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It is widely known that the sensitivity analysis plays a major role in computing the strength of the

influence of involved factors in any phenomena under investigation. When applied to expression
profiles of various intra/extracellular factors that form an integral part of a signaling pathway, the
variance and density based analysis yields a range of sensitivity indices for individual as well as
various combinations of factors. These combinations denote the higher order interactions among
the involved factors that might be of interest in the working mechanism of the pathway. For ex-
ample, DACT3 is known to be a epigenetic regulator of the Wnt pathway in colorectal cancer
and subject to histone modifications. But many of the nth ≥ 2 order interactions of DACT3 that
might be influential have not been explored/tested. In this work, after estimating the individual
effects of factors for a higher order combination, the individual indices are considered as discrim-
inative features. A combination, then is a multivariate feature set in higher order (≥ 2). With an
excessively large number of factors involved in the pathway, it is difficult to search for important
combinations in a wide search space over different orders. Exploiting the analogy of prioritizing
webpages using ranking algorithms, for a particular order, a full set of combinations of interactions
can then be prioritized based on these features using a powerful ranking algorithm via support
vectors. The computational ranking sheds light on unexplored combinations that can further be
investigated using hypothesis testing based on wet lab experiments. Here, the basic framework
and results obtained on 2nd and 3rd order interactions for members of family of DACT, SFRP,
DKK (to name a few) in both normal and tumor cases is presented using a static data set.

Significance
The search and wet lab testing of unknown biological hypotheses
in the form of combinations of various intra/extracellular factors
that are involved in a signaling pathway, costs a lot in terms of
time, investment and energy. To reduce this cost of search in a
vast combinatorial space, a pipeline has been developed that pri-
oritises these list of combinations so that a biologist can narrow
down their investigation. The pipeline uses kernel based sensitiv-
ity indices to capture the influence of the factors in a pathway and
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employs powerful support vector ranking algorithm. The generic
workflow and future improvements are bound to cut down the
cost for many wet lab experiments and reveal unknown/untested
biological hypothesis.

1 Introduction

1.1 A short review

Sharma1’s accidental discovery of the Wingless played a pioneer-
ing role in the emergence of a widely expanding research field
of the Wnt signaling pathway. A majority of the work has fo-
cused on issues related to • the discovery of genetic and epige-
netic factors affecting the pathway (Thorstensen et al.2 & Baron
and Kneissel3), • implications of mutations in the pathway and
its dominant role on cancer and other diseases (Clevers4), • in-
vestigation into the pathway’s contribution towards embryo de-
velopment (Sokol5), homeostasis (Pinto et al.6, Zhong et al.7)
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Fig. 1 A cartoon of Wnt signaling pathway. Part (A) represents the
destruction of β-ctenn leading to the inactivation of the Wnt target
gene. Part (B) represents activation of Wnt target gene.

and apoptosis (Pećina-Šlaus8) and • safety and feasibility of drug
design for the Wnt pathway (Kahn9, Garber10, Voronkov and
Krauss11, Blagodatski et al.12 & Curtin and Lorenzi13). Approxi-
mately forty years after the discovery, important strides have been
made in the research work involving several wet lab experiments
and cancer clinical trials (Kahn9, Curtin and Lorenzi13) which
have been augmented by the recent developments in the vari-
ous advanced computational modeling techniques of the pathway.
More recent informative reviews have touched on various issues
related to the different types of the Wnt signaling pathway and
have stressed not only the activation of the Wnt signaling path-
way via the Wnt proteins (Rao and Kühl14) but also the on the
secretion mechanism that plays a major role in the initiation of
the Wnt activity as a prelude (Yu and Virshup15).

The work in this paper investigates some of the current aspects
of research regarding the pathway via sensitivity analysis while
using static (Jiang et al.16) data retrieved from colorectal cancer
samples.

1.2 Canonical Wnt signaling pathway

Before delving into the problem statement, a brief introduction to
the Wnt pathway is given here. From the recent work of Sinha17,
the canonical Wnt signaling pathway is a transduction mechanism
that contributes to embryo development and controls homeostatic
self renewal in several tissues (Clevers4). Somatic mutations in
the pathway are known to be associated with cancer in different
parts of the human body. Prominent among them is the colorectal
cancer case (Gregorieff and Clevers18). In a succinct overview,
the Wnt signaling pathway works when the Wnt ligand gets at-
tached to the Frizzled(FZD)/LRP coreceptor complex. FZD may
interact with the Dishevelled (DVL) causing phosphorylation. It
is also thought that Wnts cause phosphorylation of the LRP via
casein kinase 1 (CK1) and kinase GSK3. These developments
further lead to attraction of Axin which causes inhibition of the
formation of the degradation complex. The degradation com-
plex constitutes of AXN, the β-ctenn transportation complex
APC, CK1 and GSK3. When the pathway is active the disso-
lution of the degradation complex leads to stabilization in the
concentration of β-ctenn in the cytoplasm. As β-ctenn en-
ters into the nucleus it displaces the GROUCHO and binds with
transcription cell factor TCF thus instigating transcription of Wnt
target genes. GROUCHO acts as lock on TCF and prevents the
transcription of target genes which may induce cancer. In cases
when the Wnt ligands are not captured by the coreceptor at the
cell membrane, AXN helps in formation of the degradation com-
plex. The degradation complex phosphorylates β-ctenn which
is then recognized by FBOX/WD repeat protein β-TRCP. β-
TRCP is a component of ubiquitin ligase complex that helps in
ubiquitination of β-ctenn thus marking it for degradation via
the proteasome. Cartoons depicting the phenomena of Wnt being
inactive and active are shown in figures 1(A) and 1(B), respec-
tively.

2 Problem statement
It is widely known that the sensitivity analysis plays a major role
in computing the strength of the influence of involved factors in
any phenomena under investigation. When applied to expression
profiles of various intra/extracellular factors that form an integral
part of a signaling pathway, the variance and density based anal-
ysis yields a range of sensitivity indices for individual as well as
various combinations of factors. These combinations denote the
higher order interactions among the involved factors. Computa-
tion of higher order interactions is often time consuming but they
give a chance to explore the various combinations that might be of
interest in the working mechanism of the pathway. For example,
in a range of fourth order combinations among the various fac-
tors of the Wnt pathway, it would be easy to assess the influence
of the destruction complex formed by APC, AXIN, CSKI and GSK3
interaction. Unknown interactions can be further investigated by

2 | 1–32

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 8, 2017. ; https://doi.org/10.1101/059469doi: bioRxiv preprint 

https://doi.org/10.1101/059469
http://creativecommons.org/licenses/by-nc/4.0/


transforming biological hypothesis regarding these interactions in
vitro, in vivo or in silico. But to mine these unknown interactions
it is necessary to search a wide space of all combinations of input
factors involved in the pathway.

In this work, after estimating the individual effects of factors
for a higher order combination, the individual indices are con-
sidered as discriminative features. A combination, then is a mul-
tivariate feature set in higher order (>2). With an excessively
large number of factors involved in the pathway, it is difficult to
search for important combinations in a wide search space over
different orders. Exploiting the analogy with the issues of priori-
tizing webpages using ranking algorithms, for a particular order,
a full set of combinations of interactions can then be prioritized
based on these features using a powerful ranking algorithm via
support vectors (Joachims19). The computational ranking sheds
light on unexplored combinations that can further be investigated
using hypothesis testing based on wet lab experiments. In this
manuscript both local and global SA methods are used.

Similar higher order interactions can be computed and priori-
tized. This gives a chance to examine the biological hypothesis of
interest regarding the positive/negative roles of unexplored com-
binations of the various factors involved in the Wnt pathway, in
tumor and normal cases. Using recordings in time, it is possi-
ble to find how the prioritization of a specific combination of in-
volved factors is changing in time. This further helps in revealing
when an important combination like destruction complex formed
by APC, AXIN, CSKI and GSK3 interaction could be influenced
via an intervention. Thus a powerful computational mechanism
is presented to explore the interactions involved in Wnt pathway.
The framework can be used in any other pathway also.

