	deviation	this	extreme	295	

when	the	true	model	is	a	single	QTL	of	the	observed	magnitude).			296	

	297	

SIBSAM	inferences	from	QTL	cluster	simulations	298	

In	cases	where	an	empirical	primary	peak	is	accompanied	by	one	or	more	statistically	299	

significant	secondary	peaks,	the	strengths	and	confidence	intervals	of	all	peaks	in	this	“QTL	300	

cluster”	are	best	approximated	from	simulations	that	include	each	member	QTL.		For	301	

example,	a	pair	of	nearby	QTLs	may	each	add	to	the	ad	peak	height	of	the	other,	leading	to	302	

overestimates	of	effect	size.		Therefore,	multi-QTL	simulations	are	conducted	separately	for	303	

each	QTL	cluster	inferred	from	the	empirical	data.		For	simplicity,	the	window	position	of	304	

each	simulated	QTL	is	fixed	according	to	the	windows	showing	maximum	ad	for	each	305	

significant	peak	in	the	empirical	cluster.		To	examine	each	QTL	separately,	each	is	assigned	306	

an	analysis	zone	with	boundaries	corresponding	to	the	empirical	valleys	(local	minima)	307	

between	peaks.		Moving	away	from	the	outer	peaks	in	the	cluster,	this	analysis	zone	is	308	

bounded	only	by	the	ends	of	the	chromosome.	309	

For	each	cluster	simulation	replicate,	a	random	strength	value	is	first	drawn	for	the	full	310	

cluster	(representing	the	cumulative	proportion	of	phenotypic	variance	explained	by	the	311	

QTLs	in	this	cluster).		That	cluster	strength	is	randomly	apportioned	among	the	QTLs,	and	312	

each	peak’s	strength	is	then	translated	into	the	simulated	effect	size	as	described	above.	313	

A	cluster	simulation	replicate	is	accepted	only	if	the	local	maximum	ad	in	every	QTL’s	314	

analysis	zone	falls	within	a	tolerance	of	the	corresponding	empirical	peak	heights.		Here,	it	315	

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 9, 2016. ; https://doi.org/10.1101/057984doi: bioRxiv preprint 

https://doi.org/10.1101/057984
http://creativecommons.org/licenses/by-nc/4.0/


	 15	

could	be	necessary	to	use	a	slightly	higher	tolerance	value	to	accrue	enough	accepted	316	

simulations	(default	ad	tolerance	0.05).		This	or	any	other	simulation	step	in	SIBSAM	can	be	317	

parallelized	to	increase	the	number	of	replicates,	followed	by	joint	analysis	of	multiple	318	

simulation	output	files	(Figure	3).			319	

The	estimated	strength	of	each	peak	in	cluster,	along	with	confidence	intervals	of	320	

strength	and	genomic	position,	are	obtained	from	a	similar	rejection	process	as	described	321	

for	the	one	locus	simulations	(based	on	the	distribution	of	strength	values	and	peak	322	

locations	for	that	peak	among	the	accepted	simulations).		Thus,	the	cluster	QTL	simulations	323	

provide	estimates	of	effect	size	and	genomic	confidence	intervals	for	all	significant	324	

secondary	peaks.		They	also	replace	prior	estimates	of	these	quantities	for	the	associated	325	

primary	peaks,	since	cluster	estimates	that	account	for	the	effects	of	linked	QTLs	should	be	326	

more	accurate.		327	

The	final	SIBSAM	output	file	contains,	for	each	significant	primary	and	secondary	peak,	328	

its	P	value,	the	genomic	coordinates	of	the	peak	window	and	the	confidence	interval	for	the	329	

QTL’s	genomic	location,	and	the	point	estimate	and	confidence	interval	for	QTL	strength.		330	

Information	such	as	P	values	for	non-significant	peaks	can	be	found	in	the	intermediate	331	

files	produced	at	different	stages	of	the	SIBSAM	pipeline	(Figure	3).			332	

	333	

Simulations	testing	the	performance	of	SIBSAM	334	

Simulation	testing	of	SIBSAM	was	performed	to	test	its	QTL	detection	power	under	335	

different	scenarios,	and	to	confirm	that	estimates	and	confidence	intervals	of	genomic	336	

location	and	QTL	strength	were	performing	in	line	with	expectations.		Although	a	nearly	337	

infinite	range	of	scenarios	could	potentially	be	investigated,	I	focused	on	experimental	338	
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parameters	relevant	to	our	current	empirical	applications	in	Drosophila	(e.g.	Bastide	et	al.	339	

