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Summary

In the mouse primary visual cortex (V1), sensory re-
sponses are shaped by behavioral factors such as lo-
comotion. These factors are thought to control a dis-
inhibitory circuit, whereby interneurons expressing
vasoactive intestinal peptide (Vip) inhibit those ex-
pressing somatostatin (Sst), disinhibiting pyramidal
cells (Pyr). We measured the effect of locomotion on
these neurons and on interneurons expressing parval-
bumin (Pvalb) in layer 2/3 of mouse V1, and found in-
consistencies with the disinhibitory model. In the
presence of large stimuli, locomotion in-
creased Sstcell responses  without suppress-
ing Vip cells. In the presence of small stimuli, locomo-
tion increased Vip cell responses without suppress-
ing Sst cells. A circuit model could reproduce each cell
type’s activity from the measured activity of other cell
types, but only if we allowed locomotion to increase
feedforward synaptic weights while modulating re-
current weights. These results suggest that locomo-
tion alters cortical function by changing effective syn-
aptic connectivity, rather than only through disinhibi-
tion.

Introduction

Neocortical interneurons can be divided into genet-
ically distinguishable types, which are arranged in spe-
cific functional circuits (Jiang et al., 2015; Kepecs and
Fishell, 2014; Markram et al., 2015; Pfeffer et al., 2013;
Tasic et al., 2016; Tremblay et al., 2016; Zeisel et al.,
2015). There is great interest in understanding how
these circuits map to specific features of cortical oper-
ation, and how different interneuron types influence

each other and ultimately shape the activity of excita-
tory neurons.

In recent years, a “disinhibitory model” has been pro-
posed as a canonical feature of many cortical areas.
This model rests on converging evidence that interneu-
ron-selective interneurons, such as those expressing
vasoactive intestinal peptide (Vip), principally target
somatostatin (Sst) interneurons. This arrangement has
been observed anatomically in the hippocampus
(Acsady et al., 1996a; Acsady et al., 1996b), and func-
tionally in auditory cortex (Pi et al., 2013), medial pre-
frontal cortex (Pi et al., 2013), frontal association cor-
tex (Garcia-Junco-Clemente et al., 2017) and visual cor-
tex (Fu et al., 2014; Karnani et al., 2016a; Pfeffer et al.,
2013). Sst neurons in turn inhibit most other cortical
neuronal classes (with the exception of other Sst cells),
including pyramidal (Pyr) cells (Jiang et al., 2015;
Karnani et al., 2016b; Pfeffer et al., 2013). There is thus
a potentially disinhibitory circuit involving Vip cells, Sst
cells, and Pyr cells (Fu et al., 2014).

In sensory cortex, this disinhibitory circuit seems con-
sistent with the modulation of sensory responses by
behavioral state seen during arousal, whisking, and lo-
comotion. In barrel cortex, for instance, whisking
causes activity to increase in Vip cells, decrease in Sst
cells, and increase in Pyr dendrites (Gentet et al., 2012;
Lee et al., 2013). Furthermore, while the activity of Pyr
cells correlates strongly with that of Pvalb cells, as pre-
dicted by the disinhibitory model it correlates weakly
or negatively with the activity of Sst cells (Gentet et al.,
2010; Gentet et al., 2012). In visual cortex, Vip cells are
activated when animals run (Fu et al., 2014; Reimer et
al., 2014), so a disinhibitory circuit might also explain
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the increases in visually-driven activity seen during lo-
comotion (Ayaz et al., 2013; Erisken et al., 2014; Fu et
al., 2014; Niell and Stryker, 2010).

The disinhibitory circuit, however, makes a key predic-
tion that is unevenly supported by the data: that loco-
motion should decrease the activity of Sst neurons.
One study confirmed the prediction, reporting that lo-
comotion significantly (though mildly) reduced Sst neu-
ron activity (Fu et al., 2014). Other studies, however,
report the opposite effect or mixed effects (Pakan et
al., 2016; Polack et al., 2013; Reimer et al., 2014).

Indirect evidence to support this prediction comes
from visual cortex, where locomotion decreases the
strength of a phenomenon, size tuning, that is thought
to depend on Sst interneurons. Many V1 neurons ex-
hibit size tuning: their responses are reduced when
stimulus size increases beyond a preferred size. Sst in-
terneurons are thought to contribute to size tuning be-
cause they integrate inputs from wide regions of cortex
(Adesnik et al., 2012; Zhang et al., 2014) and because
suppressing their activity reduces the strength of size
tuning (Adesnik et al., 2012). If locomotion reduced Sst
cell activity via inhibition from Vip cells, it should simi-
larly reduce size tuning. This prediction is correct at
least in the deep layers of V1 (Ayaz et al., 2013) and
also in lateral geniculate nucleus (LGN, Erisken et al.,
2014), perhaps because of cortical feedback. In both
regions, locomotion decreases size tuning.

To test the predictions of the disinhibitory model, and
more generally to understand the roles and relation-
ships of different types of interneurons, we systemati-
cally investigated the effect of locomotion on visual
cortical responses to stimuli of different sizes. We used
two-photon microscopy to measure the activity of ge-
netically-identified Sst, Vip, and Pvalb interneurons, to-
gether with pyramidal cells identified genetically or
based on the skewness of their calcium traces.

Our results indicate that locomotor modulation of each
cell class depends critically on the conditions of visual
stimulation. Accordingly, subtle differences in experi-
mental conditions can explain many of the apparent
contradictions between previous studies. Our results,
moreover, indicate multiple ways in which the effects
of locomotion contradict the disinhibitory model. Mod-
eling suggests that the complex interaction between

locomotion, stimulus size, and cell class can be ex-
plained instead by a simple reweighting of feedforward
Vs. recurrent synapses.

Results

We used two-photon imaging to measure the activity
of Pyr neurons and of Sst, Vip, and Pvalb interneurons
in mouse V1 (Figure 1 and Supplementary Figure 1).
Mice were head-fixed and free to run on an air-sus-
pended ball (Niell and Stryker, 2010) while viewing a
grating in a circular window whose size ranged be-
tween 5° and 60° of visual angle (Figure 1A;). We se-
lected for analysis only cells whose receptive field and
orientation tuning matched the stimulus, and cor-
rected for out-of-focus fluorescence (Supplementary
Figure 2; Chen et al., 2013; Peron et al., 2015).

Recording the activity of identified cell classes

To identify neurons belonging to a specific class we
used one of two approaches (Figure 1A, B). In the first
approach (Figure 1A;-A;), GCaMP6m was virally ex-
pressed in all neurons, in mice where a specific cell
class was also labeled with tdTomato. This approach al-
lowed us to record the activity of identified interneu-
rons and of many unlabeled neurons, which are likely
to comprise mostly Pyr cells, along with interneurons
of all classes except the labeled one. In the second ap-
proach, we expressed the calcium indicator exclusively
in a chosen cell class, either by injecting a Cre-depend-
ent GCaMP6m virus into an appropriate transgenic
driver line (Figure 1B; and Supplementary Figure 2B,)
or via a triple-transgenic line that expressed GCaMP6s
specifically in superficial layer Pyr cells.

Interneurons of all three classes fired much more fre-
quently than pyramidal neurons (Figure 1C, D). Con-
sistent with the sparse firing of superficial-layer pyram-
idal cells in mouse visual cortex (Niell and Stryker,
2010), the fluorescence traces of a typical identified py-
ramidal cell showed rare isolated calcium events (Fig-
ure 1C;). Because events with strong fluorescence
were rare in these traces, the distribution of fluores-
cence was highly skewed (Figure 1D,). By contrast, the
typical calcium fluorescence traces of identified Pvalb,
Vip, and Sst interneurons showed frequent calcium
events (Figure 1C,-C4), and the corresponding distribu-
tions of fluorescence showed little skewness (Figure
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1D,-D4). Finally, many concurrently-measured unla-
beled neurons showed sparse activity (example in Fig-
ure 1Cs) and high skewness (Figure 1Ds), resembling
the identified Pyr cells (Figure 1C;, D1).

2.7, that provided a small false-positive error rate (frac-
tion of Pvalb neurons exceeding threshold: 24/1,511;
Vip: 29/1,385; Sst: 91/537, Figure 1E,-E4), while still en-
suring a majority of pyramidal cells exceeded threshold

(2,598/4,949, Figure 1E,), for all methods of GCaMP ex-
pression (Supplementary Figure 3). Unlabeled neurons

These differences in skewness were robust across the

population, and allowed us to identify putative Pyr cells

by their higher sparseness (Figure 1E). The precise exceeding this threshold value are therefore likely to

value of the threshold for skewness made little differ- be pyramidal neurons, while cells below the value

. could be any cell type, and were therefore excluded
ence to our results; we chose a conservative value of

from further analysis (Figure 1Es).
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Figure 1. Recordings and classification of Pyr, Pvalb, Vip, and Sst cells in awake mouse V1.
A;) Experimental setup showing the air-suspended ball surrounded by the three screens for stimulus presentation.
A>-As) Green fluorescence from three mice expressing GCaMP6 following virus injection. Scale bars: 100 um.
B;) Green fluorescence from an Emx1-Cre mouse expressing GCaMP6m via virus injections.
B,-B4) Red fluorescence from the recordings in A;-A4, indicating tdTomato expression in Pvalb neurons (B,), in Vip neurons (Bs),
and in Sst neurons (By).
C) Normalized fluorescent traces from five representative neurons of the Pyr, Pvalb, Vip, Sst, and unlabeled types. The unlabeled
neuron in Cs was recorded simultaneously with the Sst example in C4. Blue shading above axes represents periods of locomotion
(>1cm/s).
D) Histogram of fluorescence values for those five example neurons. The number indicates the skewness of the distribution.
E) Distribution of skewness values over all Pyr, Pvalb, Vip, Sst, and unlabeled neurons. Unlabeled cells above a skewness threshold
of 2.7 (dashed vertical line) are classified as putative Pyr (Es).
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Figure 2. Correlates of running with neural activity in absence of visual stimuli (gray screen).