3 Sensitivity analysis
Seminal work by Russian mathematician Sobol’20 lead to devel-
opment as well as employment of SA methods to study various
complex systems where it was tough to measure the contribution
of various input parameters in the behaviour of the output. A re-
cent unpublished review on the global SA methods by Iooss and
Lemaître21 categorically delineates these methods with the fol-
lowing functionality • screening for sorting influential measures
(Morris22 method, Group screening in Moon et al.23 & Dean
and Lewis24, Iterated factorial design in Andres and Hajas25, Se-
quential bifurcation in Bettonvil and Kleijnen26 and Cotter27 de-
sign), • quantitative indicies for measuring the importance of con-
tributing input factors in linear models (Christensen28, Saltelli
et al.29, Helton and Davis30 and McKay et al.31) and nonlin-
ear models (Homma and Saltelli32, Sobol33, Saltelli34, Saltelli
et al.35, Saltelli et al.36, Cukier et al.37, Saltelli et al.38, & Taran-
tola et al.39 Saltelli et al.40, Janon et al.41, Owen42, Tissot and
Prieur43, Da Veiga and Gamboa44, Archer et al.45, Tarantola
et al.46, Saltelli and Annoni47 and Jansen48) and • exploring

the model behaviour over a range on input values (Storlie and
Helton49 and Da Veiga et al.50, Li et al.51 and Hajikolaei and
Wang52). Iooss and Lemaître21 also provide various criteria in a
flowchart for adapting a method or a combination of the meth-
ods for sensitivity analysis. Figure 3 shows the general flow of
the mathematical formulation for computing the indices in the
variance based Sobol method. The general idea is as follows -
A model could be represented as a mathematical function with a
multidimensional input vector where each element of a vector is
an input factor. This function needs to be defined in a unit dimen-
sional cube. Based on ANOVA decomposition, the function can
then be broken down into ƒ0 and summands of different dimen-
sions, if ƒ0 is a constant and integral of summands with respect
to their own variables is 0. This implies that orthogonality fol-
lows in between two functions of different dimensions, if at least
one of the variables is not repeated. By applying these proper-
ties, it is possible to show that the function can be written into
a unique expansion. Next, assuming that the function is square
integrable variances can be computed. The ratio of variance of a
group of input factors to the variance of the total set of input fac-
tors constitute the sensitivity index of a particular group. Detailed
derivation is present in the Appendix.

Besides the above Sobol’20’s variance based indicies, more
recent developments regarding new indicies based on density,
derivative and goal-oriented can be found in Borgonovo53, Sobol
and Kucherenko54 and Fort et al.55, respectively. In a more recent
development, Da Veiga56 propose new class of indicies based on
density ratio estimation (Borgonovo53) that are special cases of
dependence measures. This in turn helps in exploiting measures
like distance correlation (Székely et al.57) and Hilbert-Schmidt
independence criterion (Gretton et al.58) as new sensitivity in-
dicies. The basic framework of these indicies is based on use of
Csiszár et al.59 f-divergence, concept of dissimilarity measure and
kernel trick Aizerman et al.60. Finally, Da Veiga56 propose fea-
ture selection as an alternative to screening methods in sensitivity
analysis. The main issue with variance based indicies (Sobol’20) is
that even though they capture importance information regarding
the contribution of the input factors, they • do not handle mul-
tivariate random variables easily and • are only invariant under
linear transformations. In comparison to these variance methods,
the newly proposed indicies based on density estimations (Bor-
gonovo53) and dependence measures are more robust. Figure 4
shows the general flow of the mathematical formulation for com-
puting the indices in the density based HSIC method. The gen-
eral idea is as follows - The sensitivity index is actually a distance
correlation which incorporates the kernel based Hilbert-Schmidt
Information Criterion between two input vectors in higher dimen-
sion. The criterion is nothing but the Hilbert-Schmidt norm of
cross-covariance operator which generalizes the covariance ma-
trix by representing higher order correlations between the input
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Fig. 2 A graphical view of the general idea behind the current work. (1) Sensitivity indices capture the influence of involved factors in a pathway. (2)
Generate sensitivity indices for individual and combinations of involved factors. Note that for a combination, the indices for the involved factors in the
combination are generated separately. (3) Vectorize the indices per combination. (4) Rank these combinations based on the sensitivity indices using
support vector ranking as web pages are ranked using a ranking algorithm. (5) Obtained is a prioritized list of interactions that could point to important
interactions in the pathway in cancer cases.

vectors through nonlinear kernels. For every operator and pro-
vided the sum converges, the Hilbert-Schmidt norm is the dot
product of the orthonormal bases. For a finite dimensional input
vectors, the Hilbert-Schmidt Information Criterion estimator is a
trace of product of two kernel matrices (or the Gram matrices)
with a centering matrix such that HSIC evalutes to a summation
of different kernel values. Detailed derivation is present in the
Appendix.

It is this strength of the kernel methods that HSIC is able to
capture the deep nonlinearities in the biological data and provide
reasonable information regarding the degree of influence of the
involved factors within the pathway. Improvements in variance
based methods also provide ways to cope with these nonlineari-
ties but do not exploit the available strength of kernel methods.
Results in the later sections provide experimental evidence for the

same.

3.1 Relevance in systems biology

Recent efforts in systems biology to understand the importance of
various factors apropos output behaviour has gained prominence.
Sumner et al.61 compares the use of Sobol’20 variance based in-
dices versus Morris22 screening method which uses a One-at-a-
time (OAT) approach to analyse the sensitivity of GSK3 dynam-
ics to uncertainty in an insulin signaling model. Similar efforts,
but on different pathways can be found in Zheng and Rundell62

and Marino et al.63.

SA provides a way of analyzing various factors taking part in a
biological phenomena and deals with the effects of these factors
on the output of the biological system under consideration. Usu-
ally, the model equations are differential in nature with a set of
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Fig. 3 Computation of variance based sobol sensitivity indices. For detailed notations, see appendix.

inputs and the associated set of parameters that guide the output.
SA helps in observing how the variance in these parameters and
inputs leads to changes in the output behaviour. The goal of this
manuscript is not to analyse differential equations and the param-
eters associated with it. Rather, the aim is to observe which in-
put genotypic factors have greater contribution to observed phe-
notypic behaviour like a sample being normal or cancerous in
both static and time series data. In this process, the effect of fold
changes in time is also considered for analysis in the light of the
recently observed psychophysical laws acting downstream of the
Wnt pathway (Goentoro and Kirschner64).

There are two approaches to sensitivity analysis. The first is the
local sensitivity analysis in which if there is a required solution,
then the sensitivity of a function apropos a set of variables is esti-
mated via a partial derivative for a fixed point in the input space.
In global sensitivity, the input solution is not specified. This im-
plies that the model function lies inside a cube and the sensitivity
indices are regarded as tools for studying the model instead of the
solution. The general form of g-function (as the model or output
variable) is used to test the sensitivity of each of the input factor
(i.e expression profile of each of the genes). This is mainly due to
its non-linearity, non-monotonicity as well as the capacity to pro-
duce analytical sensitivity indices. The g-function takes the form
-

ƒ () =d
=1

|4∗− 2|+ 
1+ 

(1)

were, d is the total number of dimensions and  ≥ 0 are the in-
dicators of importance of the input variable . Note that lower

values of  indicate higher importance of . In our formulation,
we randomly assign values of  ∈ [0,1]. For the static (time se-
ries) data d = 18 (factors affecting the pathway). The value of
d varies from 2 to 17, depending on the order of the combina-
tion one might be interested in. Thus the expression profiles of
the various genetic factors in the pathway are considered as input
factors and the global analysis conducted. Note that in the prede-
fined dataset, the working of the signaling pathway is governed
by a preselected set of genes that affect the pathway. For com-
parison purpose, the local sensitivity analysis method is also used
to study how the individual factor is behaving with respect to the
remaining factors while working of the pathway is observed in
terms of expression profiles of the various factors.

Finally, in context of Goentoro and Kirschner64’s work regard-
ing the recent development of observation of Weber’s law work-
ing downstream of the pathway, it has been found that the law is
governed by the ratio of the deviation in the input and the abso-
lute input value. More importantly, it is these deviations in input
that are of significance in studing such a phemomena. The cur-
rent manuscript explores the sensitivity of deviation in the fold
changes between measurements of fold changes at consecutive
time points to explore in what duration of time, a particular fac-
tor is affecting the pathway in a major way. This has deeper im-
plications in the fact that one is now able to observe when in
time an intervention can be made or a gene be perturbed to study
the behaviour of the pathway in tumorous cases. Thus sensitiv-
ity analysis of deviations in the mathematical formulation of the
psychophysical law can lead to insights into the time period based
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Fig. 4 Computation of density based hsic sensitivity indices. For detailed notations, see appendix.

influence of the involved factors in the pathway. Thus, both global
and local anaylsis methods are employed to observe the entire be-
haviour of the pathway as well as the local behaviour of the input
factors with respect to the other factors, respectively, via analysis
of fold changes and deviations in fold changes, in time.

Given the range of estimators available for testing the sensitiv-
ity, it might be useful to list a few which are going to be employed
in this research study. Also, a brief introduction into the funda-
mentals of the derivation of the three main indicies and the choice
of sensitivity packages which are already available in literature,
has been described in the Appendix.

