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Fine-mapping causal variants is challenging due to linkage disequilibrium and the lack11

of interpretation of noncoding mutations. Existing fine-mapping methods do not scale12

well on inferring multiple causal variants per locus and causal variants across multiple13

related diseases. Moreover, many complex traits are not only genetically related but14

also potentially share causal mechanisms. We develop a novel integrative Bayesian15

fine-mapping model named RiVIERA-MT. The key features of RiVIERA-MT include16

1) ability to model epigenomic covariance of multiple related traits; 2) efficient pos-17

terior inference of causal configuration; 3) efficient full Bayesian inference of enrich-18

ment parameters, allowing incorporation of large number of functional annotations;19

4) simultaneously modeling the underlying heritability parameters. We conducted a20

comprehensive simulation studies using 1000 Genome and ENCODE/Roadmap epige-21

nomic data to demonstrate that RiVIERA-MT compares quite favorably with existing22

methods. In particular, the efficient inference of multiple causal variants per locus23

led to significantly improved estimation of causal posterior and functional enrichments24

compared to the state-of-the-art fine-mapping methods. Furthermore, joint modeling25

multiple traits confers further improvement over the single-trait mode of the same26

model, which is attributable to the more robust estimation of the enrichment parame-27

ters especially when the annotation measurements (i.e., ChIP-seq) themselves are noisy.28

We applied RiVIERA-MT to separately and jointly model 7 well-powered GWAS traits29

including body mass index, coronary artery disease, four lipid traits, and type 2 di-30

abetes. To leverage potential tissue-specific epigenomic co-enrichments among these31

traits, we harness 52 baseline functional annotations and 220 tissue-specific epigenomic32

annotations from well-characterized cell types compiled from ENCODE/Roadmap con-33

sortium. Overall, we observed an improved enrichments for GTEx whole blood and34
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tissue-specific eQTL SNPs based on the prioritized SNPs by RiVIERA-MT compared35

to existing methods.36

1 Introduction37

Genome wide association studies (GWAS) can help gain numerous insights on the genetic38

basis of complex diseases, and ultimately contribute to personalized risk prediction and pre-39

cision medicine [1–4]. However, fine-mapping the exact causal variants is challenging due to40

linkage disequilibrium (LD) and the lack of ability to interpret the function of noncoding41

variants, which contribute to about 90% of the current GWAS catalog (40.7% intergenic42

and 48.6% intronic; [5]). On the other hand, several lines of evidence have been proposed43

to help interpret non-coding genetic signals, in order to gain insights into potential regula-44

tory functions. In particular, epigenomic annotations can pinpoint locations of biochemical45

activity indicative of cis-regulatory functions [6, 7]. Indeed, comparison with genome-wide46

annotations of putative regulatory elements has shown enrichment of GWAS variants in47

enhancer-associated histone modifications, regions of open chromatin, and conserved non-48

coding elements [3, 6, 8–12], indicating they may play gene-regulatory roles. These enrich-49

ments have been used to predict relevant cell types and non-coding annotations for specific50

traits [6, 9, 13].51

Recently, several methods proposed to model the summary statistics of GWAS and thus52

circumvent the difficulties of accessing individual-level genotype data [14–18]. Some of these53

methods also utilize the wealth of genome-wide annotations primarily provided by ENCODE54

consortium to predict causal variants. In particular, Pickrell (2014) developed a statistical55

approach called fgwas that models association statistics of a given trait and used regularized56

logistic function to simultaneously learn the relevant annotations. To account for LD, fgwas57

assumes at most one causal variants per locus by normalizing the posterior probabilities of58

SNPs within the same locis. Kichaev et al. (2014) recently developed a multivariate Gaussian59

framework called PAINTOR, which allows for more than one causal SNP but at most three60

to be located within a single locus by considering all of the combinatorial settings [15].61

Chung et al. (2014) developed model called GPA to prioritize individual pleiotropic risk62

variants among multiple related traits by essentially numerating for each SNP all possible63

configurations across traits with an option of using one or more sets of annotations to improve64

the power detecting causal variants [16]. GPA does not consider LD and assumes that SNPs65

are independent. Recently, we also developed a model called RiVIERA-beta , which uses66

functional annotations to infer causal variants by modeling the GWAS p-values via Beta67

density. Although RiVIERA-beta works on well on inferring regulatory variants on immune68

traits using ImmunoChip summary statistics data, it is limited to the assumption of one69

causal variant per locus (Li and Kellis, bioRxiv 2016).70

Moreover, many complex traits are genetically related [19,20] and potentially share causal71

mechanisms such as lipid traits and coronary artery disease [21], autoimmune diseases [22,23]72

and psychiatric disorders [24, 25]. Most of these related traits have distinct genome-wide73

significant loci but it is plausible that they share the causal effects at the pathway level. Thus,74

we hypothesize that exploiting the correlation between traits at the epigenomic annotation75

level may prove useful in fine-mapping for shared causal mechanisms that go beyond the level76
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of individual variants. Currently, there is a lack of fine-mapping method that harnesses the77

intrinsic comorbidity that manifest as tissue-specific epigenomic correlations among related78

traits.79

In this article, we describe a novel Bayesian framework called RiVIERA-MT (Risk80

Variant Inference using Epigenomic Reference Annotations to predict Multiple Trait-causing81

co-localized mutations) to fine-map causal variants across multiple related traits by modeling82

the distribution of GWAS summary statistics in multivariate normal distribution with the83

aid of LD information from 1000 Genome reference panel. Compared to existing methods,84

the main novelty of RiVIERA-MT is the ability to perform efficient full Bayesian inference85

of multiple causal variants per locus across multiple traits while simultaneously inferring86

and leveraging the functional co-enrichment signals among traits using related baseline and87

tissue-specific epigenomic annotations. We achieve this via an efficient Markov Chain Monte88

Carlo (MCMC) approach by jointly sampling from the posterior distribution causal con-89

figurations for each locus and functional effects of each annotation that are shared among90

loci for the same trait and potentially correlate between traits. To evaluate our proposed91

model rigorously, we conduct a comprehensive simulation studies using 1000 Genome data92

and ENCODE/Roadmap epigenomic data.93

We then apply RiVIERA-MT to jointly fine-map causal variants of 7 related well-powered94