2016),	in	which	1,200	individuals	interbreed	for	16	generations,	and	10%	phenotypic	tails	340	

are	selected	for	sequencing.		Test	simulations	sampled	1,000	informative	reads	for	each	341	

window	for	each	phenotypic	pool,	which	is	about	half	the	median	depth	per	window	from	342	

current	empirical	applications	(e.g.	Bastide	et	al.	2016).		Windows	were	designed	to	each	343	

contain	200	non-singleton	variable	sites	in	the	Zambia-Siavonga	population	genomic	data	344	

described	by	Lack	et	al.	(2015).		These	14,107	windows	had	a	median	length	of	6.8	kb.	345	

Simulations	with	one	genuine	QTL	were	performed	with	varying	locus	strengths		(s	=	346	

0.05,	0.1,	0.15,	0.2,	0.25,	0.33,	0.5).		These	initial	test	simulations	used	fixed	genomic	347	

positions	corresponding	to	the	locations	of	Drosophila	pigmentation	genes	tan	(on	the	X	348	

chromosome)	and	ebony	(on	arm	3R).		Additional	3R	scenarios	with	s	=	0.2	investigated	the	349	

consequences	of	the	remaining	variance	being	due	to	unlinked	QTLs	(1	with	s	=	0.8	or	else	350	

4	others	with	s	=	0.2)	instead	of	random	Gaussian	variance.		Comparing	each	test	replicate	351	

against	SIBSAM	null	simulations	revealed	the	true	positive	rate	for	QTL	detection.		Running		352	

the	test	replicates	through	the	SIBSAM	one	locus	simulation	analysis	indicated	the	353	

frequency	at	which	secondary	QTLs	were	falsely	inferred,	along	with	allowed	the	inferred	354	

distributions	of	QTL	strength	and	genomic	location	to	be	compared	against	known	true	355	

values.	356	

Additional	simulations	were	conducted	(focusing	on	the	3R	location)	to	investigate	357	

SIBSAM’s	performance	in	the	presence	of	two	linked	QTLs.		Scenarios	with	symmetric	QTL	358	

strength	(s	=	0.15	or	0.3)	and	asymmetric	QTL	strength	(s	=	0.15	and	0.3)	were	359	

investigated.		The	distance	between	the	two	QTLs	was	varied	at	2.5,	5,	10,	and	25	cM.		The	360	

test	replicates	were	then	evaluated	with	SIBSAM	to	(1)	test	the	power	to	detect	one	or	both	361	
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QTLs,	(2)	test	the	rate	of	falsely	detecting	three	or	more	QTLs,	(3)	evaluate	the	362	

performance	of	QTL	localization,	and	(4)	evaluate	the	performance	of	QTL	size	estimation.	363	

	364	

	365	

RESULTS:	366	

	367	

Initial	Simulation	Study	of	BSA	and	IM	368	

Simulations	were	performed	to	examine	the	properties	of	QTL	signals	under	BSA	and	369	

IM	approaches.		Importantly,	these	exploratory	simulations	are	not	connected	to	any	370	

formal	QTL	inference.		Instead,	they	focus	on	the	performance	of	summary	statistics	related	371	

to	the	signature	of	a	QTL.		For	BSA,	I	examine	ancestry	difference	(ad),	the	difference	372	

between	high	and	low	phenotypic	pools	in	the	proportion	of	ancestry	sampled	from	the	373	

parental	strain	with	the	higher	phenotypic	value	(at	a	particular	genomic	locus).		For	IM,	I	374	

examine	ancestry	proportion	(ap),	the	proportion	of	the	mapping	population’s	ancestry	that	375	

derives	from	the	non-backcross	parental	strain.		Rather	than	focusing	on	the	raw	values	of	376	

these	statistics,	I	assess	the	performance	of	BSA	and	IM	by	examining	the	genetic	distance	377	

between	a	true	simulated	QTL	and	the	“QTL	peak”	(the	maximum	value	of	ad	or	ap	in	this	378	

part	of	the	genome).			379	

The	above	approach	allows	a	wider	range	of	scenarios	to	be	examined	than	would	be	380	

computationally	feasible	under	the	full	SIBSAM	inference	process.		Beyond	a	tentative	381	

comparison	of	the	genomic	precision	of	BSA	vs.	IM,	an	important	goal	here	is	to	optimize	382	

critical	experimental	parameters	to	improve	the	outcomes	of	future	trait	mapping	studies.		383	

