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ABSTRACT 

Background 

Caudal regression syndrome (CRS) or sacral agenesis is a rare congenital disorder 

characterized by a constellation of congenital caudal anomalies affecting the caudal 

spine and spinal cord, the hindgut, the urogenital system, and the lower limbs. CRS is 

a complex condition, attributed to an abnormal development of the caudal mesoderm, 

likely caused by the effect of interacting genetic and environmental factors. A 

well-known risk factor is maternal-insulin-dependent diabetes mellitus.  

 

Results 

In this pilot study, exome sequencing and copy number variation (CNV) analyses of 5 

CRS trios implicate diabetes related genes, including MORN1, ZNF330, CLTCL1 and 

PDZD2. De novo mutations were identified in SPTBN5, MORN1 and ZNF330 and 

inherited damaging mutations in PDZD2 (homozygous) and CLTCL1 (compound 

heterozygous). In addition, a compound heterozygous mutation in GLTSCR2, a direct 

regulator of the CRS-related gene PTEN, was identified.Pathway based tests 

suggested the involvement of both pancreatic cancer (� � 1 � ���� ), and an 

immunity-related (� � 1 � ����) KEGG pathways.  

Two CNV deletions, one de novo (3q13.13) and one homozygous (8p23.2), 

were detected in one of our CRS patients. These deletions overlapped with CNVs 

previously reported in patients with similar phenotype. 

 

Conclusion 
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Despite the genetic diversity and the complexity of the phenotype, this pilot study 

identified genetic features common across CRS patients including mutations in genes 

associated with diabetes. 

 

Keywords: Sacral agenesis, Caudal regression, Copy-number variation, Whole 

exome sequencing  
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BACKGROUND 

Caudal Regression Syndrome (CRS; Caudal Dysgenesis Syndrome, Caudal Dysplasia 

Sequence, Congenital Sacral Agenesis; OMIM 600145) is a rare (1 in 7,500-100,000 births[1, 

2]) congenital disorder characterized by varying degrees of spinal column agenesis associated 

with anomalies of central nervous, genito-urinary, cardiac, respiratory and gastro-intestinal 

systems [3] with anorectal malformations (ARMs) being the most common.  

CRS has been attributed to an abnormal fetal development of the caudal mesoderm that 

occurs before the fourth week of gestation [4]. During the abnormal gastrulation, prospective 

notochordal cells that are wrongly specified in terms of their rostrocaudal positional encoding are 

eliminated. Eventually, fewer cells or even no cells will be available to form the notochord at a 

given abnormal segmental level. The consequences of such a segmental notochordal paucity 

are manifold and affect the development of the spinal column and spinal cord as well as of other 

organs that rely on the notochord as their inductor. If the prospective notochord is depleted a 

wide array of segmental vertebral malformations develop including segmentation defects, 

indeterminate or block vertebrae, or absence of several vertebrae. Because of lack of neural 

induction and absence of a floor plate, fewer prospective neuroectodermal cells will be induced 

to form the neural tube. The resulting malformation essentially depends on the segmental level 

and the extent of the abnormality along the longitudinal embryonic axis, with subsequent 

interference on the processes of primary and/or secondary neurulation [5]. However, what 

triggers such abnormal events is not known. 

The caudal spinal abnormalities are considered the defining characteristics of CRS. 

Cama et al. [6] and Pang et al. [7] classified the disorder into 5 categories according to the 

degree of caudal spine involvement: Type I) total sacral agenesis with normal or short 
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transverse pelvic diameter and some lumbar vertebrae possibly missing; Type II) total sacral 

agenesis without involvement of lumbar vertebrae; Type III) subtotal sacral agenesis or sacral 

hypodevelopment; Type IV hemisacrum and Type V) coccygeal agenesis.   

As with many congenital disorders, a well-known risk factor for CRS is maternal 

insulin-dependent diabetes mellitus (type 1 diabetes)[8]. CRS has thye highest known relative 

risk (252) of any congenital diosorder [9]. While animal studies have shown that embryos 

exposed to higher levels of glucose develop growth anomalies, hyperglycemia has not been 

associated with abnormal fetal development in humans [10]. The exact mechanism by which 

maternal diabetes affects fetal development in humans remains unclear [11]. During normal 

pregnancies insulin sensitivity is reduced at the start of the third trimester in order to provide 

metabolic fuel for both mother and the developing fetus. However, since insulin is unable to 

cross the placenta, the fetus starts producing its own insulin in order to metabolize nutrition. It 

has been suggested that insulin, antibodies to insulin, or some other abnormality of 

carbohydrate metabolism could affect the development of a genetically susceptible fetus. 