GWAS traits, including body mass index (BMI) [26], coronary artery disease (CAD) [27], low95

density lipoprotein (LDL), high density lipoprotein (HDL), triglycerides (TG), total choles-96

terol (TC) [28], and type 2 diabetes (T2D) [29]. To leverage potential tissue-specific epige-97

nomic co-enrichments among these traits, we harness the largest compendium of epigenomic98

annotations to date from ENCODE/Roadmap consortium, including 4 previously implicated99

epigenomic marks (H3K4me1, H3K4me3, H3K27ac, H3K9ac) across 100 well characterized100

cell types and tissues [7]. This allows us to revisit the GWAS of these 7 complex human traits101

by inferring their underlying regulatory variants implicated at the tissue-specific epigenomic102

contexts.103

2 Results104

2.1 RiVIERA-MT method overview105

We describe a novel full Bayesian model to infer causal variants. Fig. 1 illustrates the fine-106

mapping problems in three representative scenarios using simulated data (Methods). In the107

first scenario, the risk locus harbors one causal variant (red cricle), which drives the genetic108

signals of other non-causal variants via linkage disequilibrium (LD) (Fig. 1a). Notably, the109

lead SNP (dark diamond) with the most significant p-value is not the causal variant. In this110

case scenario, the underlying epigenomic activities (middle track) provide a crucial evidence111

to the inference of functional variants. Methods that assume single causal variant per locus112

may work well here by normalizing the posterior for each SNP within the locus [14, 30].113

However, these methods become inadequate when there are more than one causal variant114

within the same locus (Fig. 1b,c) because they will pull down the true signals of all causal115

variants in order to maintain a properly normalized posterior probabilities.116

Our RiVIERA-MT builds upon some of the existing fine-mapping methods [17,18,31,32]117
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by utilizing multivariate normal theory to infer the posterior distribution of causal configu-118

rations and subsequently marginalizes the posterior to infer posterior inclusion probabilities119

(PIP) for each SNP among all sampled configurations [15, 17, 18, 33, 34] (Methods). How-120

ever, as illustrated in Fig. 2 and detailed in Methods, RiVIERA-MT has several significant121

novel features that distinguish it from the existing fine-mapping methods:122

1. Ability to model epigenomic covariance Σw of multiple related traits, which do not123

necessarily share the same set of risk loci (Fig. 2a and c);124

2. Efficient posterior inference of causal configurations cld for each locus l and disease d,125

automatically determining the number of causal variants in each risk locus (Fig. 2b);126

3. Efficient full Bayesian inference of functional parameters of epigenomic weights (wk)127

allowing incorporation of a large number of discrete or continuous annotations aldk128

with lesser concern of overfitting due to the full Bayesian treatments (Fig. 2c);129

4. Simultaneously modeling the underlying heritability parameters as per-SNP variance130

explained σ2
a,d and leveraging it in the causal inference (Fig. 2c);131

It is worth noting that the multi-trait feature of RiVIERA-MT allows us to fine-map causal132

variants simultaneously across a large number of traits because the model complexity grows133

only linear to the number of traits. Because we only associate traits via the epigenomic co-134

variance, we impose only a weak prior on the underlying relatedness of traits. This contrasts135

to the direct inference approach of detecting the individual pleiotropic variants that affect136

zero, one or multiple related traits [16], which is exponential to the number of traits modeled137

for each SNP in order to consider all of the configurations of the same SNP across traits.138

Our model also differs from directly inferring causal variants within pleiotropic loci, which139

requires both the underlying causal variants and the genome-wide significant loci to be same140

across traits (Kichaev et al., bioRxiv 2016).141

2.2 Empirical analysis of model convergence142

Convergence is crucial for an MCMC approach to accurately approximate the posterior143

distributions of causal variants. Although we do not have a theoretical guarantee for the144

convergence of our model, we examined the joint posteriors at each MCMC iteration across145

1000 samplings using 100 simulated datasets (Methods). Indeed, we observed that our146

model converged very fast after a few iterations attributable to the sensible MCMC sam-147

pling methods (Supplementary Fig. S2a). At each MCMC iteration, we performed a fixed148

number of stochastic searches of the entire local neighborhood of the current causal configura-149

tions [18,35]. Thus, the number of searches needed to reach the optimal power is independent150

from the size of the locus. We assessed the model performance as a function of an increasing151

number of neighborhood searches. Indeed, we observed a stead improvement as we increased152

the number of neighborhood searches, and the model reached to the optimal detection power153

at 10 rounds of stochastic searches (Supplementary Fig. S2b). Accordingly, we fixed the154

number of searches to 10 throughout this study.155
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2.3 Improved fine-mapping power over existing methods156

To assess the power of the proposed fine-mapping model in identifying causal variants and157

compare it with existing methods, we implemented a simulation pipeline adapted from [15]158

(Methods). RiVIERA-MT demonstrates a consistently improved power in detecting causal159

variants (Fig. 3). For instance, the top 100 selected variants by RiVIERA-MT contain160

over 50% of the causal variants over most simulation tests in contrast to lower than 40%161

of the causal variants detected among the top variants chosen by PAINTOR [15], which162

is the current state-of-art fine-mapping method that integrates annotations with summary163

statistics. Furthermore, RiVIERA-MT effectively incorporates functional annotations as it164

performs much better than the same model without annotations. Notably, the methods165

that explicitly account for LD namely our RiVIERA-MT model and PAINTOR conferred166

much higher power compared to fgwas [14] and RiVIERA-beta (Li and Kellis, bioRxiv 2016)167

which assume single causal variant per locus. Nonetheless, fgwas and RiVIERA-betaperform168

better than GPA and marginal GWAS -log10 p-value, which assume that all of the SNPs169

are independent.170

From our simulation, a single locus can harbor more than one causal variant, some of171

which may exhibit rather weak genetic signals due to relatively low allele frequency. For172

instance, Fig. 1b and c illustrate two loci containing 3 and as many as 10 causal variants in173

the same loci, respectively. In these cases, our RiVIERA-MT model is still able to efficiently174

infer the correct PIP by marginalizing over a large number of sampled causal configurations175

with high local posteriors, which automatically accounts for the potentially large number of176

causal variants within the same locus without predefining the number of causal variants per177

locus. As a result, the posterior probabilities produced by RiVIERA-MT are well calibrated178

and exhibit consistently superior performance by identifying additional number of causal179

variants when selecting more than 10 variants per locus (Supplementary Fig. S3). On the180

other hand, when the number of causal variants to consider go beyond a model’s ability to181

infer, the causal signals are poorly calibrated. This is the main reason RiVIERA-beta and182

fgwas (which assumes 1 causal variant per locus) and PAINTOR (which is only able to infer183

by default at maximum 2 causal variants per locus due to exhaustive search) perform worse184

in prioritizing variants beyond top 10 SNPs per locus compared to methods such as GPA185

and GWAS -log10 p-values that do not impose any normalization constraints on the SNPs.186