A1) Fluorescence of representative L2/3 pyramidal neuron (bottom) and simultaneous running speed trace (top).

A;) Correlation coefficient of recorded pyramidal cells with running speed, plotted vs. cell depth. Circles represent cells with sig-
nificant correlations at p<0.05 (shuffle test); dots represent cells with insignificant correlations. For clearer visualization we plotted
only a random subsample of 800 of genetically-identified Pyr cells. Dashed line represents fitted dependence of correlation vs.

depth. Arrow indicates example cell shown in A;.

A3) Histogram of correlation coefficients of all pyramidal cells. Solid bars indicate significant correlations at p<0.05 (shuffle test).
Values left and right of the histogram represent percentage of cells with a negative or positive correlation respectively.
B) Similar analysis for Pvalb neurons. The two traces in B; (top) show fluorescence traces of representative Pvalb cells of upper

and lower L2/3 (blue and cyan respectively).
C) Similar analysis for Vip cells.
D) Similar analysis for Sst cells.

Effects of locomotion on baseline activity

As a first test of the disinhibitory model, we asked how
locomotion affected baseline activity, measured during
long periods of gray screen presentation (Figure 2). In
Sst cells, these measurements revealed ways in which
previous apparently conflicting reports could be recon-
ciled. In other interneurons, these measurements
showed strong effects on baseline activity, an unex-
pected dependence on cortical depth, and phenomena
that run opposite to the predictions of the disinhibitory
model.

Consistent with previous results (Niell and Stryker,
2010; Polack et al., 2013; Saleem et al., 2013), the ef-
fects of locomotion on the baseline activity of identi-
fied Pyr cells were weak and diverse (Figure 2A). The
sparse baseline activity (measured in response to a
gray screen) of a typical Pyr cell changed only weakly
with running speed (Figure 2A;). Across Pyr cells, the
average correlation of baseline activity and running
speed was close to zero (pgrqy = 0.03 +0.01S.E., n
= 7,553 identified Pyr cells, Figure 2A3). Nevertheless,
35% of Pyr cells showed a significant positive or nega-
tive correlation with speed (p < 0.05 shuffle test), sig-
nificantly more than the 5% that would be expected by
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chance (p < 10, Fisher’s combined probability test).
Similar results were seen in the putative Pyr neurons
identified by their sparse firing (in unconditional label-
ing): correlations were small on average (pgrqy =
—0.01 + 0.01; SE, n = 5,666, Supplementary Figure
4A,B), but 49% of the cells were significantly positively
or negatively correlated with speed (p < 0.05), signifi-
cantly more than expected by chance (p < 106, Fisher’s
combined probability test). In agreement with previous
results obtained in darkness (Fu et al., 2014), when the
monitors were switched off, the mean correlation of
Pyr activity with speed was again close to zero (pgark =
0.00 + 0.01, SE, Supplementary Figure 5A;,B1). How-
ever, cells tended to show similar effects of locomotion
when monitors were turned on vs. off (Pearson corre-

lation between py;qy and pyqr Was 0.33; p <107).

The effects of locomotion on the baseline activity of
Pvalb interneurons were stronger and more varied,
and also depended on cortical depth (Figure 2B). For
example, in two typical Pvalb cells imaged simultane-
ously (Figure 2B;), activity decreased with running
speed in the more superficial cell (darker trace =
—0.47 , p < 0.01, shuffle test) and increased in the
deeper cell (lighter trace, p = 0.58, p < 0.01 shuffle
test). These results were typical of the population (n =
1,730), where the correlations were strong and de-
pended significantly on depth (robust regression, p <
102 Figure 2B,), with high consistency across experi-
ments (p < 0.018, t-test; Supplementary Figure 6).
Among Pvalb cells in superficial L2/3 (depth <300 pm,
n =843) the average correlation with speed was slightly
negative (0grqy = —0.05 + 0.03, SE), and this correla-
tion was significantly negative in 36% of the cells and
significantly positive only in 24% of the cells (p<0.05;
shuffle test). The situation was reversed in deeper
L2/3, where on average Pvalb cells showed a weak pos-
itive correlation with speed (pgrqy =0.11 £
0.04,SE,n = 831), with correlations significantly pos-
itive in 47% of cells and negative in only 18% of cells (p
< 0.05; shuffle test). When pooling across depth, there-
fore, a wide variety of effects was seen (Figure 2Bs),
echoing the wide and bimodal range of correlations ob-
served in darkness (Fu et al., 2014). When the monitors
were switched off, the mean correlation of Pvalb activ-
ity with speed was slightly negative (p 4k = —0.14 +
0.01, SE,Supplementary Figure 5A,,B) with a positive

correlation between pgrq, and pgqrk across cells

(Pearson correlation 0.49; p < 10%2).

Also as expected (Fu et al., 2014), the typical Vip cell
increased baseline activity markedly with locomotion
(Figure 2C;), and the overall population showed almost
exclusively positive correlations with running speed,
with a mean correlation of pg.q, = 0.27 + 0.03 (SE,
n = 1,393). The correlation increased significantly with
cortical depth (robust regression; p < 107%°), an effect
that was robust across experiments (p < 0.01, t-test;
Supplementary Figure 6). We found similar results
when we repeated these measurements with the mon-
itors turned off (p = 0.30 + 0.06, SE, Supplementary
Figure 5As3,B3) with a positive correlation between
Pgray and pgqr across cells (Pearson correlation 0.54;
p < 10).

Contrary to the predictions of the disinhibitory circuit,
however, locomotion generally increased the baseline
activity of Sst interneurons (Figure 2D). The typical Sst
cell increased its baseline activity markedly with loco-
motion (Figure 2D,) and across the population the cor-
relation of baseline activity with running speed was on
average positive (pgmy = 0.18 +0.02, SE, n = 636,
Figure 2Ds), regardless of depth (robust regression, p =
0.39; Figure 2D5).

These effects of locomotion on the baseline activity of
Sst interneurons confirm some previous results (Pakan
et al., 2016; Polack et al., 2013) but they appear to dis-
agree with other measurements (Fu et al., 2014). In-
deed, these results run opposite to the predictions of
the disinhibitory circuit, which would have predicted a
negative effect of locomotion on baseline activity of Sst
cells.

To confirm the validity of these results, we first ensured
that they were not due to background fluorescence
that might originate from other cell classes. We re-
peated the measurements in Sst-/RES-Cre mice where
we expressed the calcium indicator only in Sst cells by
injecting a Cre-dependent GCaMP6m virus (Supple-
mentary Figure 2B;). At the time of the injection, the
mice were already adult, thus excluding the off-target
expression that might occur in cells expressing Cre only
transiently during development (Hu et al., 2013). These
experiments confirmed our results: the average corre-
lation of baseline activity with running speed was posi-
tive (Supplementary Figure 2C-E) in all the locations
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where GCaMP6 was strongly expressed, be it cell bod-
ies or neuropil. A pixel-by-pixel analysis further con-
firmed that these results did not depend on the
method of ROI detection.

Previous studies have suggested that the modulation
of spontaneous activity by locomotion can depend on
the phase of the locomotion period, with stronger re-
sponses at locomotion onset (Vinck et al., 2015). How-
ever, for all cell types we found similar correlations be-
tween fluorescence and running speed after removing
transition periods between locomotion and stationary
periods from the analysis (Supplementary Figure 7).

We next asked if the disagreement on the effects of lo-
comotion on the baseline activity of Sst cells could be
due to different visual conditions used in different ex-
periments (Pakan et al., 2016). The experiments of Fu
et al. (2014) were performed in darkness, whereas in
ours (Figure 2D) and those of Polack et al. (2013), the
mouse faced a gray screen. We thus measured Sst
baseline activity in darkness, and found that the effects
of locomotion, albeit still diverse, were now overall
negative (p = —0.07 % 0.02, SE; across experiments:
p = 0.019, t-test, Supplementary Figure 5A4,B4,C). The
same cell could show different modulation by locomo-
tion depending on screen illumination (Supplementary
Figure 5B,): for example, of the cells showing signifi-
cant modulation in both conditions, 26% showed
Pdark <0 and pgrqy > 0. Not all cells, however,
showed this diversity. On average, in fact, Sst cells
showed a positive correlation between pg.q, and
Paark (Pearson correlation 0.34; p < 10%).

These measurements, therefore, reconcile the appar-
ent divergence of previous results (Fu et al., 2014,
Pakan et al., 2016; Polack et al., 2013): the effect of lo-
comotion on baseline activity of Sst cells is overall pos-
itive when mice view a gray screen, and mildly negative
when mice are in darkness. The observations made
with the gray screen, however, contradict the disinhib-
itory model.

Having witnessed the importance of controlling visual
stimulation when studying the effects of locomotion,
we next asked how these effects depend on stimulus

size. We measured responses to drifting gratings (rela-
tive to baseline activity measured before stimulus on-
set), and we focused on cells that were visually respon-
sive (significant effect of stimulus size, p < 0.05, 1-way
ANOVA) and whose RFs were centered within 10° of
the stimulus center. To discount possible effects of eye
movements (whose occurrence might change during
locomotion), we only selected trials where the pupil
pointed within 10° from the average position. Similar
results were found when we removed this restriction
(Supplementary Figure 8).