4 Ranking Support Vector Machines
Learning to rank is a machine learning approach with the idea
that the model is trained to learn how to rank. A good intro-
duction to this work can be found in Li65. Existing methods in-
volve pointwise, pairwise and listwise approaches. In all these
approaches, Support Vector Machines (SVM) can be employed to
rank the required query. SVMs for pointwise approach build var-
ious hyperplanes to segregate the data and rank them. Pairwise
approach uses ordered pair of objects to classify the objects and
then utilize the classifyer to rank the objects. In this approach,
the group structure of the ranking is not taken into account. Fi-
nally, the listwise ranking approach uses ranking list as instances
for learning and prediction. In this case the ranking is straightfor-
ward and the group structure of ranking is maintained. Various
different designs of SVMs have been developed and the research
in this field is still in preliminary stages. In context of the gene

expression data set employed in this manuscript, the objects are
the genes with their RECORDED EXPRESSION VALUES FOR NORMAL

AND TUMOR CASES. Both cases are treated separately.

Note that rankings algorithms have been developed to be em-
ployed in the genomic datasets but to the author’s awareness,
these algorithms do not rank the range of combinations in a wide
combinatorial search space in time. Also, they do not take into
account the ranking of unexplored biological hypothesis which
are assigned to a particular sensitivity value or vector that can
be used for prioritization. For example, Kolde et al.66 presents a
ranking algorithm that betters existing ranking model based on
the assignment of P-value. As stated by Kolde et al.66 it detects
genes that are ranked consistently better than expected under
null hypothesis of uncorrelated inputs and assigns a significance
score for each gene. The underlying probabilistic model makes
the algorithm parameter free and robust to outliers, noise and
errors. Significance scores also provide a rigorous way to keep
only the statistically relevant genes in the final list. The proposed
work here develops on sensitivity analysis and computes the in-
fluences of the factors for a system under investigation. These
sensitivity indices give a much realistic view of the biological in-
fluence than the proposed P-value assignment and the probabilis-
tic model. The manuscript at the current stage does not com-
pare the algorithms as it is a pipeline to investigate and conduct
a systems wide study. Instead of using SVM-Ranking it is possi-
ble to use other algorithms also, but the author has restricted to
the development of the pipeline per se. Finally, the current work
tests the effectiveness of the variance based (SOBOL) sensitivity
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indices apropos the density and kernel based (HSIC) sensitivity
indices. Finally, Blondel et al.67 provides a range of comparison
for 10 different regression methods and a score to measure the
models. Compared to the frame provided in Blondel et al.67, the
current pipeline takes into account biological information an con-
verts into sensitivity scores and uses them as discriminative fea-
tures to provide rankings. Thus the proposed method is algorithm
independent.

5 Description of the dataset & design of ex-
periments

A simple static dataset containing expression values measured for
a few genes known to have important role in human colorectal
cancer cases has been taken from Jiang et al.16. Most of the ex-
pression values recorded are for genes that play a role in Wnt sig-
naling pathway at an extracellular level and are known to have
inhibitory affect on the Wnt pathway due to epigenetic factors.
For each of the 24 normal mucosa and 24 human colorectal tu-
mor cases, gene expression values were recorded for 14 genes
belonging to the family of SFRP, DKK, WF1 and DACT. Also,
expression values of established Wnt pathway target genes like
LEF1, MYC, CD44 and CCND1 were recorded per sample.

Note that green (red) represents activation (repression) in the
heat maps of data in Jiang et al.16. For the static data, only the
scaled results are reported. This is mainly due to the fact that the
measurements vary in a wide range and due to this there is often
an error in the computed estimated of these indices. Bootstrap-
ping without replicates on a smaller sample number is employed
to generate estimates of indices which are then averaged. This
takes into account the variance in the data and generates confi-
dence bands for the indices.

GENERAL ISSUES - • Here the input factors are the gene expres-
sion values for both normal and tumor cases in static data. For
the case of time series data, the input factors are the fold change
(deviations in fold change) expression values of genes at different
time points (periods). Also, for the time series data, in the first
experiment the analysis of a pair of the fold changes recorded
at to different consecutive time points i.e t & t+1 is done. In
the second experiment, the analysis of a pair of deviations in fold
changes recorded at t & t+1 and t+1 & t+2. In this work, in
both the static and the time series datasets, the analysis is done
to study the entire model/pathway rather than find a particular
solution to the model/pathway. Thus global sensitivity analysis is
employed. But the local sensitivity methods are used to observe
and compare the affect of individual factors via 1st order analysis
w.r.t total order analysis (i.e global analysis). In such an exper-
iment, the output is the sensitivity indices of the individual fac-
tors participating in the model. This is different from the general
trend of observing the sensitivity of parameter values that affect

the pathway based on differential equations that model a reac-
tion. Thus the model/pathway is studied as a whole by observing
the sensitivities of the individual factors.

Note that the 24 normal and tumor cases are all different from
each other. The 18 genes that are used to study in16 are the input
factors and it is unlikely that there will be correlations between
different patients. The phenotypic behaviour might be similar at a
grander scale. Also, since the sampling number is very small for a
network of this scale, large standard deviations can be observed in
many results, especially when the Sobol method is used. But this
is not the issue with the sampling number. By that analysis, large
deviations are not observed in kernel based density methods. The
deviations are more because of the fact that the nonlinearities
are not captured in an efficient way in the variance based Sobol
methods. Due to this, the resulting indicies have high variance in
numerical value. For the same number of samplings, the kernel
based methods don’t show high variance.

The procedure begins with the listing of all Cnk combinations for
k number of genes from a total of n genes. k is≥2 and≤ (n−1).
Each of the combination of order k represent a unique set of inter-
action between the involved genetic factors. While studying the
interaction among the various genetic factors using static data, tu-
mor samples are considered separated from normal samples. For
the experiments conducted here on a toy example, 20 bootstrap
replicates were generated for each of normal and tumor samples
without replacement. For each bootstrap replicate, the normal
and turmor samples are divided into two different sets of equal
size. Next the datasets are combined in a specifed format which
go as input as per the requirement of a particular sensitivity anal-
ysis method. Thus for each pth combination in Cnk combinations,
the dataset is prepared in the required format from both normal
and tumor samples (See .R code in mainscript-1-1.R in google
drive and step 3 in figure 5). After the data has been transformed,
vectorized programming is employed for density based sensitivity
analysis and looping is employed for variance based sensitivity
analysis to compute the required sensitivity indices for each of
the p combinations. Once the sensitivity indices are generated
for each of the pth combination, for every bootstrap replicate in
normal and tumor cases, confidence intervals are estimated for
each sensitivity index. This procedure is done for different kinds
of sensitivity analysis methods.

After the above sensitivity indices have been stored for each of
the pth combination, each of the sensitivity analysis method for
normal and tumor cases per bootstrap replicates, the next step
in the design of experiment is conducted. Here, for a particular
kth order of combination, a choice is made regarding the num-
ber of sample size (say p), where 2 ≤ p ≤ noObs− 1 (noObs
is the number of observations i.e 20 replicates). Then for all
sample sets of order p in CnoObs

p
, generate training index set

of order p and test index set of order noObs− p. For each of
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Fig. 5 A cartoon of experimental setup. IMPORTANT NOTE - In this figure, G, Gy and G represent a combination. Step - (1) Segregation of data
into normal and tumor cases. (2) Further data division per case and bootstrap sampling with no repetitions for different iterations. (3) Assembling
bootstrapped data and application of SA methods. (4) Generation of SI’s for normal and tumor case per gene per iteration. (5) Generation of averaged
SI and confidence bands per case per gene.

the sample set, considering the sensitivity index for each indi-
vidual factor of a gene combination in the previous step as de-
scribed in the foregoing paragraph, a training and a test set is
generated. Thus an observation in a training and a test set repre-
sents a gene combination with sensitivity indices of involved ge-
netic factors as feature values. For a particular gene combination
there are p training samples noObs− p test samples. In total
there are CnoObs

p
training sets and corresponding test sets. Next,

SVMRnk
ern (Joachims19) is used to generate a model on default

value C value of 20. In the current experiment on toy model C
value has not been tunned. The training set helps in the gener-
ation of the model as the different gene combinations are num-
bered in order which are used as rank indices. The model is then
used to generate score on the observations in the testing set us-
ing the SVMRnk

cssƒy (Joachims19). Next the scores are averaged

across all CnoObs
p

test samples. The experiment is conducted for

normal and tumor samples separately. This procedure is executed
for each and every sensitivity analysis method. Finally, for each
sensitivity analysis method, for all kth order combinations, the
mean across the averaged p scores is computed. This is followed
by sorting of these scores along with the rank indices already as-
signed to the gene combinations. The end result is a sorted order
of the gene combinations based on the ranking score learned by
the SVMRnk algorithm. These steps are depicted in figure 6.