Evidence for a genetic cause is provided by the existence of familial segregation as well 

as animal models. Indeed, while the most severe forms of CRS present sporadically, milder 

CRS forms can be transmitted within families in a dominant manner with reduced penetrance 

and phenotypic variability [4]. Thus far, patients presenting association of sacral agenesis type 

IV , presacral mass, and ARM , a status known as Currarino syndrome, have been associated 

with mutations in MNX1 gene [12–17]. Yet MNX1 mutations account for only 50% of sporadic 

and 90% of familial cases [17]. Although private mutations in genes such as VANGL1 [18], 

HOXD13[19] and PTEN [20] have been described in sporadic cases with caudal dysgenesis 

and/or vertebrae anomalies, no firm genetic association has been established. 
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A CRS-like phenotype can be induced by administration in animals of retinoic acid (RA), 

lithium, cadmium, sulphamide, or organic solvents [21, 22].Several mutated genes including 

Cyp26a1, Hoxd13 [23], Wnt-3a [24], Acd, Ptf1a, and Pcsk5 underlie a CRS-like phenotype in 

mice [11, 25], yet mutations in the human orthologs have never been identified in CRS patients. 

Interestingly, the reverse is also true,Mnx1 (formerly Hxlb9)mutant mice do not present 

Currarino syndrome features[26]. These exceptions to the human-mouse phenotype correlation 

suggest differences in genetic etiology between humans and experimental organisms [11]. 

In order to search for genetic risk factors for CRS we have exome sequenced five 

sporadic CRS cases and their respective healthy parents. Due to the sporadic nature of the 

disease we have focused on de novo or recessive inherited damaging genetic variants. In 

addition, we investigated the relative burden of rare mutations in pathways. We also used a 

SNP chip assay in order to identify rare and de novo CNVs. 

 

METHODS 

Subjects 

The records of patients treated between 1995-2010 at the Neurosurgery Department of 

Giannina (Genoa, Italy) and at the AbaCid-Genética, Grupo HM Hospitales (Madrid, Spain) for 

congenital anomalies of the spine were reviewed. For all patients family history, cardiac, 

respiratory and endocrine status were collected. Neurological, neurophysiological 

(Somatosensory evoked potential, SEP), radiological, neuroradiologic (MRI), orthopaedic, 

physical, urological (urodynamic, cystography) and surgical assessments were performed for 

each case . For this pilot study, we selected four Italian trios (CR5, CR17, CR41, CR46) as well 

as one trio from Spain (CURR20). Please note that we amended either an A, B or C to the 
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patient ID to indicated father, mother or child respectively. Selected cases had lower spine 

agenesis with additional anomalies of axial skeleton and internal organs in common. All cases 

were sporadic and only one children had a mother with diabetes type I. The local ethical 

committees approved the study and written consent was obtained from all patients and parents. 

 

Bioinformatics Processing 

Capture, alignment and base-calling 

Whole exome sequencing (WES) was performed at the Centre of Genomic Sciences of the 

University of Hong Kong. All five trios were exome sequenced using Illumina HiSeq PE100 and 

captured with TrueSeq Exome Enrichment kit (Illumina Inc.). Alignment was done using BWA 

MEM [27] against Human Genome HG-19. Duplicated reads were flagged with Picard-tools 

[28]. The GATK tool set was used to realign indels, perform base recalibration, remove 

duplicates, perform indel and SNP calling, and was used for genotype refinement to improve 

accuracy of genotype calls [29]. A hard filter was used to remove variants with insufficient 

quality, the GATK recommended criteria were used (see supplementary methods). Relatedness 

of our participants was investigated with PLINK [30]. We then screened variants for their 

potential pathogenicity and frequency, retaining for further analysis only variants that were rare. 

We considered a variant to be rare if its minor allele frequency was ≤1% in each of several 

public databases (see supplementary methods). We considered a variant to be potentially 

deleterious according to a score obtained from KGGSeq [31]. KGGSeq’s prediction algorithm 

makes use of available biological information (the mutation’s effect on the gene, i.e. stop gain or 
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loss, frameshift, splice site, missense), as well as scoring from other publicly available prediction 

algorithms (PolyPhen-2, SIFT and others). 