Identified L2/3 Pyr cells were selective for small stimuli
(in agreement with Adesnik et al., 2012), and exhibited,
on average, a mild effect of locomotion (Figure 3A). A
typical Pyr neuron responded substantially more to a
5° stimulus than to a 60° stimulus, regardless of loco-
motion (Figure 3A;). Accordingly, the neuron showed
clear selectivity for smaller stimuli (Figure 3A;), similar
to that seen in the overall population of identified Pyr
cells (n = 1,250; Figure 3As) where cells preferring large
stimuli were rare (Supplementary Figure 9A). On aver-
age, locomotion slightly increased responses to both
small stimuli (p < 10, paired t-test across cells, p <
0.01, paired t-test across experiments) and large stim-
uli (p <10 and p = 0.02). However, this effect was di-
verse among cells, with locomotion significantly in-
creasing or decreasing responses in 17% and 3% of Pyr
cells respectively (p < 0.05; 2-way ANOVA, main effect
of locomotion over 5° and 60° stimuli, Figure 3As).
Many cells (17%) showed a significant interaction of lo-
comotion and stimulus size (p < 0.05; 2-way ANOVA
over 5° and 60° stimuli; Figure 3A4; Supplementary Fig-
ure 10A,B;). In these cells, locomotion changed the rel-
ative response to large and small stimuli, as seen pre-
viously in deeper layers (Ayaz et al., 2013). Similar re-
sults were found in putative pyramidal cells identified
by the sparseness of their calcium traces (Supplemen-
tary Figure 4C,D).

Pvalb interneurons were similarly selective for stimulus
size, but showed a stronger and overwhelmingly posi-
tive effect of locomotion (Figure 3B). A typical Pvalb in-
terneuron responded strongly to small stimuli and
more weakly to larger stimuli, and its responses mark-
edly increased during locomotion (Figure 3B;-B,).
These effects were highly consistent across Pvalb inter-
neurons (n =277, Figure 3Bs), with locomotion increas-


https://doi.org/10.1101/058396
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/058396; this version posted July 18, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

ing firing rate in practically all cells (Figure 3B4). This ef- 0.02), with no significant interaction between stimulus
fect was seen in responses to both large stimuli (p < 10 size and locomotion (p = 0.23, 2-way ANOVA over 5°
1 paired t-test across cells, p < 0.01, paired t-test and 60° stimuli; Supplementary Figure 10A,B>).
across experiments) and small stimuli (p < 102 and p =
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Figure 3. Locomotion increases visual responses for large drifting grating stimuli in Sst neurons, for small stimuli in Vip neurons,
and for all stimulus sizes in Pvalb neurons.
A;) Responses of a representative Pyr neuron. Black curves show trial-averaged response in the stationary (dashed line) and loco-
motion (continuous line) conditions. Panels show responses to stimuli of 5° (left) and 60° (right). Gray shaded regions indicate the
1 s stimulus presentation period.
A;) Size tuning curve for this example cell. Solid line: locomotion; dashed line: stationary.
A3) Size tuning curve, averaged over Pyr cells after normalization. Solid line: locomotion; dashed line: stationary.
A,) Scatter plot showing change with locomotion of normalized responses to large stimuli (60°; y-axis) and to small stimuli (5°; x-
axis). Circles represent cells whose responses have a significant interaction between size and locomotion (multi-way ANOVA over
5° and 60° stimuli only), squares represent cells that did not have a significant interaction but did have a significant effect of
locomotion; dots represent cells with no significant effect of locomotion. Arrow marks example cell shown in A;.;, square marks
mean response.
B-D), similar analysis for Pvalb, Vip, and Sst neurons.
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The responses of Vip interneurons (n = 239) were
selective for stimulus size and increased with
locomotion, but in contradiction with the disinhibitory
circuit, this increase was generally restricted to
responses to small stimuli (Figure 3C). A typical Vip
interneuron responded most strongly to small stimuli
during locomotion (Figure 3C;-Cy). Similar results were
seen across the population: Vip interneurons showed
clear size tuning, and locomotion increased their
responses to 5° stimuli (p < 10%%, paired t-test across
cells, p =0.04, paired t-test across experiments) but not
to 60° stimuli (p = 0.82 and p = 0.86, Figure 3Cs) with a
significant interaction of size and locomotion (p < 10°%,
2-way ANOVA over 5° and 60° stimuli; Figure 3Cg;
Supplementary Figure 10A,Bs). Similarly to baseline
activity, the effects of locomotion on visual responses
grew with cortical depth (robust regression, p < 10°3).

Sst interneurons tended to prefer large stimuli, if not
the largest ones, and their responses — contradicting
the disinhibitory circuit — increased with locomotion
(Figure 3D). As observed by Adesnik et al. (2012), a
typical Sst interneuron responded best to large stimuli,
and even more so while the animal was running (Figure
3D;, D). Similar results were seen across the
population (n = 191, Figure 3Ds), with overall activity
peaking for ~15° stimuli during stationary conditions,
and ~25° stimuli during locomotion. Sst cells showed a
significant interaction between stimulus size and
locomotion (p < 107, 2-way ANOVA over 5° and 60°
stimuli), consistently across experiments (p < 0.01, t-
test, Supplementary Figure 10A,) and mice (p < 0.01, t-
test, Supplementary Figure 10B,;). While locomotion
did not significantly affect the responses to small
stimuli (p = 0.06, paired t-test across cells, p = 0.65,
paired t-test across experiments, Figure 3D,), it
strongly increased the responses to large stimuli (p <
10 and p = 0.02), thus contradicting the disinhibitory
circuit.

Some Sst cells, however, did show size tuning (Figure
3D, Supplementary Figure 9C,D). This observation is
consistent with observations in anesthetized mice
(Pecka et al., 2014), but differs from those of Adesnik
et al. (2012) in awake mice. We reasoned that it may
reflect high sensitivity of these cells to stimulus center-
ing, and to investigate this possibility, we studied how
size tuning varies with the distance between receptive
field center and stimulus center. Regardless of cell

class, when the stimulus was distant, the cells pre-
ferred the largest stimulus (Supplementary Figure 11).
Size tuning emerged when stimulus distance de-
creased. For Sst cells, in particular, size tuning ap-
peared when stimuli were < 20° away from the recep-
tive field center (Supplementary Figure 11D).

For all cell types, we saw similar interactions of size
tuning and locomotion when cells were recorded in the
binocular and monocular regions of visual cortex (Sup-
plementary Figure 12). Furthermore, the results did
not depend on whether or not we deconvolved the cal-
cium traces to estimate spike rates (Supplementary
Figure 13).

In summary, our results for large stimuli contradict the
disinhibitory model, which predicts that locomotion
should increase firing in Vip cells and decrease it in Sst
cells. Instead, we saw something closer to the opposite
behavior: in the presence of large stimuli, locomotion
does little to Vip cells and boosts the activity of Sst cells.

To further test the disinhibitory model, we examined
the patterns of correlation between interneuron types
and Pyr cells (Figure 4). To measure correlation, we re-
lied on our ability to record simultaneously the activity
of identified interneurons and of putative Pyr neurons
(unlabeled sparse-firing cells, with skewness > 2.7, Fig-
ure 1). This analysis revealed dramatic differences be-
tween interneuron classes.

Consistent with the view that Pvalb interneurons track
the activity of Pyr cells (Cruikshank et al., 2007;
Isaacson and Scanziani, 2011; Okun and Lampl, 2008;
Ozeki et al., 2009; Renart et al., 2010), we found strong
positive correlations between Pvalb and putative Pyr
populations (Figure 4A). In each experiment, we
summed the activity of the Pvalb interneurons and
compared it to the summed activity of the simultane-
ously recorded putative Pyr cells. Only cells whose re-
ceptive field lay within 10° from the stimulus center
were considered. In a typical experiment the spontane-
ous correlations (py) measured in the presence of a
gray screen were strongly positive, whether the mouse
was stationary (p, = 0.70, Figure 4A;) or running
(po =0.60, Figure 4A,). Similar results were seen
across experiments (py = 0.60 + 0.04, SE, during rest
and 0.49 + 0.03 during locomotion). Examining popu-
lation signal correlations — i.e. the relationship of the
mean summed responses of the Pvalb and Pyr cells
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across stimuli — also showed a strong, positive correla-
tion in both stationary (p; = 0.95 for the example in
Figure 4As3, 0.86 + 0.04 across all experiments) and lo-
comotion conditions (p; = 0.97 for the example in
Figure 4A,4,0.91 + 0.02 SE across all experiments). Sim-
ilar results were found for population noise correla-
tions (i.e. the relationship between trial-to-trial varia-

15A,B,C).

bility in summed activity of the Pvalb and Pyr popula-
tions; Supplementary Figure 14). These results were
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not biased by the exclusion of low-skewed Pyr cells,
which did not pass our conservative skewness thresh-
old: when we lowered the threshold (therefore includ-
ing more Pyr cells but also some unlabeled inhibitory
neurons), the correlations of putative Pyr cells with
Pvalb cells remained high (Supplementary Figure

Figure 4. Pvalb cells are highly corre-
lated with simultaneously recorded pu-
tative pyramidal cells, but Vip and Sst
cells show nonlinear correlations.