Note that the following is the order in which the files
should be executed in R, in order, for obtaining the de-
sired results (Note that the code will not be explained here)
- • use source("mainScript-1-1.R") with arguments for Static
data • use source("Combine-Static-files.R"), if computing in-
dices separately via previous file, • source("Store-Results-S.R"), •
source("SVMRank-Results-S.R"), again this needs to be done sep-
arately for different kinds of SA methods and • source("Sort-n-
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Fig. 6 A cartoon of experimental setup. IMPORTANT NOTE - In this figure, G, Gy and G represent separate genes. Step - (1) Assembling p training
indices and noObs− p testing indices for every pth order of samples in CnoObs

p
. Thus there are a total of CnoObs

p
training and corresponding test

sets. (2) For every SA, combine (say for k = 2, i.e interaction level 2) SI’s of genetic factors for normal and tumor separately, for each observation in
training and test data. (3) For noObs= 20 different replicates, per SAe and a particular combination of <G,Gy > in normal and tumor, a matrix of
observations is consturcted. (4) Using indices in (1) SVMRnk

ern
is employed on p training data to generate a model. This model is used to generate a

ranking score on the test data via SVMRnk
cssƒy

. These score are averaged over CnoObs
p

test data sets. Further, mean of scores over noObs− p test
replicates per <G,Gy > are computed and finally the combinations are ranked based on sorting for each of normal and training set.

Plot-S.R") to sort the interactions.

6 Results and Discussion

Initial results on prioritization of 2nd order interactions learnt
from support vector ranking using these sensitivity indices were
plotted for visualization. For a training sample size of 4 and test
sample size of 16, from a total of 20 bootstraps for each of the
interactions, in normal and tumor cases, and the sensitivity index
using Fd−Ch2, the computed sensitivity indices were sorted
in increasing order of value and are shown in figure 7 and 8, re-
spectively. The y− s represents the sensitivity indices and the
− s represents the values of the different factors involved
under investigation (here 2nd order combinations). Since the

indices have been sorted based on the ranking score, the combi-
nations are now ordered according to the strength of their sig-
nificance. The combinations with low significance or sensitivity
index is placed towards the left most end and vice versa. Visual-
izations for other indices were also generated and are relegated
to the appendix. Since various indices have been tested, it would
be important to see how good the rankings tally across the differ-
ent sensitivity methods. To tally the rankings visually, the top and
the bottom 10 combinations were tabulated in tables 1, 2, 5, 3
and 4. The top and the bottom 10 rankings in figures 7 and 8 can
be found in the second columns of tables 1 and 2.
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Fig. 7 FdivChi2; Training sample size - 4; Test sample size - 16; Case - Normal
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Fig. 8 FdivChi2; Training sample size - 4; Test sample size - 16; Case - Tumor

6.1 2nd Order interactions

In tumor cases (table 1), for most of the sensitvity indices we find
that SFRP1-SFRP3 has the highest priority in the this data. This
is followed by various others interactions like DACT3-SFRP3
and DACT3-SFRP4. For other kinds of the interactions we find
varying kinds of rankings. It is important to note that the rank-

ings are relative but they do give a glimpse of the importance
of the interactions in a vast combinatorial space. These rankings
are of importance in a particular phenomena of investigation. A
particular colour across the columns, more specifically the sensi-
tivity methods, represent the relative positioning of a particular
interaction. The different colours in a row of a column do not
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Tumor Case - Density based methods
Rank Fdiv HSIC

High priority interactions
chi2 hellinger kl tv rbf laplace

10 SFRP1LEF1 SFRP1MYC SFRP5LEF1 SFRP5LEF1 SFRP2SFRP4 SFRP1MYC
9 SFRP1SFRP5 DACT3LEF1 DACT3SFRP5 DACT3SFRP5 SFRP2SFRP3 SFRP5LEF1
8 DACT3SFRP2 SFRP1SFRP2 SFRP5MYC SFRP5MYC DACT3LEF1 DACT3MYC
7 SFRP1SFRP2 SFRP1LEF1 SFRP1MYC SFRP1MYC SFRP1LEF1 SFRP2LEF1
6 SFRP2SFRP4 SFRP2SFRP4 DACT3SFRP4 DACT3SFRP4 SFRP1SFRP4 DACT3LEF1
5 SFRP1SFRP4 SFRP2SFRP3 DACT3MYC DACT3MYC DACT3SFRP4 SFRP1WIF1
4 SFRP2SFRP3 SFRP1SFRP4 DACT3LEF1 DACT3LEF1 SFRP1SFRP2 DACT3WIF1
3 DACT3SFRP4 DACT3SFRP4 SFRP1LEF1 SFRP1LEF1 DACT3SFRP2 DACT3SFRP3
2 DACT3SFRP3 DACT3SFRP3 DACT3SFRP3 DACT3SFRP3 DACT3SFRP3 SFRP1LEF1
1 SFRP1SFRP3 SFRP1SFRP3 SFRP1SFRP3 SFRP1SFRP3 SFRP1SFRP3 SFRP1SFRP3

Low priority interactions
153 DKK3-1SFRP1 DKK3-1SFRP1 DKK3-1SFRP1 DKK3-1SFRP1 DKK4DACT3 DKK4DACT3
152 DKK3-1DACT3 DKK3-1DACT3 DKK3-1DACT3 DKK3-1DACT3 DACT2DACT3 DKK3-1SFRP5
151 DKK3-1SFRP2 DKK3-1SFRP2 DKK3-1SFRP2 DKK3-1SFRP2 DKK3-1SFRP5 DKK4SFRP1
150 DKK3-1SFRP5 DKK3-1SFRP5 DKK3-1SFRP5 DKK3-1SFRP5 DKK1DACT3 DACT2DACT3
149 SFRP3SFRP5 SFRP3SFRP5 SFRP3SFRP5 SFRP3SFRP5 DKK1SFRP1 DKK3-1SFRP2
148 SFRP4SFRP5 SFRP4SFRP5 DACT1SFRP1 DACT1SFRP1 DACT1SFRP1 DACT2SFRP1
147 DKK4SFRP1 DACT1SFRP1 SFRP4SFRP5 SFRP4SFRP5 DKK3-2DACT3 DACT2SFRP1
146 DKK4DACT3 DACT1SFRP2 DACT1DACT3 DACT1DACT3 DKK2SFRP1 DKK4SFRP2
145 DACT1SFRP1 DACT1DACT3 DACT1SFRP5 DACT1SFRP5 DACT2SFRP1 DACT1SFRP1
144 DKK3-2SFRP5 DKK4SFRP1 DKK2DACT3 DKK2DACT3 DKK4SFRP1 DKK2SFRP1

Table 1 Ranking of second order interactions in Tumor case using density and variance based sensitivity indices. Here 1 has high priority and 153
has low priority.

mean any thing. What has been found is that DACT3 is impli-
cated in the Wnt β-catenin signaling in colorectal cancer through
epigenetic modifications and is a histone modification therapeutic
target Jiang et al.16. As a confirmatory result, the pipeline indi-
cates the priority that DACT3 gets along with the members of the
SFRP family in the tumor. This high priority also indicates the ef-
ficacy of the designed pipeline. Combinations of the members of
the SFRP family also show at the high priority list. More specifi-
cally SFRP1-SFRP3, SFRP2-SFRP3 and SFRP1-SFRP2.

On the contrary, when we look at the set of low priority inter-
actions, there is a range of combinations involving the family of
DKK and members of DACT, SFRP. Surpurisingly, specific in-
teractions of within family members also show up at this stage.
This is specially seen for DACT1-DACT3, DACT2-DACT3,
SFRP3-SFRP5 and SFRP4-SFRP5. These indicate the non-
effectiveness of the 2nd order interactions among a family of
protein in the tumor case. Based on these rankings it might be
possible to narrow down the search for important interactions in
the vast combinatorial search space. We also generated the sim-
ilar rankings for the interactions between the same set of factors
in normal case. These are represented in table 2.

In comparison to the tables 1 and 2, which take into account

the density based sensitivity methods, we also generated the rank-
ings in tumor and normal cases using variance based sensitivity
indices (table 5 in appendix). What we find is that there are in-
teractions that get high priority in both the tumor and normal
case. For example, the cases of DKK3−1-WF1 and DKK3−2-
LEF1, show up with high priority in both the normal and tumor
case. This indicates the inability of the variance based sensitivity
indices to capture crucial influence of the participating factors or
combination of the factors, properly. Clearly, what we find is that
the density based methods show superior selection and capture
of improtant nonlinear biological information to provide proper
indices that can be ranked later on.