2.4 Functional enrichments187

In addition to the improved power in causal variant detection when using annotations, we188

sought to further ascertain the ability of RiVIERA-MT to incorporate relevant annotations.189

To this end, we performed Bayesian log-likelihood ratio tests (LRT) on each annotation190

by comparing the likelihoods of the null models without the annotation in question with191

the likelihoods of the alternative models with the annotation incorporated. The Bayesian192

credible interval of the LRT statistics was obtained naturally from the MCMC samplings193

(Methods). Indeed, we observed a consistent agreement between the predicted LRT and194

the underlying fold enrichment of each annotation from the simulated data with the median195

Pearson correlation above 0.78 (Fig. 4). PAINTOR and RiVIERA-MT have rather compa-196

rable performance and performed much better than fgwas and GPA. Notably, the accuracy197
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of enrichment tests reflects the accuracy of fine-mapping as all of the four methods jointly198

infer both the causal variants and the enrichment parameters. Thus, models that generalize199

to inferring multiple causal variants per locus confer more robust estimate of the enrichment200

compared to models that do not.201

2.5 Inferring variance explained by causal SNPs202

As a part of the full Bayesian fine-mapping algorithm, RiVIERA-MT is able to infer the203

distribution of per-SNP variance via the MCMC sampling scheme, which is related to the204

narrow-sense heritability [31, 36] (Methods). We assessed the variance estimate by sim-205

ulating GWAS datasets with heritability values ranging from 0.05 to 0.95. Overall, we206

observed a consistent increase of the estimates as we increased the underlying heritabili-207

ties (Supplementary Fig. S4). This is remarkable compared to the existing fine-mapping208

methods such as CAVIARBF [17] and FINEMAP [18], which treat the per-SNP variance209

as a free parameter defined by the users. For a normalized heritability estimation (ranging210

between 0 and 1) (which is not the focus of our model), we need to know the standard error211

from the linear model and genome-wide effect sizes of all of the SNPs (Zhu and Stephens,212

bioRxiv 2016) as apposed to the SNPs in the GWAS loci, which have been integrated out in213

our model.214

2.6 Joint inference of multiple traits215

An additional novel feature of RiVIERA-MT is the ability to jointly model the summary216

statistics of multiple traits, which do not share the same risk loci. To examine whether217

the multi-trait mode of the model provides any improved performance in detecting causal218

variants, we simulated 100 datasets for 2 to 10 related traits. Despite distinct risk loci,219

we correlated the traits based on the functional co-enrichments of the cognate causal vari-220

ants over the 100 epigenomic annotations (Methods). Thus, model that is able to harness221

this underlying correlation by jointly inferring the causal variants and causal annotations222

across the related traits should confer better performance than modeling each trait sepa-223

rately. Indeed, compared to the single-trait RiVIERA-MT model, we observed a modest but224

significant gain of power reflected by the reduced number of SNPs required to identify 90%225

of the causal variants (Fig. 5). The improvements of multi-trait mode over single-trait are226

consistent over different number of traits.227

As expected, the improvement is completely attributable to the improved empirical prior228

inference (Fig. 5 top panels) because it is the only model component that is connected229

to the estimated covariance of the annotation weights (Fig. 2). When the genetic signals230

are incorporated into the posterior model component, we observed less pronounced but still231

notable improved resolution (Fig. 5 top panels). Additionally, we assessed the robustness of232

the models in their abilities to infer causal variants when the annotations themselves are noisy233

estimates of the true underlying annotations. This is a realistic scenario since the epigenomic234

annotations were based on ChIP-seq experiments, which are often noisy due to imperfect235

efficacy of antibodies, sequencing errors, read alignment error, peak calling algorithmic errors,236

etc. To this end, we used standardized continuous annotations instead of binary annotations237

to fit each model and assessed the number of SNPs required to identify 90% causal variants.238
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As expected, the general performance decreased when using the noisy annotations (Fig. 2239

right panels). However, the multi-trait model exhibits better robustness compared to the240

single-trait model especially when modeling more than 2 traits simultaneously.241

2.7 Application to body mass index, lipid traits, type 1 diabetes,242

and coronary artery disease243

We applied RiVIERA-MT to 7 related traits including body mass index (BMI), 4 lipid traits244

(HDL, LDL, TC, TG), type 1 diabetes (T1D), and coronary artery disease (CAD) using245

the corresponding publicly available summary statistics imputed to 1000 Genome European246

SNPs (Methods; Supplementary Table S1). We first examined the genome-wide func-247

tional enrichments over 272 well defined annotations including 52 baseline annotations and248

220 cell-type-specific annotations over four transcription-activating histone marks via LD249

score regression on the z-scores of the HapMap3 SNPs from each GWAS trait against Eu-250

ropean 1000 Genome Phase 1 (version 3) LD reference panel (Methods) [37]. Consistent251

with the published results [37], we observed meaningful cell-type-specific functional enrich-252

ments for the GWAS traits conditioned on the 52 baseline functional categories (Fig. 2a):253

BMI is significantly enriched for CNS functional categories; the 4 lipid traits are significantly254

enriched for liver for one or more histone marks; CAD for heart tissues; T2D for pancreas.255

Thus, the causal signals are highly implicated in the functional annotations, suggesting an256

integrative fine-mapping method such as RiVIERA-MT to incorporate them to improve257

the power of fine-mapping causal variants that potentially disrupt various functional ele-258

ments and especially the tissue-specific regulatory elements of the genome. However, we also259

observed a pervasive sharing of functional enrichments between traits, which suggest that260

jointly modeling these related traits may further improve fine-mapping power over modeling261

each trait separately.262

To fine-map causal variants in independent risk loci for each trait (Methods), we applied263