A; and A;) Summed activity of Pvalb
population vs. Pyr population in the
gray screen condition during stationary
periods (A1) and during locomotion (A,).
Each circle represents the simultaneous
normalized value of the excitatory and
the inhibitory populations at one time
point. Dashed line indicates linear re-
gression estimate of signal correlation.
As and A;) Average stimulus response of
Pvalb population vs. average response
of Pyr population in a typical experi-
ment during stationary periods (As) and
during locomotion (A4). Each point rep-
resents a response to a stimulus, with
larger circles representing larger stim-
uli. Dashed line represents non-linear
interpolation of the Pvalb and Pyr size
tuning obtained from their size-tuning
curves.

B,C) Same as A, for Vip and Sst interneu-
rons. Note the nonlinear signal correla-
tions.

D; and D;) Summary plots of spontane-
ous correlations during stationary peri-
ods (D1) and during locomotion (D,).

Ds and D4) Linear signal correlation
(Pearson correlation coefficient) be-
tween the Pyr population and the three
classes of interneurons averaged across
all experiments during stationary peri-
ods (Ds3) and during locomotion (D4).

E;) Same plot represented in Cy illustrat-
ing the characteristic angles used to il-
lustrate the nonlinear relationship be-

tween each interneuron class and Pyr mean visual responses. Circles with black contour indicate the minimum (5°, black filled)
and maximum sizes (60°, red filled), and the cell’s preferred size (white filled). 0, is the angle relative to horizontal of the line
joining the response to 5° stimuli and the preferred stimulus for Pyr neurons. 0, is the angle between the latter line and the line
joining the response preferred size to the response to 60°.
E, and E3) Angle 6, vs. 0; as defined in E; for each experiment during stationary periods (E,) and during locomotion (Es). In E3

arrows indicate examples in (As-C3); in E4 arrows indicate examples in (A4-Cy).
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Vip cells showed a markedly different behavior (Figure
4B). Their correlations with putative Pyr populations
differed from those of Pvalb cells in two respects. First,
while spontaneous and noise correlations tended to be
positive (p, = 0.43 £ 0.03, SE, during stationarity and
0.42 £+ 0.06 during locomotion; p,, = 0.33 + 0.07, SE,
during stationarity and 0.37 + 0.02 during locomo-
tion), they were weaker than those of Pvalb cells, at
least during stationarity (Figure 4D; and Supplementary
Figure 14). Second, the relationship between the pop-
ulation mean responses of Vip and putative Pyr cells
was clearly nonlinear (Figure 4Bs4). This nonlinearity
reflects the different size tuning of Vip and Pyr cells,
with Vip responses peaking at smaller stimulus sizes
than Pyr responses (compare Figure 3Cs and Az3). It fur-
ther suggests that, unlike for Pvalb cells, the sensory
tuning of Vip cells during locomotion cannot be ex-
plained by a simple tracking of excitatory activity.

Sst interneurons showed yet a different sort of behav-
ior, which depended strongly on locomotion (Figure
4C). The correlation of the Sst and Pyr populations was
positive in stationary conditions (p, = 0.25 for the ex-
ample in Figure 4C;, 0.23 + 0.10 SE across experi-
ments) but weak during locomotion (p, = —0.01 for
the example in Figure 4C,, 0.13 + 0.13 SE across exper-
iments). Noise correlations were also positive (Supple-
mentary Figure 14; p, = 0.39 &+ 0.11 SE, stationary,
pn = 0.30 £ 0.04 SE, locomotion). Signal correlations
showed a non-linear character, but this differed to that
of Vip cells (Figure 4Cs 4).

To quantify the form of nonlinear relationship between
each interneuron class’s mean responses and those of
putative Pyr cells, we parameterized their relationship
using two angles 0; and 0, Figure 4E;). These angles
were similar in stationary and locomotion conditions,
and were consistent across datasets (Figure 4E); they
were also robust to changes in the skewness threshold
(Supplementary Figure 15D,E). The different form of
nonlinear relationship between Sst and Vip cells result
in a significant difference in 0, (stationary: p = 0.026,
locomotion: p < 0.01, Watson’s U? permutation test,
N=1,000 permutations). Similarly, there was a signifi-
cant difference of 6, between Sst and Vip cells (station-
ary: p = 0.039, locomotion: p = 0.036, Watsons U? per-
mutation test, N=1,000 permutations).

Overall, thus, these results paint a more complex pic-
ture than would be expected from the disinhibitory
model. The model predicts that Pyr activity should in-
crease with Vip activity and decrease with Sst activity.

This prediction is consistent with correlations meas-
ured during spontaneous activity in darkness, but not
with the covariation of stimulus responses seen in the
presence of medium to large stimuli, where both Vip
and Sst cells decrease their activity with stimulus size.
Visual stimulation, therefore, creates situations where
the disinhibitory circuit cannot account for size tuning.

Recurrent network model

To explore how size tuning of the different neuron clas-
ses in layer 2/3 of area V1 could arise from cortical cir-
cuitry, we asked if their size tuning curves could be re-
produced by a recurrent network model. We fit the
model with a novel approach: we estimated the synap-
tic input parameters for each class of neurons to be
those optimally predicting that class’ average popula-
tion sensory responses, with the average population
activity of all other cell classes clamped to their meas-
ured values.

We modeled the activity of each cell class by a “neural
field”: a number that varied across the retinotopic cor-
tical surface, representing the mean firing rate of all
cells of that class at that location. The sensory response

of cell class &« was modeled as a function fa(”)(s, r) of
stimulus size s and retinotopic position r (relative to
stimulus center); dependence on r was assumed to be
circularly symmetric. The superscript v indicates the
locomotion condition (v = 0: rest, v = 1: locomotion).
Synaptic connections were modeled as functions of
retinotopic location: the connection strength to a cell
of type a; at location r; from a cell of type a, at loca-
tion 1, decays as a two-dimensional Gaussian function
of the distances between receptive field centers
Ga,a,(llT1 — 12]1). The strength and spatial spread of
these connections were fit by exhaustive search, mini-
mizing the squared error between the predicted and
actual rates summed over all stimulus sizes and offsets
and locomotion conditions. Each cell integrates its in-
puts using a threshold-linear activation function. For
each inhibitory connection, we tested both divisive and
subtractive inhibition, with the choice made automati-
cally for each inhibitory synapse type to minimize er-
rors. The firing of dLGN inputs h(s, r) was modeled us-
ing a ratio of Gaussians (Ayaz et al., 2013), with param-
eters (for both rest and locomotion conditions) fit to
the data of Erisken et al. (2014).

The model accurately predicted the size-tuning curves
of each cell class, for both centered and off-centered
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stimuli (Figure 5), but this success was predicated on
certain conditions. Specifically, to predict the strong re-
sponse of Sst cells to large, off-center stimuli (Figure
5D; and Ds), the model needed to include external ex-
citatory input to these cells (e.g. from thalamus or
other from cortical layers), because large stimuli elic-
ited little response in Pyr cells (Figure 5A,-As). A good
fit was only obtained if this feedforward input to Sst
cells had broad size tuning, as would be seen in tha-

other cortical layers (Figure 5D1). Moreover, to obtain
the observed similarity in tuning of Pvalb and Pyr cells
(Figure 5A,B), the model required these cell classes to
have similar inhibition from Sst cells. Furthermore the
model required Pyr neurons to lack Vip input. Finally,
our parameter search only gave good results with divi-
sive inhibition from Sst to Vip cells (Figure 5C;): sub-
tractive inhibition could not produce the observed
sharp size-tuning favoring small stimuli (Figure 5C,-Cs).

lamic neurons or perhaps in excitatory neurons of
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Figure 5. Computational model of size tuning in L2/3 of mouse V1. We searched the parameter space of neural field theories to
find a model that can accurately reproduce our experimental results.

A;) Input synapses received by Pyr cells, and their modulation by locomotion. Pyr cells receive feedforward visual excitatory inputs
(e.g. from thalamus or other cortical layers) and subtractive inhibition from Pvalb and Sst cells. Locomotion increases the synaptic
weights from external visual inputs to Pyr cells (filled circles) while decreasing recurrent Pyr-to-Pyr connections (empty circles).
Pyr cells integrate from a broad pool of Sst cells (large Gaussian curve).

A,s) Model fit (black curves) of the size tuning data during stationary (A,3) and locomotion (A4s) periods, visualized for centered
cells (offset = 0, A;,4) and off-centered cells (offset = 20, Ass).

B:) Input received by Pvalb cells. Locomotion boosts feedforward synaptic weights to Pvalb neurons while decreasing recurrent
Pvalb-to-Pvalb synaptic weights.

B2.5) Same as (Azs), for Pvalb cells.

C1) Input received by Vip cells. Vip cells receive divisive inhibition from Sst cells; no modulation of these synapses by locomotion
is required to obtain a good fit.

Cy-5) Same as (A;.s), for Vip cells.

D) Input received by Sst cells. In addition to inputs from Pyr and Vip cells, Sst cells receive a feedforward input that we propose
to originate from thalamus or other cortical layers. As with Pyr and Pvalb cells, the strengths of these synapses are boosted by
locomotion.

D,.5) Same as (A,s), for Sst cells.
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We next asked what modifications of the model param-
eters could explain the effects of locomotion on the
sensory responses of each cell type. Modeling the loco-
motor modulation of size tuning required that locomo-
tion change synaptic strengths: if we kept the input
synapses of Pyr cells at the strengths fit to stationary
data, while clamping the activity of other cell types to
their values during rest, we obtained a poor prediction
of Pyr cells’ size tuning during locomotion (not shown).
To capture the effects of locomotion on each cell type,
we therefore searched for all possible ways that loco-
motion could modulate the thalamocortical and recur-
rent synaptic weights of each class (Supplementary Fig-
ure 16).