6.2 3rd Order Interactions

We now turn our attention to the 3rd order combinations which
open a deeper and a greater space of investigation as compared to
the space of the second order combinations. Tables 3 and 4 show
the rankings for the 3rd order interactions in tumor and normal
cases, respectively. A major finding is that DACT3 combination
with members of the family of SFRP show very high ranking in
tumor cases. Note that we could only generate the rankings for
the different kernels in the HSIC method as other density based
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Normal Case - Density based methods
Rank Fdiv HSIC

High priority interactions
chi2 hellinger kl tv rbf laplace

10 DACT3CCND1 DKK2WIF1 DKK2DKK4 DACT3MYC DKK2SFRP5 DACT3SFRP1
9 SFRP5WIF1 DKK2SFRP5 DKK2LEF1 DKK2WIF1 DKK2WIF1 DACT3CCND1
8 WIF1LEF1 DACT3SFRP2 DKK2DACT2 DACT3SFRP2 SFRP5LEF1 DKK2DACT2
7 DKK2MYC SFRP5LEF1 DKK2MYC SFRP5LEF1 DACT3SFRP5 DKK4SFRP5
6 DKK1DKK4 DACT3CCND1 DACT3LEF1 DACT3CCND1 DACT3CCND1 SFRP5CCND1
5 DACT2MYC DKK1MYC DACT3CCND1 DACT3LEF1 SFRP5CCND1 DACT3SFRP5
4 SFRP5LEF1 DKK2MYC SFRP5LEF1 DKK2MYC DKK2LEF1 DKK2SFRP5
3 DKK2DACT2 DKK2DACT2 DACT3SFRP2 DKK2DACT2 DKK1MYC DKK3-1CD44
2 DKK2LEF1 DKK2LEF1 DKK2WIF1 DKK2LEF1 DKK2DACT2 DKK2DKK4
1 DKK2DKK4 DKK2DKK4 DACT3MYC DKK2DKK4 DKK2DKK4 DKK1MYC

Low priority interactions
153 DKK4CCND1 DKK4LEF1 DKK4CD44 DKK4CD44 DKK1DKK3-2 DKK4LEF1
152 DKK1CCND1 DKK1DKK3-2 DKK4DACT3 DKK4DACT3 DKK4SFRP3 DKK1DKK3-2
151 LEF1CCND1 DKK4SFRP1 DKK4MYC DKK4MYC DKK4SFRP1 DKK1WIF1
150 DKK4MYC DKK4SFRP3 DKK4SFRP3 DKK4SFRP3 DKK4LEF1 DKK4SFRP1
149 DKK1DKK2 DKK4DACT1 DKK1DKK2 DKK1DKK2 DKK1SFRP3 DKK3-2CD44
148 DKK4WIF1 DKK4DACT3 DKK4DACT1 DKK4DACT1 DACT2SFRP3 DKK3-2SFRP3
147 WIF1CCND1 DKK4CD44 DKK4SFRP1 DKK4SFRP1 DKK4DACT1 DKK3-2DACT3
146 DKK4CD44 DKK1SFRP1 LEF1CCND1 LEF1CCND1 DKK1WIF1 DKK3-2DACT1
145 DKK4DACT3 DKK1SFRP3 DKK1DKK3-2 DKK1DKK3-2 DKK1SFRP1 DKK3-2SFRP4
144 DKK1SFRP5 DACT2SFRP3 DACT2SFRP3 DACT2SFRP3 WIF1CD44 DKK3-2SFRP1

Table 2 Ranking of second order interactions in Normal case using density and variance based sensitivity indices. Here 1 has high priority and 153
has low priority.

methods were computationally intensive and costly in time. On
the other hand the combinations of the family of DKK with other
factors showed very low rankings in the tumor case, thus indicat-
ing their non participation or down regulated participation in the
tumor cases. The most beautiful aspect of these rankings is that
one can specifically see which members of a family are having
potent role in the tumor and which ones are not. For example,
DACT3 plays very important role along with various members of
the SFRP family but the combination DACT3-SFRP3-SFRP5
shows very low participation in tumor case. This potential of the
search engine to specifically rank the different combinations gives
the biologists deep insights into the interactions of member of a
single family of protiens also. A similar ranking profile was gen-
erated for the normal case.

CODE AVAILABILITY Code has been made available on
Google drive at https://drive.google.com/folderview?
id=0B7Kkv8wlhPU-V1Fkd1dMSTd5ak0&usp=sharing

7 Conclusions

A workflow has been presented that can prioritize the entire
range of interactions among the constituent or subgroup of in-
tra/extracellular factors affecting the pathway by using power-

ful algorithm of support vector ranking on interactions that have
sensitivity indices of the involved factors as features. These sen-
sitivity indices compute the influences of the factors on the path-
way and represent nonlinear biological relations among the fac-
tors that are captured using kernel methods. SVM ranking then
scores the testing data which can be sorted to find the highly pri-
oritized interactions that need further investigation. Using this
efficient workflow, it is possible to analyse any combination of
involved factors in a signaling pathway. Here, we show confir-
matory results for members of family of DACT, SFRP (DKK)
to have highly prioritized role in tumor (normal) cases, in a sin-
gle experimental setup. These preliminary results show the ef-
ficacy of the pipeline in providing a ranked list of interactions
which the biologists can narrow down to in a vast serach space
of combinations, thus cutting down the cost of terms of time, in-
vestment and energy. Additionally, the pipeline also generates
unknown/untested biological hypothesis reagrding the combina-
tions involved in the pathway in both tumor and normal cases.
This opens up the potential for the biologists to work on rec-
ommendations from this pipeline in a vast combinatorial forest
of combinations, when many a times, it is not possible to know
where to start the search.
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Tumor Case
Ranking HSIC

rbf laplace linear
High priority interactions

10 SFRP1SFRP2LEF1 DACT3SFRP1WIF1 DKK3-1DACT1SFRP4
9 SFRP1SFRP2SFRP4 DACT3SFRP1MYC DKK3-1SFRP2SFRP3
8 DACT3SFRP2LEF1 DACT3SFRP5LEF1 DACT3SFRP1SFRP4
7 SFRP1SFRP2SFRP3 DACT3SFRP2LEF1 DKK3-1SFRP1SFRP3
6 DACT3SFRP2SFRP4 DACT3SFRP1SFRP2 DKK3-1DACT3SFRP3
5 DACT3SFRP1LEF1 DACT3SFRP2SFRP4 DACT3SFRP2SFRP4
4 DACT3SFRP2SFRP3 SFRP1SFRP2SFRP4 DKK3-1SFRP2SFRP4
3 DACT3SFRP1SFRP4 DACT3SFRP1SFRP4 DACT3SFRP1SFRP2
2 DACT3SFRP1SFRP2 DACT3SFRP1LEF1 DKK3-1SFRP1SFRP4
1 DACT3SFRP1SFRP3 DACT3SFRP1SFRP3 DKK3-1DACT3SFRP4

Low priority interactions
816 DKK1DKK3-1SFRP2 SFRP1SFRP3SFRP5 DKK1DKK4WIF1
815 DACT3SFRP3SFRP5 DACT3SFRP4SFRP5 DKK1DKK2DACT3
814 SFRP1SFRP3SFRP5 SFRP2SFRP4SFRP5 DKK2DACT2WIF1
813 DKK1DKK4SFRP1 SFRP1SFRP4SFRP5 DKK1DKK4SFRP1
812 SFRP2SFRP3SFRP5 SFRP2SFRP3SFRP5 DKK2DKK4SFRP1
811 DKK1DKK3-1SFRP5 DKK1DKK3-1SFRP5 DKK1DKK4LEF1
810 DKK2DKK3-1SFRP5 DKK1DKK3-1SFRP2 DKK1DACT2LEF1
809 DKK1DKK4DACT3 DACT3SFRP3SFRP5 DKK1DKK4SFRP2
808 DKK2DKK4SFRP1 DKK1DKK3-2SFRP1 DKK1DKK2WIF1
807 SFRP1SFRP4SFRP5 DKK1DACT1SFRP2 DACT3SFRP2WIF1

Table 3 Ranking of third order interactions in Tumor case using variance based sensitivity indices. Here 1 has high priority and 816 has low priority.
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Appendix

9 Sensitivity indices

9.1 Variance based indices

The variance based indices as proposed by Sobol’20 prove a the-
orem that an integrable function can be decomposed into sum-
mands of different dimensions. Also, a Monte Carlo algorithm
is used to estimate the sensitivity of a function apropos arbitrary
group of variables. It is assumed that a model denoted by function
= ƒ (), = (1,2, ...,n), is defined in a unit n-dimensional
cube Kn with  as the scalar output. The requirement of the
problem is to find the sensitivity of function ƒ () with respect
to different variables. If ∗ = ƒ (∗) is the required solution,
then the sensitivity of ∗ apropos k is estimated via the partial
derivative (∂/∂k)=∗ . This approach is the local sensitivity.
In global sensitivity, the input  = ∗ is not specified. This im-
plies that the model ƒ () lies inside the cube and the sensitivity
indices are regarded as tools for studying the model instead of the
solution. Detailed technical aspects with examples can be found
in Homma and Saltelli32 and ? .