De novo and compound heterozygous 

Single nucleotide variants (SNVs) and small indels 

Subsequent analysis of de novo and compound heterozygous, as well as homozygous, 

mutations was performed using KGGSeq [31]. We defined a de novo mutation as a first time 

genetic alteration of a specific locus in a proband. Compound heterozygous mutations were 

defined as the condition in which two nonsynonymous recessive alleles (MAF≤1%) affect two 

different loci within a certain gene and were inherited from separate parents. The expected 

probability of de novo mutations was evaluated using the framework of Samocha et al. [32] who 

approximated de novo mutation probabilities for each gene. Since a similar framework was not 

available for compound heterozygous mutations we made use of the only large control trio 

dataset publicly available, the Genome of the Netherlands (GoNL) [33]. The GoNL is a 

population dataset containing 250 unaffected parents-offspring trios. On the basis of this data 

we prioritized genes with a higher than expected frequency of compound heterozygous 

mutations. Thus we classed as a candidate risk locus any gene for which a recessive or de novo 

model could be constructed in any of our trios using the set of rare potentially deleterious 

variants we had identified. Detected de novo, compound heterozygous and homozygous 

mutations were validated using Sanger sequencing. 

Analysis of kinship revealed misattributed paternity within one family (CR46). Hence the 

family CR46 was excluded from all family based analyses (de novo, compound heterozygous 

and homozygous mutation analysis). 
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Copy number variation 

Several groups have reported methodology and software for calling CNVs from exome 

sequencing data. We tried 3 programs (EXCAVATOR [34] , CoNIFER [35], , and CONTRA [36]) 

for this and found no consistency between used tools. Confirming previous studies 

demonstrating limited power of CNV detection tools from exome sequencing data [37].  

Thus we investigated copy number variation (CNV) in the families CR5, CR17 and CR41 

with Illumina’s HumanCoreExome-24 beadchip. Quality control of the assayed genotypes was 

performed using GenomeStudio (Illumina Inc.) using the default settings. CNV calling and de 

novo CNV detection was performed with PennCNV [38]. We then screened CNVs for their 

potential pathogenicity as follows. We retained for further analysis CNVs which allowed 

construction of a recessive disease model for any gene in any of our trios. We also retained de 

novo CNVs and rare CNVs. We deemed a CNV to be rare if it did not overlap with any CNV 

detected in the 1000 Genome Project. De novo CNVs were validated by quantitative real-time 

PCR (ABI Prism 7900 Sequence Detection System; Applied Biosystems) using TaqMan® Copy 

Number Assay. Ensembl’s genome browser was used investigate CNVs on their overlap with 

genes or regulatory elements [39]. 

 

Pathway based test 

Analysis was extended by investigating the burden of rare (MAF≤1%) nonsynonymous variants 

in KEGG [40] defined pathways (174 different pathways). We compared the burden of rare 

potentially deleterious mutations in patients versus controls in each pathway (see formula 

below). Controls were acquired from the UK10K project [41]. This control cohort consisted of 
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929 individuals affected with psychiatric disorders. This dataset was used as control due to its 

good coverage, making it ideal for investigations of rare variants.  

We applied an adjusted burden test to identify pathways with significantly higher burden 

of rare potentially deleterious mutations in patients versus controls. Due to the differences in 

population [42] and calling platforms, we modified the classical burden test by standardizing the 

test statistic U by the mean number of rare nonsynonymous mutations: 

� �
∑ ∑ 
��

�

���
�
���


�
 

 

where n is the number of subjects in the sample, 
�is the sample mean of the number of rare 

mutations an individual carries across the genome, and 
�� � �0,1,2� is the genotype call for 

whether the ith subject carries no rare variants (0), a rare variant from one parent only (1), or a 

rare variant from both parents (2) in the jth position of the pathway. We estimated the null 

distribution of U via bootstrapping with 10,000 iterations. Hence we randomly choose a set of 

n=5 controls and computed the test statistic U 10,000 times to obtain a sample distribution of 

U,against which we compared U obtained from our cases to obtain a p-value. P-values were 

then controlled for multiple testing by reporting the Benjamini & Hochberg False Discovery Rate 

(FDR) [43]. Furthermore all HLA related genes were dropped from the pathways prior to the 

analysis. This was necessary because for our sample we used a different aligner software to 

that used for the UK10K variant calling. The complexity of the HLA region can present difficulties 

to aligners thus inducing unwanted technical bias [44]. In addition, we only considered those 

pathways in which patients and controls had at least three or more rare variants[45]. 