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 9, 2016. ; https://doi.org/10.1101/057984doi: bioRxiv preprint 

https://doi.org/10.1101/057984
http://creativecommons.org/licenses/by-nc/4.0/


	 18	

As	a	point	of	reference,	these	simulations	began	with	a	“default”	scenario	in	which	600	384	

individuals	were	bred	each	generation,	for	10	total	generations,	phenotypic	selection	385	

retained	the	20%	most	extreme	individuals	in	each	direction,	and	each	window/locus	had	a	386	

sequencing	depth	of	300.		Individual	parameters	were	then	varied,	alone	or	in	combination,	387	

and	the	accuracy	of	the	ad	or	ap	signal	was	examined.			388	

First,	performance	was	examined	when	tandemly	varying	the	number	of	QTLs	and	the	389	

number	of	independent	crosses.		Within	each	simulation	case,	all	QTLs	were	of	equal	390	

magnitude	and	explained	5/6	of	total	phenotypic	variance.		Independent	crosses	were	391	

simulated	under	the	assumption	that	all	pairs	of	parental	strains	share	a	given	QTL	392	

difference	between	them.		When	multiple	crosses	were	analyzed	together,	ad	or	ap		were	393	

added	between	crosses	for	each	genomic	window	to	test	whether	a	more	precise	394	

localization	emerged	from	this	joint	signal.		Three	primary	themes	emerged	from	this	395	

analysis.		First,	BSA	outperformed	IM	for	any	given	combination	of	crosses	and	loci	(Figure	396	

4).		Second,	combining	data	from	multiple	crosses	had	a	markedly	positive	effect	on	the	397	

accuracy	of	these	ancestry	signals.		Third,	performance	showed	a	predictable	decline	for	398	

more/weaker	QTLs.		Still,	cases	with	multiple	crosses	still	managed	relatively	stronger	399	

performance	for	more	polygenic	scenarios	(Figure	4),	particularly	in	the	case	of	BSA.		For	400	

simplicity,	the	remaining	simulations	below	will	focus	on	a	single	cross	replicate	and	a	401	

scenario	with	five	QTLs.				402	

The	number	of	generations	before	genotyping/sequencing	was	also	varied.		Strong	403	

performance	improvement	was	observed	by	increasing	the	number	of	generations	to	8	or	404	

10,	with	further	increases	yielding	ongoing	but	diminishing	improvements	(Figure	5A).		405	
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Additional	generations	allow	more	recombination	between	parental	genetic	backgrounds,	406	

which	should	lead	to	sharper	QTL	peaks.			407	

Past	results	indicate	that	selecting	only	the	most	extreme	individuals	is	not	optimal	for	408	

BSA	(Magwene	et	al.	2011).		Concordantly,	for	the	focal	simulation	scenario	studied	here,	409	

optimum	bulk	proportions	were	around	10-15%	for	each	BSA	pool,	and	20%	for	the	single	410	

IM	pool	(Figure	5B).		These	results	appear	to	reflect	a	balance	between	enriching	for	411	

causative	genotypes	(favoring	fewer	individuals)	and	minimizing	the	effects	of	random	412	

sampling	variance	(favoring	more	individuals).		Thus,	both	BSA	and	IM	studies	may	benefit	413	

from	selecting	significant	numbers	of	individuals,	which	should	help	to	maximize	the	414	

diversity	of	recombination	breakpoints	represented	in	the	final	data.			415	

Related	to	the	issue	of	sampling	variance	are	parameters	such	as	the	number	of	416	

individuals	present	in	each	generation	and	the	number	of	genotypes	sampled	in	the	data	417	