Let a group of indices 1, 2, ..., s exist, where 1 ≤ 1 < ... <
s ≤ n and 1≤ s≤ n. Then the notation for sum over all different
groups of indices is -

bT1,2,...,s = 
n
=1T+

n
s=11≤<j≤nT,j+ ...+ T1,2,...,n (2)

Then the representation of ƒ () using equation 2 in the form -

ƒ () = ƒ0+ bƒ1,2,...,s (3)

= ƒ0+ƒ()+<jƒ,j(,j)+ ...+ ƒ1,2,...,n(1,2, ...,n)

is called ANOVA-decomposition from Archer et al.45 or expansion
into summands of different dimensions, if ƒ0 is a constant and
integrals of the summands ƒ1,2,...,s with respect to their own
variables are zero, i.e,

ƒ0 =
∫

Kn

ƒ ()d (4)

∫ 1

0
ƒ1,2,...,s (1 ,2 , ...,s )dk = 0,1≤ k ≤ s (5)

It follows from equation 4 that all summands on the right hand
side are orthogonal, i.e if at least one of the indices in 1, 2, ..., s
and j1, j2, ..., j is not repeated i.e

∫ 1

0
ƒ1,2,...,s (1 ,2 , ...,s )ƒj1,j2,...,j (j1 ,j2 , ...,js )d= 0

(6)
Sobol’20 proves a theorem stating that there is an existence of a
unique expansion of equation 4 for any ƒ () integrable in Kn. In

brief, this implies that for each of the indices as well as a group of
indices, integrating equation 4 yields the following -

∫ 1

0
...

∫ 1

0
ƒ ()d/d = ƒ0+ ƒ() (7)

∫ 1

0
...

∫ 1

0
ƒ ()d/ddj = ƒ0+ ƒ()+ ƒj(j)+ ƒ,j(,j)(8)

were, d/d is
∏

∀k∈{1,..,n}; /∈k dk and d/ddj is
∏

∀k∈{1,..,n};,j /∈k dk . For higher orders of grouped indices,
similar computations follow. The computation of any sum-
mand ƒ1,2,...,s (1 ,2 , ...,s ) is reduced to an integral in the
cube Kn. The last summand ƒ1,2,...,n(1,2, ...,n) is ƒ ()−
ƒ0 from equation 4. Homma and Saltelli32 stresses that use
of Sobol sensitivity indices does not require evaluation of any
ƒ1,2,...,s (1 ,2 , ...,s ) nor the knowledge of the form of ƒ ()
which might well be represented by a computational model i.e a
function whose value is only obtained as the output of a computer
program.

Finally, assuming that ƒ () is square integrable, i.e ƒ () ∈ L2,
then all of ƒ1,2,...,s (1 ,2 , ...,s ) ∈ L2. Then the following
constants

∫

Kn

ƒ2()d− ƒ2
0
= D (9)

∫ 1

0
...

∫ 1

0
ƒ2
1,2,...,s

(1 ,2 , ...,s )d1d2 ...ds = D1,2,...,s(10)

are termed as variances. Squaring equation 4, integrating over
Kn and using the orthogonality property in equation 6, D evalu-
ates to -

D= bD1,2,...,s (11)

Then the global sensitivity estimates is defined as -

S1,2,...,s =
D1,2,...,s

D
(12)

It follows from equations 11 and 12 that

bS1,2,...,s = 1 (13)

Clearly, all sensitivity indices are non-negative, i.e an index
S1,2,...,s = 0 if and only if ƒ1,2,...,s ≡ 0. The true poten-
tial of Sobol indices is observed when variables 1,2, ...,n
are divided into m different groups with y1,y2, ...,ym such that
m<n. Then ƒ ()≡ ƒ (y1,y2, ...,ym). All properties remain the
same for the computation of sensitivity indices with the fact that
integration with respect to yk means integration with respect to
all the  ’s in yk . Details of these computations with examples can
be found in ? . Variations and improvements over Sobol indices
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Variance Based Method
Tumor Case Normal Case

High priority interactions
Rank 2007 jansen martinez 2007 jansen martinez

10 DACT3WIF1 SFRP3LEF1 SFRP3LEF1 DKK3-2CD44 SFRP3LEF1 DKK3-1DACT2
9 SFRP1LEF1 DKK2LEF1 DKK3-1MYC SFRP2LEF1 DKK2LEF1 SFRP3WIF1
8 DACT3LEF1 DACT1LEF1 DKK3-1DACT2 DKK3-2WIF1 DACT1LEF1 SFRP3LEF1
7 SFRP4LEF1 DKK3-1WIF1 DKK2LEF1 DKK3-2DACT2 DKK2DKK4 DACT1LEF1
6 DKK3-1WIF1 DKK2DKK4 DACT1LEF1 WIF1MYC SFRP4LEF1 DKK2DKK4
5 DACT1LEF1 DKK3-2DKK4 SFRP5LEF1 DKK4MYC DKK3-2DKK4 SFRP5LEF1
4 DKK3-2LEF1 SFRP4LEF1 DKK3-1LEF1 DKK3-2DKK4 DKK3-1DKK4 DKK2LEF1
3 SFRP4WIF1 DKK3-2LEF1 DKK3-1WIF1 DKK3-2MYC DKK3-1WIF1 DKK3-1LEF1
2 DACT2LEF1 DKK3-1DKK4 DKK2DKK4 LEF1MYC DKK3-2LEF1 DKK3-1WIF1
1 SFRP5LEF1 SFRP5LEF1 DKK3-1DKK4 DKK3-2LEF1 SFRP5LEF1 DKK3-1DKK4

Low priority interactions
153 DKK4MYC LEF1CCND1 DKK4SFRP3 DKK1DKK4 LEF1CCND1 DKK4SFRP3
152 DKK4DACT2 DKK4MYC DKK1DKK3-1 DKK1LEF1 DKK1SFRP5 DKK1DKK3-1
151 DKK1MYC DKK1SFRP5 DKK1SFRP3 DKK4LEF1 DKK4MYC DKK4DACT1
150 LEF1MYC DKK4SFRP4 DKK4DACT1 DKK1WIF1 DKK4SFRP3 DKK1SFRP3
149 DKK4CCND1 DKK4SFRP3 DKK4SFRP4 WIF1CD44 DKK4SFRP4 DKK4SFRP4
148 DKK1DACT2 DKK4SFRP5 DKK4CD44 DKK1DKK3-2 DKK1DKK3-2 LEF1CCND1
147 DKK4SFRP5 DKK4DACT1 DKK1DKK2 DACT2LEF1 DKK4SFRP5 DKK4CD44
146 DACT2MYC DKK4CCND1 DKK1DACT1 DKK4SFRP2 DKK1CCND1 DKK1DKK2
145 LEF1CCND1 DKK1DKK3-2 DKK4MYC DKK1SFRP2 DKK4DACT1 DKK1DACT1
144 DKK1CCND1 DKK1CCND1 LEF1CCND1 DKK4CD44 DKK4CCND1 DKK1SFRP5

Table 5 Ranking of second order interactions in Tumor & Normal case using density and variance based sensitivity indices. Here 1 has high priority
and 153 has low priority.

have already been stated in section 3.

9.2 Density based indices

As discussed before, the issue with variance based methods is
the high computational cost incurred due to the number of in-
teractions among the variables. This further requires the use of
screening methods to filter out redundant or unwanted factors
that might not have significant impact on the output. Recent
work by Da Veiga56 proposes a new class of sensitivity indicies
which are a special case of density based indicies Borgonovo53.
These indicies can handle multivariate variables easily and relies
on density ratio estimation. Key points from Da Veiga56 are men-
tioned below.