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 13, 2016. ; https://doi.org/10.1101/058578doi: bioRxiv preprint 

https://doi.org/10.1101/058578
http://creativecommons.org/licenses/by/4.0/


 

11 

RESULTS 

After extensive quality control and MAF (MAF≤1%) filtering we retained 127,344 variants of 

which 91.5% were known in dbSNP137. Out of these, 25,487 missense, 365 frameshift, 498 

nonframe-shift, 54 splicing, 273 stop-gain and 52 stop-loss variants in 18,212 different genes 

were analyzed in regards to de novo, compound heterozygous and homozygous mutations.  

De novo variants  

We identified two missense and one frameshift de novo mutations in three different genes: 

MORN1, SPTBN5, and ZNF330 in patients CR41C, CR5C, and CURR20 respectively (Table 2). 

MORN1 encodes MORN (membrane occupation and recognition nexus) repeats [46]. The exact 

function of this gene is not known, however, in Toxoplasma gondii it is known to be involved in 

nuclear cell division [47]. Furthermore MORN repeats are known to be part of a number of 

genes, including junctophilins [48] which are involved in cardiomyopathy [49]. Notably, MORN1 

was reported to be produced by insulin producing cells (IPCs) derived from pancreatic stem 

cells [50]. The estimated probability for a de novo mutation to occur in MORN1 is 0.8%. The 

probability of having a damaging de novo mutation, is lower than that of MORN1 for 59% of the 

genes analyzed within the de novo framework, is lower than that of MORN1 [32]. Pathogenicity 

analysis by KGGSeq suggests that the de novo mutation is damaging. 

SPTBN5 (OMIM: 605916) is a beta-spectrin encoding protein. It plays an important role 

in linking proteins, lipids, and cytosolic factors of the cell membrane to the cytoskeletal filament 

systems of the cell [51]. SPTBN5 is expressed in the cerebellum, pancreas, kidney, and 

bladder, as well as in a number of others systems. The gene has not been associated with any 

disease or disorder. The gene-specific probability of a de novo mutation is 1.8% and 99% of 
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genes have a lower probability making the de novo mutation less likely to be causally related. 

Further, KGGSeq’s pathogenic prediction algorithm suggests that this variant is benign.  

ZNF330 (OMIM: 609550) is a zinc finger protein with no known disease association and 

is mainly present in the nucleus during interphase as well as at the centromeres during mitosis 

[52]. Interestingly, this gene is differentially expressed in pancreatic the Islets of Langerhans 

and in peripheral blood mononuclear cells [53]. The approximated gene-based de novo 

mutation probability is 0.6%, relatively low but still within the 28th percentile of all genes.  

Thus, given the pathogenic nature of the two de novo variants and their expression 

pattern in pancreatic cells, MORN1 and ZNF330 are potential candidate genes for CRS.  

We detected one de novo CNV deletion on 3q13.13 in CR5C (Table 3). The deletion 

does not seem to encompass any gene or functional element, yet it overlaps with CNVs 

previously reported in patients with a similar phenotype. In particular, a documented de novo 

deletion in a Japanese patient with OEIS (omphalocele, exstrophy of the cloaca, imperforate 

anus, spinal defects) complex who also had also sacrum malformation (DECIPHER: 971) 

overlaps with the de novo CNV identified in CR5C. 

 

Homozygous and Compound Heterozygous Mutations 

In total we identified 8 compound missense heterozygous and two homozygous (one missense 

and one non-frameshift) mutations (PDZD2, SYNGR1) which passed the described filtering 

criteria (detailed in Table 2). Strikingly, and as in the de novo variants, mutations in genes 

related to diabetes were detected in two patients. None of the affected genes were recurrent. 

The two genes associated with diabetes were PDZD2 and CLTCL1 and were found mutated in 

CR5C and CR17C respectively. 
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PDZD2 has been shown to be an important promoter of fetal pancreatic progenitor cell 

proliferation [54, 55]. Ma et al. [56] showed that expression of PDZD2 is specific to pancreatic 

beta cells. Furthermore, higher concentrations of secreted PDZD2 in rat insulinoma cell lines 

were correlated with higher rate of cell proliferation and inhibited transcription of INS, an insulin 

promoter. 