(e.g.	sequencing	depth).		When	simulations	jointly	scaled	up	the	number	of	individuals	418	

present	in	each	generation,	the	number	sampled	for	sequencing,	and	the	sequencing	depth,	419	

performance	improved	considerably	(Figure	5C).		The	number	of	individuals	sampled	in	420	

the	final	generation	made	a	particular	difference,	at	least	if	depth	was	scaled	up	linearly	421	

(Figure	S1).		Increasing	sequence	depth	consistently	led	to	better	performance	(via	a	422	

reduction	in	sampling	variance),	although	with	some	diminishing	returns	(Figure	6).	423	

Simulations	also	considered	the	interaction	between	selection	proportion	and	424	

population	size.		The	optimal	selection	proportion	(s)	tends	to	scale	inversely	with	425	

population	size	(N).		For	BSA	population	sizes	between	100	and	2,400,	there	was	a	relative	426	

stability	in	the	optimal	number	of	sampled	individuals	for	sequencing	(Ns),	with	this	427	

quantity	ranging	only	from	35	to	60	(Table	S1).		In	line	with	the	findings	of	Magwene	et	al.	428	
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(2011),	this	result	suggests	that	reducing	sampling	variance	is	of	primary	importance,	429	

whereas	enriching	for	the	most	phenotypically	extreme	individuals	is	a	secondary	priority.			430	

	431	

Simulation	testing	of	the	SIBSAM	pipeline	432	

As	elaborated	in	the	Materials	and	Methods	section,	I	developed	a	prototype	method	for	433	

Simulation-based	Inference	for	BSA	Mapping	(SIBSAM).		The	flexibility	of	this	simulation-434	

driven	pipeline	allows	a	range	of	inferences,	including	for	challenging	cases	in	which	two	or	435	

more	QTLs	are	part	of	the	same	complex	peak	(Figure	2).		The	goals	of	SIBSAM	include	436	

assessing	the	significance	of	peaks,	and	estimating	the	strength	and	genomic	confidence	437	

interval	of	significant	QTL.		The	performance	of	SIBSAM	was	assessed	via	a	series	of	test	438	

simulations	with	one	or	more	QTLs.		While	a	vast	range	of	QTL	and	experimental	scenarios	439	

could	potentially	be	examined,	I	focus	here	on	parameters	relevant	to	ongoing	empirical	440	

work	in	Drosophila	(Bastide	et	al.	2016).		The	BSA	experimental	design	simulated	here	441	

went	for	16	generations,	with	1,200	individuals	in	each	generation,	with	600	females	442	

phenotyped	in	the	last	generation	with	10%	pools	selected,	and	1,000	informative	443	

sequence	reads	for	each	genomic	window.			444	

For	the	above	scenario,	SIBSAM’s	QTL	detection	power	went	from	weak	for	a	QTL	445	

explaining	10%	of	the	experimental	population’s	phenotypic	variance	(with	the	remainder	446	

due	to	random	environmental	or	measurement	variance)	to	strong	for	a	20%	QTL,	with	447	

intermediate	power	for	15%	QTL	(Figure	7).		As	illustrated	by	the	exploratory	simulations	448	

above,	the	performance	of	QTL	mapping	is	likely	to	be	improved	by	increasing	the	number	449	

of	generations,	the	population	size,	sequencing	depth,	and/or	the	number	of	independent	450	

crosses.			451	
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The	estimation	of	QTL	strength	for	significant	peaks	was	quite	accurate	for	452	

intermediate	strength	QTL	(15%	to	33%)	when	the	remaining	phenotypic	variance	was	453	

random	and	normally	distributed	(Figure	7).		However,	in	other	scenarios	the	strength	454	

estimate	became	upwardly	biased.		For	a	weaker	QTL	(e.g.	10%	in	this	example),	there	455	

appears	to	be	a	“detection	bias”	in	which	only	the	test	replicates	giving	the	tallest	peaks	456	

were	deemed	significant,	and	since	these	peaks	are	unusually	high	for	a	s	=	10%	QTL,	their	457	

strength	was	typically	overestimated.		If	strength	estimates	for	non-significant	peaks	were	458	

included,	there	was	no	directional	bias.		The	highest	QTL	strength	(50%)	also	showed	459	

upward	bias,	which	may	reflect	a	“saturation	effect”	of	the	ad	statistic.		Here,	peak	heights	460	

were	very	close	to	1	(individuals	were	well-sorted	into	the	extreme	pools	based	on	QTL	461	

genotype),	which	is	the	same	outcome	produced	by	a	QTL	with	s	>	50%.		Upward	strength	462	

bias	was	also	observed	if	the	remaining	phenotypic	variance	was	produced	by	other	strong	463	