Considering the similar notation in previous section, ƒ :Rn→
R (= ƒ ()) is assumed to be continuous. It is also assumed that
Xk has a known distribution and are independent. Baucells and
Borgonovo68 state that a function which measures the similarity
between the distribution of U and that of U|Xk can define the
impact of Xk on U. Thus the impact is defined as -

SXk = E(d(U,U|Xk)) (14)

were d(·, ·) is a dissimilarity measure between two random vari-
ables. Here d can take various forms as long as it satisfies the
criteria of a dissimilarity measure. Csiszár et al.59’s f-divergence
between U and U|Xk when all input random variables are consid-
ered to be absolutely continuous with respect to Lebesgue mea-
sure on R is formulated as -

dF(U||U|Xk) =
∫

R
F(

pU()

pU|Xk ()
)pU|Xk ()d (15)

were F is a convex function such that F(1) = 0 and pU and
pU|Xk are the probability distribution functions of U and U|Xk .
Standard choices of F include Kullback-Leibler divergence F(t) =
− loge(t), Hellinger distance (

p
t− 1)2, Total variation distance

F(t) = |t− 1|, Pearson χ2 divergence F(t) = t2− 1 and Neyman
χ2 divergence F(t) = (1− t2)/ t. Substituting equation 15 in
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equation 14, gives the following sensitivity index -

SF
Xk

=
∫

R
dF(U||U|Xk)pXk ()d

=
∫

R

∫

R
F(

pU()

pU|Xk ()
)pU|Xk ()pXk ()dd

=
∫

R2

F(
pU()pXk ()

pU|Xk ()pXk ()
)pU|Xk ()pXk ()dd

=
∫

R2

F(
pU()pXk ()

pXk ,U(,)
)pXk ,U(,)dd (16)

were pXk and pXk ,Y are the probability distribution functions of
Xk and (Xk ,U), respectively. Csiszár et al.59 f-divergences im-
ply that these indices are positive and equate to 0 when U and
Xk are independent. Also, given the formulation of SF

Xk
, it is in-

variant under any smooth and uniquely invertible transformation
of the variables Xk and U (Kraskov et al.69). This has an ad-
vantage over Sobol sensitivity indices which are invariant under
linear transformations.

By substituting the different formulations of F in equation 16,
Da Veiga56’s work claims to be the first in establishing the link
that previously proposed sensitivity indices are actually special
cases of more general indices defined through Csiszár et al.59’s
f-divergence. Then equation 16 changes to estimation of ratio
between the joint density of (Xk ,U) and the marginals, i.e -

SF
Xk
=
∫

R2

F(
1

r(,)
)pXk ,U(,)dd= E(Xk ,U)F(

1

r(Xk ,U)
)

(17)
were, r(,y) = (pXk ,U(,))/(pU()pXk ()). Multivariate ex-
tensions of the same are also possible under the same formula-
tion.

Finally, given two random vectors X ∈Rp and Y ∈Rq, the de-
pendence measure quantifies the dependence between X and Y
with the property that the measure equates to 0 if and only if
X and Y are independent. These measures carry deep links (Se-
jdinovic et al.70) with distances between embeddings of distribu-
tions to reproducing kernel Hilbert spaces (RHKS) and here the
related Hilbert-Schmidt independence criterion (HSIC by Gretton
et al.58) is explained.

In a very brief manner from an extremely simple introduction
by Daumé III71 - ”We first defined a field, which is a space that
supports the usual operations of addition, subtraction, multipli-
cation and division. We imposed an ordering on the field and
described what it means for a field to be complete. We then de-
fined vector spaces over fields, which are spaces that interact in
a friendly way with their associated fields. We defined complete
vector spaces and extended them to Banach spaces by adding a

norm. Banach spaces were then extended to Hilbert spaces with
the addition of a dot product.” Mathematically, a Hilbert space
H with elements r,s ∈H has dot product 〈r,s〉H and r ·s. When
H is a vector space over a field F , then the dot product is an el-
ement in F . The product 〈r,s〉H follows the below mentioned
properties when r,s, t ∈H and for all  ∈F -

• Associative : (r) ·s = (r ·s)

• Commutative : r ·s = s · r

• Distributive : r · (s+ t) = r ·s+ r · t

Given a complete vector space V with a dot product 〈·, ·〉, the
norm on V defined by ||r||V =

p

(〈r, r〉) makes this space into a
Banach space and therefore into a full Hilbert space.

A reproducing kernel Hilbert space (RKHS) builds on a Hilbert
space H and requires all Dirac evaluation functionals in H are
bounded and continuous (on implies the other). Assuming H
is the L2 space of functions from X to R for some measurable
X. For an element  ∈ X, a Dirac evaluation functional at x is a
functional δ ∈H such that δ(g) = g(). For the case of real
numbers,  is a vector and g a function which maps from this
vector space to R. Then δ is simply a function which maps g to
the value g has at . Thus, δ is a function from (Rn 7→R) into
R.

The requirement of Dirac evaluation functions basically means
(via the Riesz72 representation theorem) if ϕ is a bounded linear
functional (conditions satisfied by the Dirac evaluation function-
als) on a Hilbert spaceH, then there is a unique vector ℓ inH such
that ϕg= 〈g,ℓ〉H for all ℓ∈H. Translating this theorem back into
Dirac evaluation functionals, for each δ there is a unique vector
k in H such that δg = g() = 〈g,k〉H. The reproducing ker-
nel K forH is then defined as : K(,′)= 〈k,k′ 〉, were k and
k′ are unique representatives of δ and δ′ . The main property
of interest is 〈g,K(,′)〉H = g(′). Furthermore, k is defined
to be a function y 7→ K(,y) and thus the reproducibility is given
by 〈K(, ·),K(y, ·)〉H = K(,y).

Basically, the distance measures between two vectors represent
the degree of closeness among them. This degree of closeness is
computed on the basis of the discriminative patterns inherent in
the vectors. Since these patterns are used implicitly in the dis-
tance metric, a question that arises is, how to use these distance
metric for decoding purposes?

The kernel formulation as proposed by Aizerman et al.60, is
a solution to our problem mentioned above. For simplicity, we
consider the labels of examples as binary in nature. Let x ∈Rn,
be the set of n feature values with corresponding category of the
example label (y) in data set D. Then the data points can be
mapped to a higher dimensional space H by the transformation
ϕ:

ϕ : x ∈Rn 7→ ϕ(x) ∈H (18)
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This H is the Hilbert Space which is a strict inner product space,
along with the property of completeness as well as separability.
The inner product formulation of a space helps in discriminat-
ing the location of a data point w.r.t a separating hyperplane in
H. This is achieved by the evaluation of the inner product be-
tween the normal vector representing the hyperplane along with
the vectorial representation of a data point in H. Thus, the idea
behind equation( 18) is that even if the data points are nonlin-
early clustered in space Rn, the transformation spreads the data
points intoH, such that they can be linearly separated in its range
in H.

Often, the evaluation of dot product in higher dimensional
spaces is computationally expensive. To avoid incurring this cost,
the concept of kernels in employed. The trick is to formulate ker-
nel functions that depend on a pair of data points in the space
Rn, under the assumption that its evaluation is equivalent to a
dot product in the higher dimensional space. This is given as:

κ(x,xj) =<ϕ(x),ϕ(xj)> (19)

Two advantages become immediately apparent. First, the eval-
uation of such kernel functions in lower dimensional space is
computationally less expensive than evaluating the dot product
in higher dimensional space. Secondly, it relieves the burden of
searching an appropriate transformation that may map the data
points in Rn to H. Instead, all computations regarding discrimi-
nation of location of data points in higher dimensional space in-
volves evaluation of the kernel functions in lower dimension. The
matrix containing these kernel evaluations is referred to as the
kernel matrix. With a cell in the kernel matrix containing a ker-
nel evaluation between a pair of data points, the kernel matrix is
square in nature.

As an example in practical applications, once the kernel has
been computed, a pattern analysis algorithm uses the kernel func-
tion to evaluate and predict the nature of the new example using
the general formula:

ƒ (z) = <w,ϕ(z)> +b

= <
N
∑

=1

α× y× ϕ(x),ϕ(z)> +b

=
N
∑

=1

α× y× <ϕ(x),ϕ(z)> +b

=
N
∑

=1

α× y× κ(x,z)+ b

(20)

 

Fig. 9 A geometrical interpretation of mapping nonlinearly separable
data into higher dimensional space where it is assumed to be linearly
separable, subject to the holding of dot product.

where w defines the hyperplane as some linear combination of
training basis vectors, z is the test data point, y the class label
for training point x, α and b are the constants. Various trans-
formations to the kernel function can be employed, based on the
properties a kernel must satisfy. Interested readers are referred
to Taylor and Cristianini73 for description of these properties in
detail.