RiVIERA-MT in multi-trait and single-trait mode as well as the PAINTOR model [15] on264

each GWAS data using the subset of the baseline and cell-specific annotations with enrich-265

ment p-values < 0.05 after Benajmini-Hocherg adjustment for multiple testings over the 7266

traits and 272 annotations. We first visualized the fine-mapping results of RiVIERA-MT on267

single-trait mode with four tracks for each trait including (top-bottom) GWAS p-values,268

baseline annotations, cell-specific annotations, and the posterior inclusion probabilities (PIP)269

inferred by RiVIERA-MT (Supplementary Fig. S5). Consistent with previously reported270

results [36–38], the baseline model (second track) suggest that the risk loci are highly en-271

riched for enhancer-related regions/marks such as DNA hypersensitive site (DHS), H3K27ac,272

and H3K4me1 for all of the 7 traits. More remarkably, we observed a striking distinct tissue-273

specific epigenomic landscapes (the third track) between different GWAS traits. In partic-274

ular, the BMI loci are highly enriched for CNS related histone marks whereas CAD exhibit275

modest enrichment for cardiovascular marks, HDL for liver, and T2D for Adrenal/Pancreas.276

The inferred PIP prioritizes SNPs by taking into account 3 sources of information: 1)277

GWAS signals in terms of z-scores; 2) significant annotations determined by LDSC; 3) linkage278

disequilibrium from 1000 Genome European reference panel. While many variants with PIP279

< 0.9 also exhibit significant GWAS signals (p<5e-8), a substantial number of SNPs that are280
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below the GWAS threshold became prominent after the re-prioritization (Supplementary281

Fig. S5). We then applied RiVIERA-MT to jointly model the data of the 7 GWAS traits.282

The resulting PIP from the multi-trait mode generally correlate well with the PIP from283

the single-trait mode (Supplementary Fig. S6). Because there is no gold-standard for284

the causal SNPs of each trait, we compared the inference results from RiVIERA-MT and285

PAINTOR in terms of the overlap of the 90% credible set from each method, which are286

determined as the SNPs with PIP that contributed to 90% of the total posterior mass287

(Supplementary Fig. 6). In general, there are substantial overlap between RiVIERA-288

MT’s and PAINTOR’s 90% credible sets, implying an overall consistent agreements among289

these methods. Importantly, the PIP for each method increases as a function of the number290

of supporting methods (Fig. 6).291

Moreover, as an empirical evaluation for the functional implication of the prioritized292

varaints, we ranked the SNPs by the corresponding PIPs inferred by each method and293

computed the hypergeometric enrichments for the GTEx (version 6) whole blood eQTL SNPs294

(WB) or tissue-specific eQTL SNPs as a function of the increasing number of top variants295

selected. For the tissue-specific eQTL SNPs, we chose brain and nerve tissues for BMI, artery296

and heart tissues for CAD, liver and adipose for the four lipid traits, and pancreas for T2D.297

Although the results are not monotonically favorable for a single method, SNPs prioritized by298

RiVIERA-MT single or multi-trait models exhibit higher overall enrichments for the eQTL299

SNPs compared to PAINTOR and GWAS -logP methods in most traits (Fig. 7a).300

Since both RiVIERA-MT and PAINTOR provides 90% credible sets, we further examined301

their functional enrichment for the eQTL SNPs from entire GTEx data over 44 tissues302

(Fig. 7b). Interestingly, the credible SNPs for BMI, HDL, TC and TG exhibit enrichment303

over majority of the tissues, perhaps implying a multifaceted causal mechanisms for these304

traits. On the other hand, the credible SNPs for CAD and LDL are highly selective of305

tissue types with CAD significantly enriched for artery tissues and LDL for liver tissue.306

T2D exhibits no obviously meaningful enrichment. The enrichment signals are generally307

consistent among the methods. Nonetheless, RiVIERA-MT achieved more significant eQTL308

enrichment than PAINTOR in all traits except T2D. However, caution must be taken to309

interpret these results because the enrichment analysis may be biased for the larger number310

of SNPs used to construct the 90% credible set and the eQTL SNPs themselves are not311

independent but rather linked by linkage disequilibrium, which violates the hypergeometric312

enrichment model assumption.313

3 Discussion314

Dissecting causal mechanisms of complex traits to ultimately map genotypes to phenotypes315

becomes plausible with the recent availability of large-scale functional genomic data [9, 23,316

30, 39]. In formulating an efficient fine-mapping strategies, it is natural to incorporate the317

valuable reference annotations in a principled way as a form of Bayesian prior to infer the318

functional variants that drive the genetic signals of GWAS [9, 15, 40–42]. In this article,319

we describe a novel Bayesian fine-mapping method RiVIERA-MT to re-prioritize GWAS320

summary statistics based on their epigenomic contexts and LD information. The main321

contribution of RiVIERA-MT is the ability to efficiently infer multiple causal variants within322
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a set of susceptible loci in a single trait or across multiple traits that do not need to share the323

same risk loci. Through comprehensive simulations and applications to GWAS datasets, we324

demonstrate the general utilities of RiVIERA-MT. Because our model only require summary325

statistics, we envision its broad applications in large-scale GWAS meta-analysis on many326

complex traits.327

One caveat in our current model formalism is that the likelihood is based on the given risk328

loci rather than genome-wide SNPs. Here we made two implicit assumptions: (1) all of the329

genetic signals associated with the trait are captured within the risk loci; (2) majority of the330

SNPs within the risk loci are not causal and serve as background for fine-mapping the causal331

variants. This is true in our simulation, which was mainly used to assess how sensitive our332

model is to distinguish causal SNPs and causal annotations with different fold-enrichment of333

causal variants. In practice, this assumption may not hold especially for highly polygenetic334

model with small effect sizes. To detect causal annotations, a general enrichment test should335

be performed either on genome-wide independent loci such as fgwas [14] or on genome-336

wide SNPs such as the recently developed LD-score regression approach, which assesses the337

proportion of variance explained (PVE) due to the LD-linked SNPs from each functional338

category over the total estimated heritability [37].339

As demonstrated in our applications to GWAS data, users may perform enrichment tests340

with a software of their choice and input to RiVIERA-MT a select set of annotations for fine-341

mapping. It is also worth mentioning that annotations that exhibit genome-wide enrichment342

may not be useful for fine-mapping purpose. Suppose we have an annotation that covers all343

of the risk loci. The corresponding enrichment for this annotation will be highly significant344

from genome-wide analysis but no different from background when focused within risk loci.345