QTLs,	rather	than	normally	distributed	random	variance.		If	a	20%	QTL	was	accompanied	464	

by	an	unlinked	80%	QTL	(with	no	environmental/measurement	variance),	the	median	465	

estimate	of	s	was	24.2%.		If	a	20%	QTL	was	accompanied	by	four	unlinked	QTLs	of	equal	466	

strength,	the	median	estimate	of	s	was	31.4%	(although	power	increased	from	94%	to	467	

100%	for	both	of	these	cases).		In	light	of	the	recurrent	bias	in	effect	size	estimation,	the	468	

reported	quantities	are	best	viewed	as	rough	estimates	of	QTL	strength.		Future	469	

methodological	studies	may	explore	alternative	approaches	to	the	estimation	of	QTL	470	

strength	in	a	simulation	framework.	471	

Other	aspects	of	SIBSAM	inference	performed	largely	as	expected	on	the	simulated	472	

data.		For	significant	QTL,	only	around	5%	had	a	false	positive	secondary	peak	(in	line	with	473	

null	expectations;	Figure	S2).		For	QTL	strengths	with	adequate	power,	approximately	the	474	
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predicted	proportion	of	loci	fell	within	the	provided	confidence	intervals	for	QTL	strength	475	

and	genomic	position	(Figure	S2),	with	performance	only	declining	for	the	weaker	s	=	10%	476	

case	that	was	rarely	detected	for	this	scenario.			477	

Detection	power	was	also	examined	for	cases	involving	two	linked	QTLs	(of	strength	478	

15%	and/or	30%)	separated	by	various	distances	(2.5	cM,	5	cM,	10	cM,	25	cM).		For	QTL	of	479	

equal	strength,	the	25	cM	linkage	had	no	adverse	effect	on	QTL	detection.		Power	was	480	

actually	slightly	higher	in	the	case	of	15%	QTL	separated	by	25	cM	(relative	to	the	unlinked	481	

case),	even	though	55%	of	these	test	replicates	had	one	of	the	QTLs	as	a	secondary	peak.		482	

Power	to	detect	a	second	peak	dropped	significantly	as	the	distance	between	QTL	dropped	483	

to	10	cM	and	5	cM	(Figure	8).		In	the	case	where	one	QTLs	had	s	=	30%	and	the	other	had	s	484	

=	15%,	power	remained	high	for	the	stronger	QTL	at	all	distances,	but	was	low	for	weaker	485	

QTL	at	10	cM	or	closer	(Figure	8).	486	

	487	

DISCUSSION	488	

Mapping	the	genetic	architecture	of	phenotypic	trait	differences	remains	a	challenging	489	

but	critical	problem	in	the	fields	of	genetics	and	evolutionary	biology.		Above,	I	have	490	

compared	the	behavior	of	bulk	segregant	analysis	and	introgression	mapping,	while	491	

assessing	the	experimental	parameters	that	modulate	their	outcomes.		I	then	offered	a	new	492	

simulation-based	approach	to	BSA	inference,	geared	toward	systems	like	Drosophila	in	493	

which	hundreds	or	thousands	(but	not	millions)	of	individuals	can	be	examined,	and	in	494	

which	BSA	QTL	signals	may	sometimes	overlap	each	other.				495	

A	general	principle	of	QTL	mapping	is	that	performance	is	enhanced	by	sampling	a	496	

diverse	range	of	recombinant	genotypes.		Thus,	simulation	results	suggest	that	BSA	and	IM	497	
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should	both	be	more	successful	when	more	generations	of	interbreeding	occur,	when	498	

larger	numbers	of	individuals	are	present	in	the	mapping	population,	and	when	greater	499	