For Pyr cells, we could prove analytically that the fit
quality depended only on the strength of their “effec-
tive connections” (see Experimental Procedures).
These effective connections depended on several net-
work parameters, including the strengths of external,
recurrent excitatory, Pvalb, and Sst inputs onto Pyr
neurons, and take into account the amplification
caused by recurrent excitation and Pvalb inhibition
(Douglas et al., 1995). Thus, while the model fit identi-
fied unique values of the effective connections, these
values could in turn be achieved through multiple pos-
sible strengths of the synaptic parameters (Prinz et al.,
2004).

Capturing the modulation of Pyr tuning by locomotion
required an increase in effective connection from ex-
ternal inputs to Pyr cells, and a decrease in effective
connection of Sst to Pyr cells. Together, this produced
the observed strong increase in responses of centered
cells to medium-sized stimuli, together with a milder
increase in response to larger stimuli (Figure 5A; vs. As).
However, this change in effective connection strength
did not require a weakening of the physical Sst->Pyr
connections: the same change in effective connection
could also be achieved by an increase in external exci-
tation together with a decrease in recurrent excitation
(Supplementary Figure 16A;). Intriguingly, these two
effects are precisely those observed in vitro during cho-
linergic modulation of cortical synapses (Gil et al.,,
1997).

Consistent with the close correlations of Pvalb and Pyr
cells, modeling the observed effects of locomotion on
Pvalb size tuning required similar modulations to those
required for Pyr cells: a decrease in effective inhibition
from Sst cells. Again, however, this did not necessarily

require a weakening of Sst->Pvalb synapses, as the
same effect could be obtained via strengthening of
Pvalb->Pvalb connections and of the external input.
Producing the observed effects of locomotion on Vip
cell tuning required no further changes in effective con-
nection: locomotion only increased the responses of
centered Vip cells to small stimuli (Figure 5C; vs. Ca),
and this increase could be readily provided by in-
creased activity of local Pyr cells. Finally, correct mod-
ulation of Sst firing required boosting of the external
excitatory inputs responsible for their responses to
large stimuli (Figure 5D), but did not require any
change to their inhibitory inputs.

In summary, we were able to capture the effects of lo-
comotion on all cell types through a reweighting of
feedforward and recurrent connections: an increase in
external excitatory input to all cell types, a decrease in
recurrent excitation between Pyr cells, and an increase
in recurrent inhibition between Pvalb cells.

Discussion

We have shown that locomotion does not simply in-
crease or decrease the activity of a particular cell class:
its effects depend on the precise sensory conditions,
and even on cortical depth. Its effect on sensory re-
sponses was an increase in all cell classes, but the in-
crease varied with cell type and stimulus, being largest
in Sst responses to large stimuli and in Vip responses to
small stimuli. The effects of locomotion on baseline
neural activity (as assessed by gray screen viewing)
were more complex: locomotion increased activity in
most Sst and Vip neurons, and had diverse effects on
Pvalb and Pyr cells, suppressing most Pvalb cells in su-
perficial L2/3 and increasing activity in deeper Pvalb
cells.

Our results further indicate that apparent discrepan-
cies in the literature may in fact reflect the subtly dif-
ferent methods used in different experiments. Specifi-
cally, two studies on the spontaneous activity of Sst
cells reported opposite effects of locomotion: in-
creased activity (Polack et al., 2013) and decreased ac-
tivity (Fu et al., 2014). When we replicated their exper-
imental conditions (gray screen for the first study, com-
plete darkness for the second), we replicated both ob-
servations in a common set of neurons. These results
reconcile the apparent contradiction between these
studies (see also Pakan et al., 2016).


https://doi.org/10.1101/058396
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/058396; this version posted July 18, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

The results also reinforce the importance of correcting
for out-of-focus fluorescence in 2-photon calcium im-
aging. Indeed, without correcting for this confound,
one would observe an artefactual negative correlation
of fluorescence with running speed, particularly in im-
age regions with weak GCaMP expression (Supplemen-
tary Figure 2).

We had set out to test a specific, simple “disinhibitory”
hypothesis: that during locomotion, increased Vip ac-
tivity would inhibit Sst cells, and thus increase the ac-
tivity of pyramidal cells (Fu et al., 2014). Some of our
results were consistent with the hypothesis. For in-
stance, we confirmed that locomotion increases Vip re-
sponses. Other results, instead, could not be explained
by disinhibition alone. The hypothesis predicts that in-
creased Vip activity should suppress Sst firing, and yet
we found that Sst firing increased during locomotion,
as long as visual inputs were present (even just a blank
gray screen).

Another area where previous models need to be up-
dated concerns the mechanisms of size tuning. Adesnik
etal (2012) proposed that an important contribution to
size tuning comes from the activity of Sst cells. They re-
ported these cells as firing mostly during locomotion
and showing negligible size tuning. Our experiments
confirmed that Sst cells fire more during locomotion,
but replicated the finding about size tuning only when
stimuli were poorly centered on the receptive field.
When they were centered, instead, Sst neurons dis-
played marked preferences for intermediate stimulus
sizes. In light of this finding, the role of Sst neurons in
size tuning needs to be re-evaluated. Size tuning is
likely to reflect a more complex interaction between
the different cell classes.

To understand what form this interaction might take,
we built a network model and searched for the param-
eters that caused it to produce accurate fits to our
measurements. Previous studies that proposed a net-
work circuit to explain surround suppression in V1 had
not included different cell types (Ozeki et al., 2009;
Rubin et al., 2015) or had not validated the predictions
with quantitative fits (Litwin-Kumar et al., 2016). Our
analysis cast further doubt on the possibility that a dis-
inhibitory mechanism is sufficient to explain changes in
size tuning. Indeed, had a disinhibitory mechanism
been sufficient, the measured locomotion modulation
of interneuron tuning — with no changes in synaptic
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connection strengths — would have been sufficient to
cause the observed modulation in pyramidal cell tun-
ing. Instead, the model required locomotion to change
effective connections between neuronal classes, i.e.
the effect of one class on another after taking into ac-
count amplification through recurrent excitation and
inhibition.

These specific changes in effective connections could in
turn be instantiated through multiple possible modula-
tions of physical synaptic strengths. The activity pro-
duced by a neural circuit is not always sufficient to con-
strain its underlying connectivity (Prinz et al., 2004); for
the current model, we could mathematically prove that
multiple underlying connectivity patterns yield identi-
cal sensory responses. Nevertheless, the parameter
space consistent with our experimental observations
favored one particularly attractive possibility, where
locomotion would increase external excitatory input to
all cell types, decrease recurrent excitation between
Pyr cells, and increase recurrent inhibition between
Pvalb cells. The first two of these are known effects of
cholinergic modulation on cortical circuits (Gil et al.,
1997).

The model required specific conditions to produce an
accurate quantitative fit to our measurements, which
we therefore consider experimental predictions. First,
the model required that Sst cells receive a feedforward
sensory input: i.e. an excitatory input conveying visual
input other than from local Pyr cells. This was required
because off-center Sst cells fire strongly to large stim-
uli, but neither centered nor off-center Pyr cells fire
strongly enough to large stimuli to provide sufficient in-
put. Whether Sst cells receive direct thalamic inputs is
controversial (Cruikshank et al., 2010; Lee et al., 2013;
Tanetal., 2008). Even without direct thalamic afferents
however, such an input could be conveyed to superfi-
cial Sst cells via other cortical layers. Interestingly, the
optimal model parameters required that the external
inputs Sst cells receive be spatially diffuse, as would be
expected if this input had experienced an additional
round of divergence through Pyr cells of other layers. A
second condition required by our model was that Vip
cells receive divisive, rather than subtractive inhibition
from Sst cells. We are not aware of any data on this
question, and therefore consider it to be a model pre-
diction.
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In contrast to the complex relationship of Vip and Sst
neurons to summed Pyr activity, the activity of Pvalb
interneurons was in all cases tightly locked to the local
excitatory population. These data are therefore con-
sistent with a primary role for Pvalb cells of stabilize the
activity of the local circuit via tracking summed excita-
tory firing ( Cruikshank et al., 2007; Ozeki et al., 2009;
Renart et al., 2010), rather than directly sculpting re-
ceptive field shapes. In our model, we were able to re-
produce the similar tuning of Pvalb and Pyr cells only if
they received similar inputs from other inhibitory clas-
ses. Consistent with in vitro observations (Pfeffer et al.,
2013), the model required that both Pyr and Pvalb cells
received inhibition from Sst, but not Vip cells.

What computational benefit might the visual cortex
derive from these interactions of locomotion, stimulus
size, and cell type? One can consider two hypotheses
for why locomotion should modulate visual cortical ac-
tivity. In the first hypothesis, boosting of activity in vis-
ual cortex in running animals serves as a form of mo-
dality-specific attention: because vision is particularly
important during navigation, locomotion increases V1
activity while suppressing the activity of competing
sensory systems. This possibility is supported by the
fact that locomotion appears to decrease activity in
other cortical regions (Schneider et al., 2014; Zhou et
al.,, 2014), but it cannot explain why locomotion has
such diverse effects on V1 pyramidal cells, boosting
some while suppressing others, and increasing re-
sponses only to certain sensory stimuli (Keller et al.,
2012; Saleem et al., 2013). The second hypothesis
holds that locomotor modulation of V1 is not simply a
matter of gain control, but a complex and diverse neu-
ronal integration of visual and locomotor input. In-
deed, work in virtual reality environments has sug-
gested that, rather than simply making visual re-
sponses larger or smaller, locomotor modulation may
underlie more complex computations, such as integrat-
ing the animal’s own movement with that of the world
(Keller et al., 2012; Saleem et al., 2013). Diverse inter-
action of sensory stimuli and locomotion in different in-
terneuron classes might form a key mechanism behind
this integration.
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Experimental procedures

All experimental procedures were conducted accord-
ing to the UK Animals Scientific Procedures Act (1986).
Experiments were performed at University College
London under personal and project licenses released
by the Home Office following appropriate ethics re-
view.