Thus, annotations as such are important for inferring the risk loci but not for inferring346

individual risk variants. Therefore, it is still necessary to weight each annotations via the347

fine-mapping model.348

As future works, we can extend our current RiVIERA-MT in several ways. First, our349

current eQTL enrichment analyses may be biased by the LD on the eQTL side and thus may350

merit more meaningful signals if we can infer the causal genes beyond individual variants351

by jointly modeling both the GWAS data and eQTL data. Second, we can generalize the352

model to apply for genome wide SNPs rather than defined risk loci via hierarchical modeling353

approach to infer risk loci and then the causal variants [14, 43]. Third, for traits that are354

associated with the same pleiotropic loci, we may provide the users an option to infer the355

joint posterior of SNP associations with multiple traits. Fourth, the current model can also356

be easily adapted to model trans-ethnic GWAS using separate LD matrices as effectively357

demonstrated by the trans-ethnic version of the PAINTOR model [33]. Fifth, instead of358

using the linear logistic prior model, we will explore other models that take into the spatial359

information of the genomic sequence and local epigenomic context around each SNP. Finally,360

the efficiency of our model can be further improved by paralleling the causal configuration361

searches via a multi-processing computing architecture.362
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4 Methods363

4.1 Model details364

4.1.1 Likelihood and Bayes factor365

We assume a linear model for quantitative trait of n individuals and p SNPs [17,44]:

y = Xβ + ε (1)

ε ∼ N (0, σ2
eIn) (2)

β ∼ N (0, σ2
aσ

2
eIc) (3)

where σ2
e is the standard error, β is the effect size with equal per-SNP additive variance σ2

a366

for each causal SNP, In is identity matrix with ones in the diagonal and zeros elsewhere,367

and Ic a diagonal matrix such that Ii,i = 1 if SNP i is causal (ci = 1) otherwise 0 (ci = 0).368

Notably, we assume the causal indicator c is given here in order to integrate out the effect369

size β and then subsequently infer the posterior distribution c as detailed below.370

As previously shown by [17,18], we can integrate out β by taking the conditional expecta-
tion of the mean and variance of y with respect to β (Eβ) and leveraging the (log-transformed)
linear property of the multivariate Gaussian density function:

N (y|X, σ2
a, σ

2
e , c) =

∫
N (y|Xβ, σ2

e)N (β|0, σ2
aσ

2
eIc)dβ (4)

= N (y|E(y),E(Var(y))) (5)

= N (y|Eβ(y|Xβ),Eβ(Var(y|σ2
e ,X, β)) + Var(Eβ(y|σ2

e ,X, β))) (6)

= N (y|0, σ2
eIn + X(σ2

eσ
2
aIc)X

′) (7)

= N (y|0, σ2
e(In + X(σ2

aIc)X
′)) (8)

We can then express the likelihood density function of Eq (1) in terms of z-score:

y|σ2
a, σ

2
e , c ∼ N (0, σ2

e(In + X(σ2
aIc)X

′)) (9)

X′y√
n
|σ2
a, σ

2
e , c ∼ N (0, σ2

e(
X′X

n
+

X′X(σ2
aIc)X

′X

n
) (10)

z ≡ X′y√
nσ2

e

|σ2
a, c ∼ N (0,Σ + Σ(nσ2

aIc)Σ) (11)

where Σ = X′X/n is often referred to as the linkage equilibrium (LD) and estimated either371

from the corresponding study cohort or a reference population from 1000 Genome Consor-372

tium [38].373

Thus, given the sample size, z-scores, Σ as the GWAS summary statistics, we can infer374

c without the access to the individual-level genotype and phenotype information. Moreover,375

we do not need to know the effect size β as it has been integrated out or σ2
e as it has been376

cancelled by the z-score calculation in (11).377
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The Bayes factor is the likelihood ratio of the alternative model over the null model:

BF (z|c,Σ, σ2
a)

=
N (z|0,Σ + Σ(nσ2

aIc)Σ)

N (z|0,Σ)
(12)

=
N (zc|0,Σcc + Σcc(nσ

2
aIc)Σcc)N (zn|ΣncΣ

−1
cc zc,Σnn − ΣncΣ

−1
cc Σcn)

N (z|0,Σ)
(13)

=
N (zc|0,Σcc + Σcc(nσ

2
aIc)Σcc)

N (z|0,Σ)

N (z|0,Σ)

N (zc|0,Σcc)
(14)

=
N (zc|0,Σcc + Σcc(nσ

2
aIc)Σcc)

N (zc|0,Σcc)
(15)

= BF (zc|Σcc, σ
2
a) (16)

where zc and Σcc denote z-scores and LD for the causal SNPs, respectively. Notably, Eq (15)378

is much more efficient than Eq (12) because it operates only on the causal SNPs instead of379

all of the SNPs.380

Suppose there are D diseases, Ld independent risk loci for disease d, mld SNPs in locus381

l. The joint likelihood expressed in terms of Bayes factor is factorized into products of382

individual likelihoods over loci across traits:383

L(c|z,Σ) =
D∏
d=1

Ld∏
l=1

BF (zld|cld,Σld) (17)

4.1.2 Prior384

The prior distirbution of being a causal SNP in locus l and disease d follows Bernoulli385

distribution:386

p(cld|a,w) =

ml∏
i=1

πcildild (1− πild)(1−cild) (18)

where πild is a logistic function of a linear combination of K annotations weighted by model387

parameters w:388

πild = [1 + exp(−
K∑
k=1

wkdailk − bld)]−1 (19)

Here w = {wkd}K×D follows multivariate normal distribution with D × D covariance Σw

modeling the underlying disease-disease covariance at the annotation level, and the inverse
of the covariance Σ−1

w = Λw follows Wishart distribution:

w|Λw ∼ N (0,Λ−1
w ) (20)

Λw|Λ0, ν0 ∼ W(Λ0, ν0) (21)