sequencing	effort	is	employed.		The	importance	of	sampling	at	least	a	few	tens	of	500	

individuals	in	phenotypically-selected	pools	is	clear	as	well.		These	results	suggest	that	the	501	

typical	method	of	introgression	mapping,	in	which	small	numbers	of	individuals	are	502	

phenotypically	selected	every	generation	or	two,	is	not	advisable	for	mapping	oligogenic	503	

traits	(and	is	not	ideal	for	monogenic	traits	either;	Figure	4).		Instead,	if	IM	is	used,	larger	504	

numbers	of	phenotyped	and	retained	individuals	are	desirable.		However,	based	on	the	505	

criteria	employed	here,	BSA	gave	a	more	precise	mapping	signal	than	IM	for	every	506	

combination	of	experimental	and	QTL	parameters	examined.		This	finding	may	again	relate	507	

to	the	principle	of	maintaining	a	diversity	of	recombination	breakpoints,	which	is	508	

maximized	by	avoiding	IM’s	population	bottlenecks	associated	with	phenotypic	selection	509	

during	the	intermediate	generations	of	interbreeding.	510	

The	tradeoffs	among	BSA,	IM,	and	other	mapping	approaches	are	complex	and	merit	511	

further	attention.		A	compelling	advantage	of	BSA	is	that	the	same	experimental	population	512	

may	be	used	to	map	multiple	trait	differences	(e.g.	once	the	adults	have	already	513	

reproduced,	select	for	one	trait	in	generation	12,	another	trait	in	generation	13,	etc.).		For	514	

the	same	set	of	experimental	parameters	as	defined	here,	BSA	actually	requires	less	effort	515	

than	IM	during	the	experiment,	since	phenotyping	must	be	performed	only	in	the	last	516	

generation.		BSA	does	require	the	sequencing	of	two	phenotypic	pools	(high	and	low),	517	

whereas	IM	requires	just	one	phenotypic	pool	to	be	sequenced	(note	however	that	518	

doubling	IM	depth	does	not	allow	it	to	match	BSA’s	performance;	Figure	S1).		Because	both	519	
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parental	strains’	genotypes	are	present	across	the	genomes	of	mapping	population	520	

individuals,	BSA	may	be	more	influenced	by	the	complexities	of	epistatic	interactions.			521	

In	the	course	of	a	BSA	experiment,	parental	strain	ancestry	frequencies	in	the	mapping	522	

population	could	deviate	from	50%.		The	effects	of	genetic	drift	should	be	modest	when	the	523	

population	size	is	vastly	greater	than	the	number	of	generations	of	interbreeding,	and	524	

SIBSAM	allows	for	drift’s	occurrence.		Although	not	modeled	here,	inadvertent	laboratory	525	

selection	could	also	shift	mapping	population	ancestry	frequencies.		In	general,	such	526	

ancestry	shifts	should	not	lead	to	false	positive	QTL,	because	both	phenotypic	pools	will	be	527	

equally	affected.		If	ancestry	frequencies	become	extreme,	the	response	of	ad	to	a	QTL	could	528	

be	dampened,	leading	to	reduced	power	and	underestimation	of	QTL	strength.		Hence,	it	529	

may	be	worthwhile	to	collect	BSA	sequence	data	before	an	excessive	number	of	530	

generations	have	elapsed.		Genomic	regions	found	to	show	ancestry	shifts	could	be	531	

interesting	in	their	own	right,	since	they	may	contain	drivers	of	laboratory	adaptation,	532	

differential	mating	success,	or	segregation	distortion.			533	

It	is	more	challenging	to	compare	BSA	or	IM	against	alternative	mapping	methods	such	534	

as	those	involving	individual	genotyping	(e.g.	Andolfatto	et	al.	2011)	or	the	generation	of	535	

recombinant	inbred	lines	(e.g.	King	et	al.	2012).		However,	it	may	be	worth	evaluating	the	536	

benefits	of	combining	elements	of	BSA	with	these	approaches.		Following	multiple	537	

generations	in	a	large	mapping	population,	offspring	with	extreme	phenotypes	could	be	538	

individually	genotyped.		Or,	the	mapping	population	could	be	used	to	found	a	large	number	539	

of	recombinant	inbred	lines	(RILs),	with	BSA	and	RIL	mapping	potentially	integrated.			540	