Experiments in which an interneuron class was labelled
with tdTomato and recorded together with other cells
were conducted in double-transgenic mice obtained by
Gt(ROSA)26Sor<tm14(CAG-tdTomato)Hze>
reporters (Madisen et al., 2010) with appropriate driv-

crossing

ers: Pvalb<tm1(cre)Arbr> (Hippenmeyer et al., 2005) (2
males, 3 females), Vip<tm1(cre)Zjh> (Taniguchi et al.,
2011) Sst<tm?2.1(cre)Zjh>
(Taniguchi et al.,, 2011) (2 males, 1 female), and
Gad2<tm2(cre)Zjh> (Taniguchi et al., 2011) (2 females).
Experiments in which indicator was expressed uniquely

(3 males, 2 females),

in one neuron class were conducted in single trans-
genic mice: Emx1-IRES(cre) (n=1), Pvalb<tm1(cre)Zjh>
(n=1), Vip<tmil(cre)Zjh> (n=1), Sst<tm2.1(cre)Zjh>
(n=3), referred to as Vip-Cre and Sst-Cre respectively.
Experiments in which pyramidal cells were labelled ex-
clusively were conducted in CamK2a-tTA; Ai94(TITL-
GCaMP6s); Rasgrf2-2A-dCre triple transgenic mice
(n=3) (Madisen et al., 2015). Mice were used for exper-
iments at adult postnatal ages (P54-110).

The surgeries were performed in adult mice (P35-P76)
in a stereotaxic frame and under isoflurane anesthesia
(5% for induction, 0.5-1% during the surgery). During
the surgery we implanted a head-plate for later head-
fixation, made a craniotomy with a cranial window im-
plant for optical access, and, on relevant experiments,
performed virus injections, all during the same surgical
procedure. In experiments where an interneuron class
was recorded together with other cells, mice were in-
jected with an unconditional GCaMP6ém virus,
AAV1.Syn.GCaMP6mM.WPRE.SV40 (referred to as non-
flex.GCaMP6m). In experiments where an interneuron
class was labelled by unique expression, mice were in-
jected with AAV1.Syn.Flex.GCaMP6m.WPRE.SV40
(flex.GCaMP6m) and
AAV2/1.CAG.FLEX.tdTomato.WPRE.bGH
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(flex.tdTomato); all viruses were acquired from Univer-
sity of Pennsylvania Viral Vector Core. In both cases, vi-
ruses were injected with a beveled micropipette using
a Nanoject Il injector (Drummond Scientific Company,
Broomall, PA 1) attached to a stereotaxic micromanip-
ulator. One to three boli of 100-200 nl virus (2.23x10%?
GC/ml for non-flex.GCaMP6m; 2.71x10'? for
flex.GCaMP6m) were slowly (23 nl/min) injected uni-
laterally into monocular V1 (Wagor et al., 1980), 2.1-
3.3 mm laterally and 3.5-4.0mm posteriorly from
Bregma and at a depth of L2/3 (200-400 pm).

Intrinsic Imaging

Prior to performing calcium imaging experiments, we
performed intrinsic imaging of the optically accessible
cortex to confirm the location of V1 within the cranial
window (Supplementary Figure 1A,B). The intrinsic im-
aging was performed in all mice (n = 22) about 7-14
days after the surgery. We illuminated the cortex
through the epi-illumination path using a high-power
LED (central wavelength: 560 nm, M565L3, Thorlabs,
Ely, UK), and acquired images at 5 Hz at 1024 x 1024
pixels using a CMOS camera (MV-D1024E-160; Photon-
focus, Lachen, Switzerland) combined with a micro-
scope objective (4x, NA: 0.13, FN: 26.5, UPLFLN, Olym-
pus, Tokyo, Japan). To prevent the light contamination
from the computer monitors we optically shielded the
recording chamber with a custom black cone surround-
ing the objective.

Retinotopic mapping from intrinsic imaging

To obtain retinotopic maps from intrinsic imaging we
used the methods described in Pisauro et al. (2013).
Briefly, we first removed global fluctuations from the
signal, which are not stimulus driven. The residual sig-
nal reflects the retinotopic, stimulus-evoked re-
sponses. Visual stimuli were periodic drifting and flick-
ering bars (Kalatsky and Stryker, 2003). Flickering bars
(flicker frequency 2 Hz) drifted (speed = 0.8 deg/s)
across —135° to 45° of the horizontal visual field (with
bars oriented vertically) and —45° to 45°of the vertical
visual field (with bars oriented horizontally) for 3 cy-
cles. We calculated retinotopic maps using the method
described in Kalatsky and Stryker (2003). Retinotopic
contours (Supplementary Figure 1B) where obtained
after removal of artefactual extreme values (e.g. red
regions in the top and bottom left corners of Supple-

mentary Figure 1A) and replacing the removed values
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by values interpolated using sum of normalized Gauss-
ian functions with standard deviation of 20 um cen-
tered on non-artefactual pixels. Consistent with a lo-
cation in V1, the imaged regions were within an area of
diameter at least 2 mm where the gradient of vertical
retinotopy was aligned from anterior to posterior
(lower to higher values of elevation) and the gradient
of the horizontal retinotopy was aligned from medial to
lateral (temporal to central).

Visual stimuli

Stimuli were horizontal gratings drifting downward,
presented in a location adjusted to match the center of
GCaMP expression, on one of two screens that to-
gether spanned -45° to +135° of the horizontal visual
field and +42.5° of the vertical visual field (left and cen-
tral screens in Figure 1A;). During gray screen presen-
tation, the screens were set to a steady gray level equal
to the background of all the stimuli presented for visual
responses protocols. Gratings had a duration of 1-2 s
temporal frequency of 2 Hz and spatial frequency of
0.15 cycles/deg.

Eye-tracking movie acquisition and analysis

For eye tracking we used a collimated infrared LED
(SLS-0208-B, Apeak = 850nm; controller: SLC-AA02-US;
Mightex Systems, Toronto, Canada) to illuminate the
eye contralateral to the recording site. Videos of eye
position were captured at 30 Hz with a monochromatic
camera (DMK 21BU04.H, The Imaging Source, Bre-
men, Germany) equipped with a zoom lens (MVL7000;
Navitar, Rochester, NY), and positioned at approxi-
mately 50° azimuth and 50° elevation relative to the
center of the mouse’ field of view. Contamination light
from the monitors and the imaging laser was rejected
using an optical band-pass filter (700-900nm) posi-
tioned in front of the camera objective (long-pass
092/52x0.75, The Imaging Source, Bremen, Germany;
short-pass FES0900, Thorlabs, Ely UK).

To calibrate pupil displacement relative to the mouse
visual field, we recorded additional movies at the end
of each experiment while the mouse was still in exactly
the same position as during the experiment. The eye
was illuminated sequentially from a grid of known lo-
cations, the reflections were captured by the camera,
and then this reflected grid was used to map the pupil
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displacement in pixels to pupil displacement in degrees
of visual field.

Movie processing was performed offline using custom
code written in MATLAB (Mathworks, Natick, MA) on a
frame-by-frame basis. Briefly, each frame was mildly
spatially low-pass filtered to reduce noise, then the pu-
pil contour was detected by a level-crossing edge de-
tector, and finally the position and the area of the pupil
were calculated from the ellipse fit to the pupil con-
tour. The output of the algorithm was visually in-
spected, and adjustments to the parameters (e.g. spa-
tial filter strength, or level-crossing threshold) were
made if necessary.

In vivo calcium imaging

Experiments were performed 16-34 days after virus in-
jection (P54-110). We used a commercial two-photon
microscope (B-scope, ThorLabs, Ely UK), with an acqui-
sition frame rate of about 30Hz (at 512 by 512 pixels,
corresponding to a rate of 4-6 Hz per plane), which was
later interpolated to a frequency of 10 Hz, common to
all planes. Recordings were performed in the area
where expression was strongest. In most recordings (n
=16) this location was in the monocular zone (MZ, hor-
izontal visual field preference > 30°)(Wagor et al.,
1980). Other recordings (n = 11) were performed in the
callosal binocular zone (CBZ, n= 4, 0-15°)(Wang and
Burkhalter, 2007) and others (n = 7) in the acallosal bin-
ocular zone (ABZ, 15-30°). We observed no difference
in results between recordings in monocular and binoc-
ular zones (Supplementary Figure 12).

Calcium data processing

Raw calcium movies were analyzed with Suite2p, which
performs several processing stages (Pachitariu, 2016).
First, Suite2p registers the movies to account for brain
motion, then clusters neighboring pixels with similar
timecourses into regions of interest (ROIls). ROls were
manually curated in the Suite2p GUI, to distinguish so-
mata from dendritic processes based on their morphol-
ogy. Cells expressing tdTomato were identified semi-
automatically using an algorithm based on their aver-
age fluorescence in the red channel. For spike decon-
volution from the Calcium traces, we used the default
method in Suite2p (Pachitariu, 2016). Whether we per-
formed performing spike deconvolution or analysed
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raw calcium signals made no difference to our results
(Supplementary Figure 13).