The linear bias bld in (19) follows a univariate normal with mean equal to the logit function
of causal proportion π0,ld within locus l of disease d and the inverse variance follows Gamma
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distribution:

bld|π0,ld, λ0d, ∼ N (g(π0,ld), λ
−1
0d ) (22)

λ0d|α0, β0 ∼ Γ(α0, β0) (23)

where g(π0) = log(π0)/ log(1− π0) and π0 = 1/mld, which implies apriori one causal variant389

per locus, and we set α = 0.01 and β = 0.0001 to enable a broad hyperprior for λ0d.390

4.1.3 Approximate posterior inference of causal configurations391

Based on the results above, posterior inference of a causal configuration for locus l in disease
d can operate on Bayes factors as follows:

p(cld|zld,Σld, ald,wd, σ
2
a)

=
p(zld|cld,Σld)p(cld|ald,wd)∑
c′ld∈Sld

p(zld|c′ld,Σld)p(c′ld|a,w)
(24)

=

N (zld|0,Σld+Σld(ndσ
2
a,dIc,d)Σld)

N (zld|0,Σld)
p(cld|ald,wd)∑

c′ld∈Sld
N (zld|0,Σld+Σld(ndσ

2
a,dIc′,d)Σld)

N (zld|0,Σld)
p(c′ld|a,w)

(25)

=

N (zc,ld|0,Σcc,ld+Σcc,ld(ndσ
2
a,dIc)Σcc,ld)

N (zc,ld|0,Σcc,ld)
p(cld|ald,wd)∑

c′ld∈Sld
N (zc′,ld|0,Σc′c′,ld+Σc′c′,ld(nσ2

a,dIc′,ld)Σc′c′,ld)

N (zc′,ld|0,Σc′c′,ld)
p(c′ld|ald,wd)

(26)

=
BF (zc,ld|Σcc,ld, σ

2
a,d)p(cld|ald,wd)∑

c′ld∈Sld
BF (zc′,ld|Σc′c′,ld, σ2

a,d)p(c
′
ld|ald,wd)

(27)

≡
BF (zld|cld,Σld, σ

2
a,d)p(cld|ald,wd)∑

c′ld∈Sld
BF (zld|c′ld,Σld, σ2

a,d)p(c
′
ld|ald,wd)

(28)

where Eq (25) to Eq (26) utilizes the results from Eq (15). Thus, we can infer Eq (24) by Eq392

(27) using Bayes factor of only the causal SNPs, which is much more efficient than inferring393

the likelihood of all of the SNPs in the locus. To simplify notation below, we use Eq (28)394

instead of Eq (27).395

However, the normalization term in the denominator of Eq (28) still requires evaluation of396 ∑mld

j=1

(
mld

j

)
causal configurations, which becomes intractable for large mld. We approximate397

it by recursively sampling from the neighborhoods of the current configuration plausible398

configurations based on their posterior normalized only within the neighborhood. By doing399

so, we ignore the majorities of the highly implausible configurations that likely contribute400

very little to the normalization [18,35]. This stochastic search technique was initially devel-401

oped by [35] as general feature selection algorithm, and was first implemented to fine-map402

causal variants in the software called FINEMAP [18]. However, FINEMAP infers causal403

variants on a single locus individually (i.e., no information sharing among loci), works for404

only a single trait, does not take into account functional annotations, and accepts all pro-405

posed configurations. In contrast, our model infer causal variants across multiple loci with406

model parameters shared among loci, can operate on multiple traits simultaneously, harness-407

ing large-scale functional and epigenomic annotations, and exploits an sampling scheme to408

ensure the quality of the neighborhood that the model is exploring (detailed as follows).409
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We apply Metropolis-Hastings (MH) algorithm to accept the proposed configuration c∗ld410

at the probability:411

min(1,

∑
c′′ld∈nbd(c∗ld)BF (zld|c′′ld,Σld, σ

2
a,d)p(c

′′
ld|ald,wd)∑

c′ld∈nbd(ccurld )BF (zld|c′ld,Σld, σ2
a,d)p(c

′
ld|ald,wd)

) (29)

Notably, in contrast to standard MH, our proposed MH step compares the neighborhood412

of the proposed causal configuration (including the proposed configuration itself) with the413

neighborhood of the current causal configuration. Compared to standard MH on single con-414

figuration, the neighborhood-based MH approach is more effective in accepting configuration415

space with larger improvement and thus less prone to random walk behavior [35].416

Furthermore, we use an unordered hash table to efficiently keep track of all of the evalu-417

ated configurations throughout the MH stochastic samplings and to avoid re-computing the418

already visited configurations, which is the same as in FINEMAP [18]. However, different419

from FINEMAP, we need to re-initialize the hash table at each complete iteration because420

the prior distribution changes (which changes the posterior distribution of the causal config-421

urations) after new annotation weights w are sampled from the posterior (detailed next).422

The posterior inclusion probabilities (PIP) for SNP i in locus l of disease d is then:423

p(cild|zld,Σld, ald,wd, σ
2
a) =

∑
cld∈S∗ld,cild=1

BF (zld|cld,Σld, σ
2
a,d)p(cld|ald,wd)∑

c′ld∈S
∗
ld
BF (zld|c′ld,Σld, σ2

a,d)p(c
′
ld|a,w)

(30)

where S∗ld is the set of visited configurations.424

4.1.4 Joint posterior425

Given PIP, the logarithmic joint posterior density function is then:

log p(Θ|D) = log f(w,Λw,b, λ, σ
2
a|z,Σ, a, c) (31)

∝ log f(w|Λw) + log f(Λw|Λ0, ν0) (32)

+
D∑
d=1

Ld∑
l=1

log f(bld|mld, λld) +
D∑
d=1

log f(λd|α0, β0) (33)

+
D∑
d=1

log f(σ2
a,d) (34)

+
D∑
d=1

Ld∑
l=1

log f(zld|cld,Σld, σa,d) + log f(cld|ald,wd,bld) (35)

(36)

In principle, causal inference requires integrating out all of above parameters:426

p(cild|zd,Σd, ad) =

∫
p(cild|Θ,D)p(Θ|D)dΘ (37)

which is not tractable. We employ Markov Chain Monte Carlo (MCMC) to sample from the427

joint posterior in Eq (31).428
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4.1.5 Sampling genetic additive variance σ2
a,d429