CLTCL1 is involved in the intracellular trafficking of glucose transporter GLUT4 

Intracellular trafficking of the glucose transporter GLUT4 from storage compartments to the 

plasma membrane is triggered in muscle and fat during the body's response to insulin [57].  

Noteworthy, a compound heterozygous mutation in GLTSCR2 (Glioma Tumor 

Suppressor Candidate Region Gene 2) was identified in patient CR5C. GLTSCR2, is expressed 

at high levels in pancreas and heart, is a tumor suppressor gene and a direct regulator of PTEN. 

Mutations of PTEN have been previously identified in a patient affected with VACTERL  

(Vertebral anomalies, Anal atresia, Cardiac defects, Tracheoesophageal fistula and/or 

Esophageal atresia, Renal & Radial anomalies and Limb defects) [20] which has commonalities 

with CRS [25]. 

Additional compound heterozygous mutations were identified in DNAH10 (CR41), an 

inner arm dynein heavy chain. Dynein proteins are implicated in many disorders such as motor 

neuropathies, cortical development diseases, as well as congenital malformation such as 

heterotaxia, situs inversus. Moreover, cytoplasmic Dyneins have been reported to interact with 

Kinesin (KIF1A, mutated in patient CR17) for Interkinetic nuclear migration in neural stem cells 

[58].  

We detected a homozygous CNV deletion encompassing part of 8p23.2 in patient CR5C 

(Table 3). The CNV does not overlap with known genes but is contained within a duplication 

found in a patient with abnormal sacrum (DECIPHER: 271204). This documented patient, while 
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also harboring another deletion (7q34-7q36.3), displayed a great variety of phenotypes 

including central hypertonia, hypermetropia, long thorax, narrow mouth, seizures, and 

strabismus, as well as deeply set eyes. Additional detected rare CNVs (see supplementary 

Material) were overlapping with a number of other genes. However, none were directly related 

to CRS. 

 

Pathway-based tests 

KEGG pathways were tested for an excess of rare nonsynonymous mutations in cases versus 

controls. Table 4 lists the 10 most significantly burdened pathways. After adjusting for multiple 

testing by controlling for a False discovery Rate (FDR) of 0.05, two pathways remained 

significant; the KEGG pathway for pancreatic cancer (� � 1 � 10�	) and graft versus host 

disease (� � 1 � 10�	). Inspection of the QQ-plot (Figure 1) indicates overall robustness of the 

test.  

 Although the above reported candidate risk loci are not part of either of these two 

pathways, the enrichment of mutations in genes of the pancreatic cancer pathway is in line with 

our finding of mutations in diabetes-related genes and with previously reported results. 

DISCUSSSION 

We have identified a number of potential genetic causal mechanisms for CRS. Here we discuss 

the relevance and implications of these findings, and will outline possible directions for future 

studies. In addition to the already known genetic risk factors [11], we have been able to identify 

a number of novel risk loci potentially connected to CRS. 
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Foremost, all four patients were affected by a homozygous, compound heterozygous 

mutations or de novo variant in a diabetes-relevant (CLTCL1 and PDZD2) or pancreatic 

expressed (MORN1 and ZNF330) gene. This result is in line with the increased risk of CRS in 

children born to diabetic mothers. In addition, one de novo (3q13.13) and one homozygous CNV 

(8p23.2) overlap with CNVs reported in patients with similar phenotype. Identification of 

overlapping CNVs in patients with similar phenotype is the central aim of DECIPHER. Since 

many patients with rare diseases harbor novel or extremely rare variants, it is crucial to 

accumulate evidence across different patients in order to foster our genetic understanding of the 

disease and its mechanism. Furthermore, we identified a heterozygous mutation in GLTSCR2, 

a direct regulator of PTEN. PTEN has been previously associated with CRS-like phenotypes 

(VACTER) [11]. Finally, we would like to point out that our patients have a significantly greater 

number of rare deleterious mutations in the pancreatic cancer and graft-versus-host disease 

pathways compared to controls. The excess of mutations in pancreatic cancer genes is a result 

which is consistent with previous research showing similar alteration of the Hedgehog protein 

(Hh) in patients affected with CRS compared to those suffering from pancreatic cancer [59] and 

it is tempting to speculate that this may somehow relate to insulin production. Furthermore, 

PTEN is known for its involvement in pancreatic cancer [60], indicating a connection between 

identified heterozygous mutation in the PTEN regulator GLTSCR2 and the higher burden of rare 

deleterious mutation within the pancreatic cancer pathway. Equally interesting but not so easily 

justifiable, is the involvement of the immunology-related graft-versus-host disease pathway, a 

rare disease characterized by an aggressive immune response of donated tissues against the 

host organism [61]. 