Pixel maps of calcium data

To confirm the correlation of running speed and fluo-
rescence independent of ROl detection, we computed
correlation maps (Supplementary Figure 2C), showing
for each pixel the Pearson correlation between the ac-
tivity of the pixel and the running speed (c.f. Freeman
et al. (2014)). Prior to correlation, the activity of each
pixel was smoothed by convolving with a spatial Gauss-
ian with standard deviation equal to 1.5 pixels, and a
temporal Hamming window of 1 s width.

The correlation of baseline fluorescence with running
speed varied across the field of view. In regions where
GCaMP expression level was high, baseline fluores-
cence correlated positively with running speed, likely
indicating an increase in axonal and dendritic activity in
locomoting animals. However, in areas where GCaMP
fluorescence was weak, the correlation of the back-
ground with running speed was negative, likely indicat-
ing that in absence of GCaMP the signal is dominated
by increased hemodynamic filtering of the light due to
stronger blood flow during running (Huo et al., 2015).
To ensure this did not affect our results, we removed
background fluorescence from the detected fluores-
cence of recorded neurons (see below).

Background fluorescence correction

With two-photon GCaMP imaging, an important con-
cern is that out-of-focus fluorescence can contaminate
the signal ascribed to particular neurons; this is of par-
ticular concern in situations where the surrounding
GCaMP-labelled neuropil may itself show modulation
by stimuli or behaviors such as locomotion. In order to
correct out-of-focus contamination, we adopted the
method of Peron et al. (2015). A “neuropil mask” was
defined as the region up to 35 um from the ROl border,
excluding pixels corresponding to other detected cells
(Supplementary Figure 2A;), and the fluorescence sig-
nal in this mask region was subtracted from that of the
cell soma, weighted by a correction factor a,,, that
was determined separately for each experiment.

To determine the correction factor, we estimated the
linear relationship specifying the lowest possible so-
matic fluorescence compatible with any value of fluo-
rescence in the neuropil mask (Supplementary Figure


https://doi.org/10.1101/058396
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/058396; this version posted July 18, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

2A;). To do so, for each cell i we binned the neuropil
signals N;(t) into 20 intervals, and for each one esti-
mated the 5 percentile of the raw somatic fluores-
cence F;(t). We computed a; by linear regression,
which accurately matched the lower envelope of the
scatterplot of neuropil vs. somatic fluorescence (Sup-
plementary Figure 2A;). This method gave consistent
results for sparse firing cells, but not always for densely
firing cells for which a correlation of cellular activity
with the neuropil signal could lead to misestimated
slopes, as densely firing cells might only rarely exhibit
baseline fluorescence. We therefore computed the
correction factor a,,, for each experiment by averag-
ing a; over cells with high skewness ( > 4). The cor-
F(t) —
AexpN(t) (Supplementary Figure 2A;). In experiments

rected fluorescence was computed as
where only interneurons (and thus low skewed cells)
expressed GCaMP6, we used as a correction factor an
average from all the other experiments equal to
(@exp) = 0.82.

Analysis of neural activity

The average fluorescence response to each stimulus
was defined by AF/Fo = (F-Fo)/Fo, where F is the average
raw calcium signal during the first second of the stimu-
lus presentation, and Fq is the global minimum of the
fluorescence trace filtered with a Hamming window of
duration 0.5 s. The correlation of neural activity with
locomotion speed during gray screen presentation was
assessed by the Pearson correlation coefficient be-
tween the calcium signal and the locomotion speed
trace, on an interpolated timebase of 10 Hz, smoothed
(5 points) and decimated (1 Hz). To ascertain the signif-
icance of this correlation we used a shuffling method,
in which the speed trace was randomly circularly
shifted relative to the fluorescence trace 1,000 times —
this was necessary because serial correlation in the
time series of fluorescence and speed rendered succes-
sive samples statistically dependent.

The size of a cell’s response to a stimulus was defined
by the difference of AF/Fo between the first 1 s of the
stimulus period, and the 1 s of baseline activity prior to
stimulus presentation. We defined a neuron to have
significant size tuning if it passed in at least one of the
two locomotion conditions (rest or running) a one-way
ANOVA test (p < 0.05) comparing the mean visual re-
sponses to different stimuli.
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To measure each cell’s retinotopic location, in the ma-
jority of datasets (n = 24) receptive fields were ob-
tained from responses to sparse, uncorrelated noise.
The screen was divided into squares of 5 by 5 degrees,
and each square was independently turned on and off
randomly at a 5Hz overall rate. At any time, 5% of all
squares were on. Each cell’s response to each square
was obtained using stimulus-triggered averaging of the
non-neuropil corrected trace. The RFs were smoothed
in space and their peak was identified as the preferred
spatial position. In a subset of early experiments (n =
3), sparse noise was not presented, and RFs were as-
sessed with flickering vertical or horizontal bars ap-
pearing in different locations; we verified in a further n
=4 datasets that the two measures of a cell’s receptive
field were consistent.

When computing size tuning curves, we normalized the
calcium activity (Figure 3, column 3 and Supplementary
Figure 12) or the spike rate (Supplementary Figure 13)
in the following way: for each cell, the response AF, to
the “blank condition” (i.e. a stimulus of contrast 0) dur-
ing stationary periods was subtracted from the raw cell
response AF (1 s during stimulation minus 1 s of base-
line activity): AF — AF — AF,. Then, for each record-
ing we computed the average (AF),i; cens over all se-
lected cells whose distance of the receptive field from
the stimulus center r was < 20°. Finally we divided the
average response of either the centered cells (r < 10°)
or the off-centered cells (r > 10°, r < 20°) by the maxi-
mum value of all the cells combined: (AF).ent./
(AF)off—cent./
max({AF) 41 cenis)- We then averaged these values

maX(<AF)all cells) or

across all recording sessions.

When computing the interaction between locomotion
and size (Figure 3, column 4 and Supplementary Figure
10A,B) we normalized the responses of the individual
cells for each experiment in the following way: after
subtracting the average response to the blank during
stationary periods AF — AF — AF,, we divided the re-
sponses by the average minimal calcium trace across
cells (Fy)cens Within the same experiment or mouse
(Supplementary Figure 10A,B).

Curve fitting

We fitted the size tuning curves of Figure 3 and Supple-
mentary Figures 4, 8,9, 12, and 13 by least squares with
the following function family: f(s) = R[erf(s/o;) —
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k - erf(s/a,)] where erf(x) corresponds to the error
function and s is the size of the stimulus. The free pa-
rameters of the function are R, k, o; and o0,. To esti-
mate nonlinear signal correlation curves (Figure 4, col-
umns 3 and 4), we first smoothed the responses to
large sizes (s >20°) for each population with a moving
average method with span 25°. Then we smoothed
again the responses for all sizes with a moving average
method with span 20°. Finally we interpolated the val-
ues between the measured size with a shape-preserv-
ing piecewise cubic interpolation.

Size tuning maps

To compute how size tuning depends on stimulus cen-
tering, we computed two-dimensional maps illustrat-
ing how each cell class’ average activity depends on
stimulus diameter s, and the offset of the receptive
field center from the stimulus center r; (Supplemen-
tary Figure 11). To do so, we first computed for each
cell i a normalized tuning curve n; ,,(s), where v repre-
sents locomotion condition. Dependence on r; was es-
timated by smoothing: a two-dimensional map was
made for each cell as an outer product: f;,(s,7) =
)’
15 ($)gi(r), where gi(r) = e *%
centered at the offset value r; of width g, = 5°. Then

is a Gaussian

we summed the maps belonging to one recording ses-
sion j and divided by the sum of all the Gaussians cen-
different m;j,(s,7) =
Yiej fiv(s,7)/Xiej gi(s,7), and normalized this value

tered at offsets:

for each experiment by the value at stationary, 0 offset
and diameter 10° fj,(s,7) =m;,(s,1)/mj,—1(s =
10,7 = 0). Finally, for each cell class we obtained the
size-tuning offset maps by averaging across experi-

ments: (fj,(s,7));.

Inter-population correlation analysis

To compute spontaneous correlations (Figure 4, col-
umns 1 and 2), we first normalized the deconvolved
spike trace S of each cell i over time t: n(i,t) =
S(i,t)/max;(S). Then, for each experiment and each
class ¢ (interneurons or putative Pyr cells) we com-
puted the average population rate across cells i be-
longing to class c: R.(t) = (n(i,t))g3ec.- We then
smoothed R.(t) with a moving average method with
span of 1 s and then decimated the sampling rate to 1
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point every 1 s. To make the plots of different experi-
ments visually comparable we normalized these re-
sponses: K.(t) = (R.(t) — R?)/a.(R.). Where R? s
the 1% percentile of R, and g;(R,) the standard devi-
ation of R.(t) across time.

To compute signal correlations (Figure 4, columns 3
and 4), for each experiment and each cell class ¢ we
first computed the average population response for
each stimulus size s and locomotion condition v (v =0
stationary, v =1 running) by averaging over all cells i
belonging to that class: AF.(s,v) = (Af(i,s, V)i ec-
To make the plots of different experiments visually
comparable we normalized the responses: AR.(s,v) =
AF.(s,v) /o, (AF,). Finally we subtracted the blank
response during the resting condition: AK.(s,v) =

AR (s,v) —AR.(s = 0,v = 0).

To compute noise correlations (Supplementary Figure
14, columns 1 and 2), for each experiment and each cell
class ¢ we first computed the average population re-
sponse for each trial t by averaging over all cells i be-
longing to that class: AF,(t) = (Af (i, t))i} ec. Then for
each stimulus and locomotion condition we subtracted
the mean response from the related trials: AN (t €
{s,v)) = ARt € {5,1)) — (A )regsny-
make the plots of different experiments visually com-

Finally, to

parable, we normalized the responses by z-scoring over
all trials: AZ.(t) = (AN.(t) — (AN_); )/a:(AN,).