In our BF formulation, σ2
a,d is a free hyperparameter. Existing fine-mapping methods such

as FINEMAP [18] and CAVIARBF [17] set it to a fixed user-defined value. Here, as first
proposed by Guan and Stephen (2011) [31], we associate σ2

a,d to the underlying heritability
estimate h2

d of disease d:

h2
d =

mdσ
2
a,d

mdσ2
a,d + σ2

e,d

(38)

=
mdσ

2
a,d/σ

2
e,d

mdσ2
a,d/σ

2
e,d + 1

(39)

σ2
a,d/σ

2
e,d =

h2
d

md(1− h2
d)

(40)

=
h2
d

1− h2
d

(

Ld∑
l=1

md∑
i=1

cild)
−1 (41)

In practice, we sample h2
d from uniform: h2∗

d ← hd + U(−0.1, 0.1) and re-parameterize it to430

get σ2
a,d/σ

2
e,d (41). We then apply MH to accept the proposed h2∗

d (and hence σ2∗
a,d/σ

2
e,d) at431

the probability:432

min(1,

∏
l

∑
cld
BF (zld|cld,Σld, σ

2∗
a,d)p(cld|a,w)∏

l

∑
cld
BF (zld|cld,Σld, σ2

a,d)p(cld|a,w)
) (42)

Note that we do not need to estimate σ2
e,d because it is the same for all configurations and433

thus cancelled out in Eq (24). Also, our main goal here is to fine-map causal variants rather434

than estimating heritability. For the latter, readers may refer to a recently proposed model435

on estimating effect size (which we have integrated out) and heritability using summary436

statistics (Zhu and Stephen, bioRxiv 2016).437

4.1.6 Sampling model parameters Λw, λ,w,b438

We use Gibbs sampling [45] to sample the precision matrix Λw of epigenomic effects from439

the posterior distribution. Specifically, Gibbs sampling requires a closed form posterior440

distribution. Due to the conjugacy of the Wishart prior of epigenomic precision matrix Λw to441

the multivariate normal distribution of epigenomic effect w, the posterior of the epigenomic442

precision matrix Λw also follows Wishart distribution [46]:443

Λw|w ∼ W((Λ−1
0 + w′w)−1, ν0 +K) (43)

Similarly, we sample λld from Gamma posterior distribution:444

λld|bld ∼ Γ(α0 + 0.5, (β0 +
(bld − g(πld))

2

2
)−1) (44)

To sample epigenomic effects w and prior bias b for disease d = 1, . . . , D and locus l =445

1, . . . , Ld, we employ a more powerful gradient-based sampling scheme namely Hamiltonian446

Monte Carlo (also known as hybrid Monte Carlo) (HMC) [47, 48], exploiting the fact that447

the joint posterior of our model is differentiable with respect to the model parameters w and448

b (Supplementary Information).449
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4.1.7 Functional enrichment450

To assess functional enrichment of a given annotation, we propose a Bayesian likelihood ratio
tests. Specifically, at tth MCMC sampling iteration, we compare the likelihood of the null
model that does not use annotation k (L(t)

0 ) with the likelihood of the alternative model that

does (L(t)
1 ):

L(t)
0 =

∑
l

log
∑
cld

p(zld|cld,Σld,Θ
(t)
0 )p(cld|Θ(t)

0 ) (45)

L(t)
1 =

∑
l

log
∑
cld

p(zld|cld,Σld, aldk,Θ
(t)
1 )p(cld|akd,Θ(t)

1 ) (46)

∆L(t)
k = −2(L(t)

0 − L
(t)
1 ) ∼ χ2(1) (47)

where χ2(1) is chi-squared distribution with one degree of freedom that we use to assess the451

significance of the annotation. The Bayesian credible interval of ∆L(t)
k forms naturally over452

the sampled model parameters and causal configurations after discarding the initial 20% of453

sampled values during burn-in period.454

4.2 GWAS simulation455

To assess the power of the proposed fine-mapping model in identifying causal variants and456

compare it with existing methods, we implemented a simulation pipeline adapted from [15].457

Details are described in Supplementary Information. Briefly, the simulation can be458

divided into four steps:459

1. simulate genotypes based on the haplotypes from 1000 Genome data (phase 1 version460

3) using HapGen2 [49];461

2. sample epigenomic enrichments from uniform distribution with maximum fold-enrichment462

defined by the total number of causal variants and the total number of variants har-463

bored in that annotation and then randomly sample causal variants according to the464

simulated fold-enrichments from each of the 100 epigenomic annotations selected from465

19 categories of primary tissue/cell types;466

3. simulate phenotypes as a linear combination of the causal effect sizes plus random467

zero-mean Gaussian noise with pre-determined variance to achieve a given heritability468

h2
g (fixed at 0.25 unless mentioned otherwise);469

4. compute p-values and z-scores (as t-statistics) by regressing phenotype on each SNP.470

4.3 GWAS summary statistics and imputation471

Overall, the summary statistics of each GWAS trait were downloaded from public do-472

mains. For each study, we first removed strand-ambiguous SNP (T/A, C/G) as well as473

SNPs with supporting sample sizes lower than a threshold. For BMI and the four lipid474

traits (HDL,LDL,TC,TG), we require for SNPs to have the minimum sample size of 80,000.475
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For CAD (T2D), we obtained only SNPs supported by at least 15,000 (9,000) cases and476

50,000 (50,000) controls. We then imputed summary statistics using ImpG (v1.0.1) (https:477