There are, however, a number of limitations to our study. First, the sample size is small, 

but to be expected given the rarity of the disease. Second, we were not able to identify recurrent 
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affected genes across different patients. Third replication of our pathway burden test results is 

desirable given the differences in QC pipeline between cases and controls. 

The diversity of identified potential disease mechanisms matches that of previous studies 

[11, 62–64] and also reflects the phenotypic diversity associated with CRS [62]. Furthermore, 

we [65] have shown that given a complex genetic disorder, one should expect a large genetic 

heterogeneity across patients. Thus the number of candidate genes identified is not surprising 

and is similar to that reported for other complex rare genetic disorders [66]. Further the 

increasing amount of candidate genes as well as those reported by others [25, 67–71] suggests 

that CRS might be caused by a multitude of private genetic risk factors. This makes it difficult to 

identify a common underlying genetic architecture. Differences in the genetic etiology between 

humans and experimental organisms makes it challenging to investigate the exact causal 

mechanism. In addition, some principal aspects of the disease are still unknown. A challenge, 

for example, is the uncertainty of the overall frequency of the disease. While some studies have 

estimated that 1 in 7,700 children might be affected by CRS [1], others suggest it might be as 

rare as 1 in 100,000 births [2]. This further complicates estimation of the expected number of 

disease causing mechanisms [72].  

 

Conclusion 

Despite the complexity of the phenotype, we were able to identify common genetic 

characteristics across patients, potentially causally related to the present phenotypes. 

Furthermore our data, although limited to a small group of patients, support a multigenic model 

for CRS. Future studies should consider larger accumulated samples across multiple centers in 

order to identify common genetic characteristics via whole genome or whole exome 

sequencing.  
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Tables and Figures 

 
 

Table 1. Clinical characteristics of the patients included in this study 
 
Subjects Sacral agenesis1  

and vertebral 
malformations 

Ribs/Limbs  
anomalies 

Genitourinary Neural tube  ARM Cardiac Other Maternal  
phenotype 

CR5/M CRS1 Type II 
Hemivertebra T7-T8 

Additional 13th right rib      CPT (II) carrier  CPT (II) deficiency 

CR17/F CRS Type II  Hydronephrosis 
Hydroureter 
Bladder-exstrophy 

Lipoma 
Low-lying conus medullaris 

  Omphalocele 
Twisted teeth 

Diabetes type I 

CR41/F CRS Type I 
Deformed T7-T8-T9 

Fusion of 5th and 6th  
left ribs 
Additional 13th left rib 
Club feet 

Incontinence Lipoma 
Blunt ending conus medullaris 
(T11)  

 Pulmonary  
vein atresia 
Inter-ventricular 
septal defect 

Congenital hip  
dislocation. 
Motor delay. 

 

CR46/M CRS Type II 
Lumbar kyphosis 

Club feet   Anal 
Stenosis 

Intra-ventricular 
septal defect 

Congenital bilateral  
hip dislocation. 
Short neck. 

Hydrocephalus 

CURR20/
F 

CRS Type V 
 

   Anal 
Stenosis 

 Teratoma  

1According to Cama et al. [6] and Pang et al. [7] classification of sacral agenesis;. M: male; F: female; T= thoracic vertebra; S: sacral vertebra; ARM: anorectal malformations; CPT: Carnitine palmitoyl 
transferase 
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Table 2. De novo, compound heterozygous and homozygous variants. 