When measuring signal and noise correlations and for
both interneurons and putative Pyr neurons, we se-
lected cells whose receptive field center was <10° away
from the stimulus center. For Figure 4 we selected pu-
tative Pyr cells as unlabeled (non tdTomato) neurons
whose skewness was > 2.7. In a control analysis (Sup-
plementary Figure 15) we show that the value of the
skewness threshold makes little difference to these re-
sults. A skewness value of 0 corresponds to the case
where we selected all unlabeled cells as putative Pyr
cells.

Correlation of running modulation with depth

To determine whether running modulation of a given
cell class varied significantly with cortical depth, we
computed p(gray) for each cell as the Pearson corre-
lation of that cell’s neuropil-corrected fluorescence
(without spike deconvolution) and running speed. We
then assessed a significant relationship of p(gray)
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with depth robust

weighting).

using regression (bisquare-

Computational model

We asked whether we could predict the mean size tun-
ing of each cell class using a neural field theory model.
In this model, the mean firing rate of cells of type a is
captured by a function f, (s, ), where s represents the
stimulus size, and r represents position on the cortical
We
model the external excitatory input arriving at point r

surface, measured in retinotopic coordinates.

=R
=R
=R
=R

S

Only synaptic connections demonstrated in vitro
(Pfeffer et al., 2013) are included in this equation; how-
ever, adding other potential synapses (Vip->Pyr) did
not improve the fit (Supplementary Figure 16).

For each postsynaptic cell class we tested different
combination of subtractive and divisive inhibition from
Sst and Vip cells:

lx —yl, subtractive

RCxy) = divisive

1+yl,

Here, f, fr fs, and f, reflect the visual responses of
the Pyr, Pvalb, Sst, and Vip cells respectively; | z] , is the
positive part of z; w,p are the peak synaptic weights
between the presynaptic cell class § and the postsyn-
aptic cell class a (which canin principle depend on run-
ning condition v); G4p is a two-dimensional Gaussian

(e.g. from thalamus or other cortical layers) by a func-
tion h(s, 1), again in retinotopic coordinates.

We denote the experimentally measured responses of

cell class a by fa(”) (s, 1), where v denotes locomotion
condition (v = 0: stationary, v = 1: running). We as-
sume that responses are circularly symmetrical, i.e.
that responses depend on r only through the radial dis-
tance of the receptive field center from the stimulus

center, r. The response of each cell class fofv)(s, r) is
modeled by the following equations:

[Wenh + wgg(Geg * f5) — Wep(Gep * fp); Wes(Ggs * fs)]
[Weprh + wpg(Gpg * fg) — wpp(Gpp * fp); Wps(Gps * f5)]
Wsp (Gsy * h) + wsg (Gsg * fg); wsy (Gsy * fiy)]

Wy (Gye * f5); wys(Gys * f5)]

exp[—|z|2/(20‘§3)]/(2na§3), with radius o,p that
can depend on the pre- and post-sysnpatic cell type;
and * represents convolution over retinotopic space:

[Gap * f5](s,1) = [[ Gop(r — r") f5(s, ¥))d?r".

The equations describing the activity of the cell classes
can be simplified with the following assumptions:

o VY(v,s,1),fg>0,fp > 0(Pyrand Pvalb cells
are not suppressed by stimuli, as seen in the
data).

e The recurrent connections of Pyr and Pvalb
neurons, and the connection from Pvalb to
Pyrare local: Ggg(r) = Ggp(r) = Gpp(r) =
&(r) where 6(r) is the Dirac delta function.

e fp = uffg (i.e. Pvalb activity closely tracks Pyr
activity, as seen in the data).

We can then rewrite the equations as:

[
[Wpph + Wpg(Gpg * f5); Wps(Gps * f)]/(1 + wpp)
W (Gsy * h) + wsg (Gsg * f5); wsy (Gsy * fy)]

function defined by Gop(2) =
fe = Rlwgyh; wes(Ggs * f$)1/(1 — wgg + uwgp)
fr=R
fs=R
fr = Rlwyg(Gyg * fg); wys(Gys * fs)]

We can further simplify this equation as:

R[Wpyh + Wpg(Gpg * f5); Wps(Gps * f5)]
Rlwsy (Gsy * h) + wsg(Gsg * f5); wsy (Gsy * fy)]

(1

fe = RlWgyh; Wgs(Ggs * f5)]

fr=

fs =

fv = Rlwyg(Gyg * fg); wys(Gys * fs)]

19


https://doi.org/10.1101/058396
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/058396; this version posted July 18, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

where Wgy and Wgg are the “effective connections”
from external inputs and Sst neurons to excitatory
cells, given by wgy/(1—wgg+ uwgp) and
wgs/ (1 — wgg + uwgp) while Wpy, Wpg, and Wpg rep-
resent the effective weights onto Pvalb cells, equal to
wp /(1 + wpp), wpg/(1+ wpp), and
wps/ (1 + wpp).

We estimated the average external inputs h(s, 0) from
the experimentally-measured responses of centered
(r = 0) thalamic cells using the data in Erisken et al.
(2014), for stationary and locomotion periods sepa-
rately. We first fit the size tuning curve of each cell (n =
21) with a ratio of Gaussians hgv)(s) =
b; [erf(s;/m;)1?/{1 + b;[erf(s;/m;)]?} as in Erisken
et al. (2014). We then normalized each hgv)(s) by its
maximum across s and v, and estimated the mean
visual responses by averaging across all cells. To fit off-
center responses, we extended this approach using a
Ratio-of-Gaussians model (Ayaz et al., 2013): h(s,r) =
a; u(s,r,00)/[1 + ayu(s,r,0,)] with u(s,r,0) =
erf[(s + r)/a] + sign(s — r)erf(|s — r|/o). The esti-
mated parameters are during the stationary periods
were a; = 1.2, a, =19, , =36.7, and r, = 33.9
while during locomotion a; = 0.5, a, =04, o, =
24.7°,and 0, = 10.0°.

(72 = 1260 Vs

Err =

(Val‘x [f;;) (5; T)] )s,r,v

Here, f(v) represents the measured firing rate, and
f( )represents the right hand size of equation (1). The
normalization factor of 1/ (var, [fof?(s, r)])s,m, en-

sures that conditions with high intertrial variability do
not overly influence the objective function; the normal-
ized error can also be interpreted as the log-likelihood
of the model fit under a Gaussian distribution esti-

mated from all experiments (var, [fa(_];) (s, r)] denotes

the variance of normalized visual responses for each
value of s, r and v over all experiments x).

The last three terms represent regularization parame-
ters. The first regularization term controls the number
of synaptic strengths that are allowed to change with
locomotion, n,,,; for the current analysis we used a
value of 4; = 0.1. The second regularization term con-
trols the spatial distribution of synaptic weights; we

To fit the model, we clamped the firing rate functions
a(v) (s,r) in equation (1) to their experimentally-meas-
ured values, and fit synaptic parameters to reduce the
discrepancy between the right and left sides. To do so
required extending our experimental data to continu-
ous functions of s and r. For retinotopic positions r <
r, = 33°, f(s,r) was fitted from the data with a differ-
ence of Gaussians function: f(s,r) =
Rr[erf(s/allr) —k, - erf(s/az_s)]. Because our data
for cells off-center by more than 33° were sparse, we
extrapolated the values for r > r;, with a decaying ex-
ponential approximation: f(s,7) ~ age”""m)/bs,
where 13, is the offset value that maximizes the re-
sponse of that cell class, and the parameters ag and by
were estimated for each stimulus size to minimize
squared errorintheranger;,, < r < ;. Finally, the val-
ues of by were interpolated beyond the presented
stimulus sizes with a third degree polynomial function.

To estimate the parameters we minimized an objective
function equal to the normalized mean-square error,
plus additional penalty terms to favor simpler models:

+ AlnAW + AZ

+/1 R?
oL 30a

used parameters g; = 40°, 4, = 0.01. The final term
R,, with 4; = 0.2, represents a factor to add biologi-
cally motivated constraints in the Pvalb and Sst equa-
tions.

We assume that Sst cells receive most of their input
from a local area, therefore

Rg = Yp=1, Ws;?/ (Ws(g) sg;))

The activities of Pyr and Pvalb are very similar, so to
avoid fz dominating the fp equation we have

Rp = Zomsawi /(wiid +wis).

To determine the optimal parameters of the model we
first performed an exhaustive search over the extent of
the spatial integration 0,5 parameters of all the pre-
synaptic cell classes for each postsynaptic cell class. For
each combination of {O’aﬂl’ﬂaﬁzlm} we then found the
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@)
Wa’ﬁ

combination of the trust region reflective and Leven-
berg-Marquardt algorithms (MATLAB), after 50 ran-

dom initialization of the initial parameters Wc(;;;). We

then chose the values of g, and Wo%) minimizing Err.

optimal synaptic strength parameters using a

To fit the way locomotion affects synaptic strengths,
we found the optimal of several possibilities for each

synaptic type: 1) equal weights in locomotion and sta-

tionary wg;?) = Wo(z}?)'. 2) fixing all but one of the synaptic

weights wo%) (therefore testing one model for each

synaptic connection) 3) allowing all the synaptic
weights to change with locomotion. The final model
was chosen as that minimizing the penalized error
function Err (Supplementary Figure 16A-D;).
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