//github.com/huwenboshi/ImpG) [50] to 1000 Genome Phase 1 (version 3) data. Only the478

imputed SNPs with imputation quality measured as r2 > 0.6 were retained. We then ob-479

tained the lead SNPs reported by each study and the SNPs within 100 kb genomic distance480

of the lead SNPs to form the genome-wide significant independent risk loci as the inputs481

to our fine-mapping algorithm. Table S1 summarizes the data from each individual GWAS482

study.483

4.4 Running existing fine-mapping software on simulated data484

The software fgwas [14] (version 0.3.4) were downloaded from GitHub. To enable fine-485

mapping, we issued -fine flag and specify the region numbers for each SNP in the input file as486

required by the software. GPA (0.9-3) [16] was downloaded from GitHub and run with default487

settings. To test for trait-relevant annotations, we followed the package vignette. Briefly,488

we fit two GPA models with and without the annotation and compared the two models by489

aTest function from GPA, which performs likelihood-ratio (LR) test via χ2 approximation,490

and obtained the enrichment scores as the -log10 p-value. PAINTOR (version 2.1) was491

downloaded from GitHub [15]. As suggested in the documentation, we prepared a list of492

input files for every locus including summary statistics as t-statistics, LD matrices, and493

binary epigenomic annotations. We ran the software with default setting with assumption494

of at most two causal variants per locus.495

4.5 LD score regression for functional enrichment496

We obtained the LD score regression software LDSC (v1.0.0) (https://github.com/bulik/497

ldsc) to determine functional enrichments of the GWAS traits by partitioning heritabilities498

according to the variance explained by the LD-linked SNPs belonging to each functional499

categories [37]. Following the online LDSC manual (the partitioned heritability page), we500

first trained a baseline LDSC model using the 52 non-cell-type specific functional categories501

(plus one category that includes all SNPs) using the observed Z-scores of HapMap3 SNPs for502

each trait. We then trained 220 models on cell-type-specific annotations including 4 histone503

marks (H3K4me1, H3K4me3, H3K9ac, H3K27ac) and 100 well-defined cell types. For fine-504

mapping causal variants, we chose baseline and cell-type-specific epigenomic annotations505

with p-value < 0.05 adjusted by Benjamini-Hocherg method across 272 annotations over the506

7 traits (i.e., 1,904 tests in total).507

4.6 Code availability508

RiVIERA-MT software implemented as a standalone open-source R package is freely avail-509

able from Github repository https://github.mit.edu/pages/liyue/riviera/.510
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Figure Legends511

Figure 1: Fine-mapping problem illustration. Three case scenarios were simulated to illus-
trate the fine-mapping problem (left-right): one causal variant, 3 causal variant, 10 causal
variants within the locus. In each case, there are four types of data (top-bottom): genetic
signals as GWAS -log10 p-values, epigenomic activities as cumulative counts of overlapping
SNPs over the 100 epigenomic annotations (where the causal variants were enriched in some
annotations), inferred posterior inclusion probabilities (PIP), linkage disequilibrium matrix
of the simulated genomic region. The causal variants are the red diamond and highlighted
by the vertical line to aid visualization.

Figure 2: Functional enrichments and RiVIERA-MT model. a. Functional enrichments
of cell-type-specific annotations across 7 traits. Heatmap illustrates the underlying co-
enrichment of the 7 related traits (columns) across many cell or tissue types (rows). The
intensities reflect the -log10 p-values from LDSC estimate [37]. Red boxes highlighted known
relevant tissues for the corresponding traits. b. Stochastic sampling of causal configurations.
The sampling scheme was adapted from [18,35]. For simplicity, we display a locus of 3 SNPs
with 0 and 1 indicating non-causal and causal status. Starting from 1 causal variant per
locus on the left, we have 3 choices to place the causal status in each of the variants. Suppose
we sample the configuration ’010’ (highlighted in red box) based on its posterior probabilities
relative to the other two configurations. We then apply 3 types of operations that define the
“neighborhood” of the current configuration (i.e., nbd(010)): (1) adding one causal variant;
(2) removing one casual variant (we do not consider this step when there is only one causal
variant in the configuration); (3) swapping causal variant with a non-causal variant. We then
sample from the posterior normalized within the neighborhood of ’010’ a new configuration,
say ’110’ and compare the joint posteriors of the proposed configuration namely ’110’ and
that of the current configuration namely ’010’ to determine whether we should accept the
proposal and so on. c. RiVIERA-MT expressed in probabilistic graphical model. Shaded
nodes are observed data and unshaded are latent variables or model parameters. The plates
represent repeated pattern of same entities as indexed by l for loci, k for annotations, and d
for diseases. The meaning of each variant is annotated beside each node. Please refer to the
main text for details.

Figure 3: Power comparison on inferring causal variant. Proportion of causal variants is plot-
ted as a function of increasing number of variants selected by 7 SNP prioritization methods.
The boxplots are based on 500 independent simulations.
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Figure 4: Functional enrichment analysis. We estimated the enrichment of each annotations
based on likelihood ratio tests. The y-axis is the estimate and the x-axis is the underlying
fold-enrichments that were used to sample the causal variants from the corresponding anno-
tation. The error bar indicates the 90% credible interval of the Bayesian LRT estimates by
RiVIERA-MT. The inset boxplot display the overall correlations based on 100 simulations.

Figure 5: Inferring variants across multiple traits. We ran RiVIERA-MT single-trait and
multi-trait modes on the simulated data containing 2-10 traits that do not have the same
risk loci but related via the correlation of functional fold-enrichments. The y-axis indicates
the average number of SNPs per locus required to detect 90% causal variants over 100
simulations per number of traits (x-axis). The top and bottom panels are the performance
of the empirical prior and posterior, respectively. The left and right columns indicate binary
noise-free annotations (i.e., the underlying annotations from which the causal SNPs were
sampled from) and noisy annotations (i.e., standardized and scaled continuous annotations
ranging from -1 and 1).

Figure 6: Venn diagrams of the number shared variants predicted by each method. For
RiVIERA-MT single-trait (riviera st), RiVIERA-MT multi-trait mode (riviera mt), and
PAINTOR, we constructed 90% credible sets, and for GWAS -logP (gwas logp) we took
the genome-wide significant SNP with p<5E-8. The bottom right plot displaying the model
confidence in terms median posterior for each SNP within the 90% credible SNPs as a func-
tion of increasing number of supporting methods.

Figure 7: Enrichments of GTEx eQTL SNPs. a. The hypergeometric enrichment of SNPs in
the GTEx whole blood eQTL SNPs as a function of increasing number of top variants chosen
by each method. b. Same as a except the tissue-specific eQTL SNPs were chosen for each
trait. c. Heatmap of enrichments of eQTL SNPs across 44 GTEx tissues. We overlapped
the 90% credible sets predicted by each method for each trait with the GTEx eQTL SNPs.
The color intensities are based on BH-adjusted -log10 p-values of hypergeometric enrichment
tests.
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