Subjects Genes Nucleotide 
variants 

RsID Aminoacidic  
variants 

OMIM Associated Disease Functional Role Mutation 
status 

CR5C        

 SPTBN5 c.73G>A - p.(Glu25Lys)  - interaction of cytoskeletal filament with 
other components of the cell[51] 

De novo 
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 PDZD2 c.3317C>T rs34748216 p.(Ser1106Phe) - insuline regulation[56] H 

 PKHD1L1 c.8291A>C 
c.11969G>A 

rs118074609 / 
rs146831382 

 

p.(Asn2764Thr)/p.(Gly3990Glu) - cellular immunity [73] CH 

 GLTSCR2 c.568C>T 
c.851C>T 

rs34462252 / 
rs200463741 

p.(Arg190Trp)/p.(Thr284Met)  - PTEN regulation [74] CH 

CR17C        

 ARHGEF16 c.784A>G 
c.1477C>T 

 

- / - p.(Thr262Ala)/p.(Leu493Phe)  - guanyl-nucleotide exchange factor CH 

 KIF1A c.4781C>T 
c.2522A>T 

 

rs201825284 / - p.(Ser1594Leu)/p.(Asn841Leu)  mental retardation, spastic 
paraplegia-30, neuropathy 

synaptic-vesicle transportation[75] CH 

 CLTCL1 c.4859G>A 
c.130G>T 

rs5748024 / 
rs34869740 

p.(Arg1620His)/p.(Val44Phe)  intracellular trafficking of the glucose 
transporter GLUT4 [76] 

CH 

CR41C        

 MORN1 c.319G>A - p.(Gly107Arg) cardiomyopathy, hypertrophic-17 intracellular ion chanel communication 
[77] 

De novo 

 DNAH10 c.4846G>A 
c.10859C>T 

- / rs202063832 p.(Ala1616Thr)/p.(Thr3620Leu)  primary ciliary dyskinesia  inner arm dynein heavy chain [78] CH 

CURR20C        

 ZNF330 c.6_7insT - p.(Lys3fs)  - - De novo 

 VPS18 c.1697A>G 
c.1823G>A 

- / - p.(Tyr566Cys)/p.(Arg608His)  - protein transportation to the vacuole [79] CH 

 PKD1L21 c.6241_6242ins19nt2 
c.706_707delAA 

 

- / - p.(Thr2081fs)/p(Asn236fs)   - CH 

 SYNGR1 c.C606_607insCAA  p.(Pro202_Thr1insGln)  synaptic plasticity [80] H 

CH: compound heterozygous; H: homozygous; 1mutatation information are given for the long form of the transcript (NCBI reference: NM_052892); 
219nt:GCTTTCCCCAGGCTTGGCAGTA  
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Table3. De novo and homozygous CNVs 

Patients Chromosome Start 
Position 

End Position Length Type Genes or 
regulatory 
elements 

Patients with related symptoms listed 
in DECIPHER (type 

of CNV, patient phenotype) 
CR5C        

     3q13.13 109489534 109510473 20939 De novo/deletion - 971, deletion; abnormality of the sacrum, 
Abnormality of the small intestine, Anal 
atresia, Cloacal exstrophy, Omphalocele, 
Spina bifida occulta. 
 

     8p23.2 5599399 5605087 5688 homozygous/deletion - 271204, duplication; Abnormality of the 
sacrum, Central hypotonia, Deeply set 
eye, Hypermetropia, Long thorax, 
Narrow mouth, Nasogastric tube feeding 
in infancy, Seizures, Strabismus. 
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Table 4. KEGG pathways most significantly enriched for potentially deleterious mutations 

Pathway P-value FDR Number of genes 

Pancreatic cancer <1×10-04 <1×10-04 70 

Graft versus host disease <1×10-04 <1×10-04 22 

Antigen processing and presentation 0.002 0.081 69 

Colorectal cancer 0.002 0.081 62 

Folate biosynthesis 0.002 0.081 11 

Neuroactive ligand receptor interaction 0.003 0.081 272 

Glycosaminoglycan degradation 0.003 0.081 21 

Endometrial cancer 0.010 0.190 52 

Autoimmune thyroid disease 0.010 0.190 33 

Intestinal immune network for IGA production 0.012 0.190 34 
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Figure title and legend 
 
Figure 1.  
Title: QQ-Plot of adjusted Burden test. 
 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 13, 2016. ; https://doi.org/10.1101/058578doi: bioRxiv preprint 

https://doi.org/10.1101/058578
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 13, 2016. ; https://doi.org/10.1101/058578doi: bioRxiv preprint 

https://doi.org/10.1101/058578
http://creativecommons.org/licenses/by/4.0/