The	mapping	approach	and	method	described	here	requires	a	moderate	investment	of	541	

researcher	time	and	funding,	and	delivers	a	range	of	QTL	inferences.		While	useful	in	its	542	
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current	form,	SIBSAM	may	also	motivate	future	simulation-based	mapping	methods.		543	

Although	motivated	by	Drosophila	QTL	mapping,	this	approach	may	prove	broadly	useful	544	

for	non-model	insects	and	other	smaller	organisms	with	short	generation	times.			545	

	546	
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Figure	1.		The	investigated	experimental	designs	for	BSA	and	IM	are	illustrated.		In	BSA,	offspring	of	reciprocal	parental	strain	
crosses	are	combined	and	allowed	to	breed	without	trait	selection	for	a	number	of	generations.		Phenotyping	occurs	only	in	
the	final	generation,	and	pools	of	individuals	with	the	highest	and	lowest	trait	values	are	each	sequenced.		The	IM	framework	
investigated	here	involves	trait	selection	and	parental	strain	backcrossing	every	second	generation	(allowing	recessive	
genotypes	to	be	expressed).		In	the	last	generation,	one	phenotypic	extreme	is	sequenced	and	compared	against	the	backcross	
parental	strain	genome.	 	

Selection for 
high trait 

Parental             Odd Generations    Even Generations   Last Even Generation    

high trait ♀♀ (seq.)   

all others (discard)   

High Strain ♀♀×  
Low Strain ♂♂    

Low Strain ♀♀× 
High Strain ♂♂    

F1 ♀♀  
F1 ♂♂    

F1 ♀♀  
F1 ♂♂    Interbreeding 

without 
trait selection 

Parental            F1     Several Generations     Last Generation    

high trait ♀♀ (seq.)   

mid trait ♀♀ (discard)   

low trait ♀♀ (seq.)   

High Strain ♀♀×  
Low Strain ♂♂    

Interbreeding 
w/o selection 

High-selected ♀♀  
× Low Strain ♂♂    

(backcross)    

INTROGRESSION MAPPING (IM):    

BULK SEGREGANT ANALYSIS (BSA):    

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 9, 2016. ; https://doi.org/10.1101/057984doi: bioRxiv preprint 

https://doi.org/10.1101/057984
http://creativecommons.org/licenses/by-nc/4.0/


	 29	

	

Figure	2.		Definitions	of	primary	and	secondary	peaks,	along	with	secondary	deviation,	used	by	SIBSAM	are	illustrated	here.		
Among	a	group	of	contiguous	windows	with	smoothed	ad	values	above	zero,	the	primary	peak	is	defined	by	the	window	with	
the	highest	value.		Secondary	peaks	represent	other	local	maxima,	and	their	significance	is	judged	based	on	secondary	
deviation	(v).		Secondary	deviation	is	determined	by	the	difference	in	ad	between	the	secondary	peak’s	maximum	value	and	
the	minimum	value	between	that	peak	and	the	primary	peak	(or	a	taller	secondary	peak,	whichever	minimum	is	greater).	 	
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Figure	3.		A	flow	chart	illustrating	the	SIBSAM	analysis	pipeline	is	shown.		A	single	input	file	contains	physical	and	genetic	map	
positions	of	window	boundaries	for	all	chromosomes,	along	with	ancestry	difference	values	and	informative	depth	(the	
number	of	reads	within	information	about	parental	strain	ancestry)	for	each	window.		Null	simulations	with	no	true	QTLs	are	
used	to	identify	significant	primary	peaks	in	the	empirical	data.		Simulations	with	one	QTL	(matching	a	primary	peak	location)	
are	then	used	to	estimate	confidence	intervals	for	primary	peak	effect	size	and	genomic	location,	while	also	identifying	
significant	secondary	peaks.		For	any	primary	peak	with	significant	secondary	peaks,	cluster	simulations	are	conducted	with	
QTLs	at	each	peak’s	location,	in	order	to	generate	final	confidence	intervals	for	effect	size	and	genomic	location.		These	
analyses	are	summarized	into	a	single	output	file	containing	all	relevant	inferences	for	each	significant	peak.	
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Figure	4.		Results	are	shown	for	exploratory	BSA	and	IM	simulations	with	varying	numbers	of	QTLs	and	numbers	of	jointly-
analyzed	independent	crosses.		As	a	proxy	for	method	performance,	the	median	centiMorgan	distance	between	the	true	QTL	
and	the	statistic	maximum	(of	ad	for	BSA	or	ap	for	IM)	is	shown.		The	null	expectation	for	a	randomly	located	peak	within	a	
QTL’s	analysis	window	is	also	shown	(gray).		These	results	indicate:	(1)	the	increasing	challenge	of	more	polygenic	scenarios	
for	all	approaches,	(2)	a	general	advantage	of	BSA	over	IM,	and	(3)	the	utility	of	combining	data	from	independent	crosses	that	
all	share	a	given	QTL	in	common.	
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Figure	5.		The	results	of	exploratory	BSA	and	IM	simulations	are	shown	in	which	one	or	
more	experimental	variables	were	manipulated.		(A)	Increasing	the	total	number	of	

generations	in	the	experiment	reduces	the	median	centiMorgan	distance	between	the	true	

QTLs	and	the	observed	peak.		(B)	A	broad	optimal	range	of	selection	proportion	exists	for	

the	focal	BSA	and	IM	scenarios.		(C)	Scaling	up	the	experimental	population	size	(and	hence	

the	number	of	phenotyped	individuals),	along	with	the	sequencing	depth,	leads	to	

improved	statistical	performance.	

0	

1	

2	

3	

4	

5	

0	 4	 8	 12	 16	 20	

cM
	fr
om

	P
ea
k	
to
	Q
TL
	

Genera2ons	

IM	
BSA	

0.0	

0.5	

1.0	

1.5	

2.0	

0	 0.1	 0.2	 0.3	 0.4	 0.5	

cM
	fr
om

	P
ea
k	
to
	Q
TL
	

Selec2on	Propor2on	

IM	
BSA	

0	

1	

2	

3	

4	

5	

6	

7	

75	 150	 300	 600	 1200	

cM
	fr
om

	P
ea
k	
to
	Q
TL
	

Pop.	Size,	#	Phenotyped,	&	(Depth	x	2)	

IM	
BSA	

C	

A	

B	



	 33	

	

	

Figure	6.		Outcomes	of	exploratory	BSA	and	IM	simulations	with	variable	sequencing	depth	are	shown.		To	more	clearly	

illustrate	the	influence	of	depth	on	sampling	variance,	depth	is	plotted	in	terms	of	the	average	number	of	reads	for	each	

individual	in	a	phenotypically	selected	pool.		From	a	group	of	600	phenotyped	individuals,	results	for	a	series	of	selection	

proportions	are	illustrated.		Results	illustrate	the	advantage	of	increased	sequencing	depth,	with	some	diminishing	returns.	 	
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Figure	7.		Results	of	one	locus	test	simulations	assessing	the	performance	of	the	SIBSAM	
pipline	are	shown	for	QTLs	on	the	autosomes	(red	diamond)	and	X	chromosome	(blue	X).		
As	shown	in	the	top	panel,	the	scenario	investigated	here	(involving	a	population	of	1,200	
individuals	with	600	phenotyped	after	16	generations	and	10%	retained	in	each	
phenotypic	pool)	had	intermediate	power	for	a	QTL	explaining	15%	of	phenotypic	variance	
in	the	experimental	population,	with	low/high	power	below/above	that	mark.		As	
illustrated	in	the	bottom	panel	and	discussed	in	the	text,	some	upward	bias	in	effect	size	
estimation	was	observed	for	the	weakest	and	strongest	QTLs	examined.	
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Figure	8.		The	detection	power	of	SIBSAM	in	test	simulations	with	two	linked	QTLs	is	

illustrated.		The	top	panels	illustrate	the	power	to	detect	the	second	of	two	linked	QTLs	of	

equal	magnitude,	conditional	on	detecting	the	first.		The	bottom	panel	illustrates	the	power	

to	detect	either	the	weaker	or	the	stronger	of	two	linked	QTLs	of	unequal	sizes.	
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