The Hilbert-Schmidt independence criterion (HSIC) proposed
by Gretton et al.58 is based on kernel approach for finding depen-
dences and on cross-covariance operators in RKHS. Let X ∈ X
have a distribution PX and consider a RKHS A of functions
X → R with kernel kX and dot product 〈·, ·〉A. Similarly, Let
U ∈ Y have a distribution PY and consider a RKHS B of func-
tions U →R with kernel kB and dot product 〈·, ·〉B. Then the
cross-covariance operator CX,U associated with the joint distribu-
tion PXU of (X,U) is the linear operator B→A defined for every
 ∈A and b ∈ B as -

〈,CXUb〉A = EXU[(X),b(U)]− EX(X)EUb(U) (21)

The cross-covariance operator generalizes the covariance ma-
trix by representing higher order correlations between X and U
through nonlinear kernels. For every linear operator C : B→A
and provided the sum converges, the Hilbert-Schmidt norm of C
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is given by -
||C||2

HS
= k,〈k ,Cb〉A (22)

were k and b are orthonormal bases of A and B, respectively.
The HSIC criterion is then defined as the Hilbert-Schmidt norm
of cross-covariance operator -

HSC(X,U)A,B =















||CXU||2HS =
EX,X′,U,U′kX (X,X′)kU (U,U′)+
EX,X′kX (X,X′)EU,U′kU (U,U′)−
2EX,Y [EX′kX (X,X′)EU′kU (U,U′)]

(23)

were the equality in terms of kernels is proved in Gretton et al.58.
Finally, assuming (X,U) (= 1,2, ...,n) is a sample of the ran-
dom vector (X,U) and denote KX and KU the Gram matrices with
entries KX (, j) = kX (X,Xj) and KU (, j) = kU (U,Uj). Gretton
et al.58 proposes the following estimator for HSCn(X,U)A,B -

HSCn(X,U)A,B =
1

n2
Tr(KXHKUH) (24)

were H is the centering matrix such that H(, j) = δ,j− 1
n . Then

HSCn(X,U)A,B can be expressed as -

HSC(X,U)A,B =











1
n2
n,j=1kX (X,Xj)kU (U,Uj)

+ 1
n2
n,j=1kX (X,Xj)

1
n2
n,j=1kU (U,Uj)

− 2n
n
=1[

1
n

n
j=1kX (X,Xj)

1
n

n
j=1kU (U,Uj)]

(25)

Finally, Da Veiga56 proposes the sensitivity index based on dis-
tance correlation as -

S
HSCA,B
Xk

= R(Xk ,U)A,B (26)

were the kernel based distance correlation is given by -

R2(X,U)A,B =
HSC(X,U)A,B

p

(HSC(X,X)A,AHSC(U,U)B,B)
(27)

were kernels inducingA and B are to be chosen within a universal
class of kernels. Similar multivariate formulation for equation 24
are possible.

9.3 Choice of sensitivity indices
The SENSITIVITY PACKAGE (Faivre et al.74 and Iooss and
Lemaître21) in R langauge provides a range of functions to com-
pute the indices and the following indices will be taken into ac-
count for addressing the posed questions in this manuscript.

1. sensiFdiv - conducts a density-based sensitivity analysis
where the impact of an input variable is defined in terms
of dissimilarity between the original output density function
and the output density function when the input variable is
fixed. The dissimilarity between density functions is mea-

sured with Csiszar f-divergences. Estimation is performed
through kernel density estimation and the function kde of
the package ks. (Borgonovo53, Da Veiga56)

2. sensiHSIC - conducts a sensitivity analysis where the im-
pact of an input variable is defined in terms of the distance
between the input/output joint probability distribution and
the product of their marginals when they are embedded in
a Reproducing Kernel Hilbert Space (RKHS). This distance
corresponds to HSIC proposed by Gretton et al.58 and serves
as a dependence measure between random variables.

3. soboljansen - implements the Monte Carlo estimation of the
Sobol indices for both first-order and total indices at the
same time (all together 2p indices), at a total cost of (p+2)
× n model evaluations. These are called the Jansen estima-
tors. (Jansen48 and Saltelli et al.40)

4. sobol2002 - implements the Monte Carlo estimation of the
Sobol indices for both first-order and total indices at the
same time (all together 2p indices), at a total cost of (p+2)
×n model evaluations. These are called the Saltelli esti-
mators. This estimator suffers from a conditioning problem
when estimating the variances behind the indices computa-
tions. This can seriously affect the Sobol indices estimates
in case of largely non-centered output. To avoid this ef-
fect, you have to center the model output before applying
"sobol2002". Functions ”soboljansen" and "sobolmartinez"
do not suffer from this problem. (Saltelli34)

5. sobol2007 - implements the Monte Carlo estimation of the
Sobol indices for both first-order and total indices at the
same time (all together 2p indices), at a total cost of (p+2)
× n model evaluations. These are called the Mauntz estima-
tors. (Saltelli and Annoni47)

6. sobolmartinez - implements the Monte Carlo estimation of
the Sobol indices for both first-order and total indices using
correlation coefficients-based formulas, at a total cost of (p
+ 2) × n model evaluations. These are called the Martinez
estimators.

7. sobol - implements the Monte Carlo estimation of the Sobol
sensitivity indices. Allows the estimation of the indices of
the variance decomposition up to a given order, at a total
cost of (N + 1) × n where N is the number of indices to
estimate. (Sobol’20)

10 Optimization and Support Vector Ma-
chines

Aspects of SVMs from Sinha75 are reproduced for completeness.
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10.1 Optimization Problems
10.1.1 Introduction

The main focus in this section is optimization problems, the con-
cept of Lagrange multipliers and KKT conditions, which will be
later used to explain the details about the SVMs.

10.1.2 Mathematical Formulation

Optimization problems arise in almost every area of engineering.
The goal is to achieve an almost perfect and efficient result, while
carrying out certain procedures of optimization. Our main source
of reference on this topic derives from Bletzinger76. We will be
using notations used in Bletzinger76. In mathematical terms the
general form of optimization problem can be represented as :

minimize : ƒ (x); x ∈ Rn

such that : gj(x)≤ 0; j = 1,.....,p
: hj(x) = 0; j = 1,.....,q.

(28)

where ƒ ,gj and hj are the objective function, equality constraints
and inequality constraints. Generally, the number of constraints is
less than the number of variables used to formulate the optimiza-
tion problem. For a problem to be linear, both the constraints
and the objective function need to be linear. Quadratic problems
require only the objective function to be quadratic, while the con-
straints remain linear in formulation. Besides these, if any one of
the functions is nonlinear, then the problem becomes nonlinear in
nature. A graphical view of the types of the problems can be seen
in fig. 10).

Fig. 10 Kinds of optimization problems.

10.1.3 Lagrange Multipliers

In unconstrained optimization problems, where the first order
derivatives are assumed continuous, the solution is found by solv-
ing:

∇ƒ =
∂ƒ

∂
= 0; i = 1,.....,n. (29)

where ƒ is a function of . Since most of the optimization prob-
lems are constrained, the concept of Lagrange multipliers is in-
troduced in order to solve the problem. Thus, the Lagrangian
formulation, for Eqn. 28 becomes:

L(x,λ,μ) = ƒ (x)+
p
∑

j=1

λjgj(x)+
q
∑

j=1

μjhj(x) (30)

where L is the Lagrangian, λ and μ are the vectors of the La-
grange multipliers for inequality and equality constraints, respec-
tively.

Next comes the solving of the Lagrangian. We try to derive a
solution in terms of variables used and show that the final solu-
tion achieved by Equ. 28 and Eqn. 30 remains the same. For the
sake of derivation, we assume that each of the vectors , λ and
μ have a single element and also there exists a single optimal so-
lution. We will then generalize the solution to vectors containing
various elements. Let ∗, λ∗ and μ∗ be the optimal solution for
the Lagrangian. Let ! be the optimal solution for ƒ (). To begin
with, our Lagrangian has the form:

L(,λ,μ) = ƒ ()+ λg()+ μh() (31)

Derivation:

• Step 1: Differentiate the Lagrangian in Eqn 31 w.r.t  and
equate it to zero.

∂L

∂
=
∂ƒ

∂
+ λ

∂g

∂
+ μ

∂h

∂
= 0 (32)

• Step 2: Find  in terms of λ and μ, such that = (λ,μ).

• Step 3: Differentiate the Lagrangian in Eqn. 31 w.r.t λ and
equate it to zero.

∂L

∂λ
= g() = 0 (33)

• Step 4: Differentiate the Lagrangian in Eqn 31 w.r.t μ and
equate it to zero.

∂L

∂μ
= h() = 0 (34)

• Step 5: Substitute (λ,μ) in Equ. 33 and Eqn. 34 to get
two equations in two unknowns λ and μ and solve to get
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the optimal values.

g((λ,μ)) = 0 (35)

h((λ,μ)) = 0 (36)

Let λ∗, μ∗ be the solution. Substituting these in  =
(λ,μ), we get ∗.

• Step 6: Combining Eqn. 33 and Eqn. 34 in Eqn. 31, along
with λ∗, μ∗ and ∗, we have:

L(∗,λ∗,μ∗) = ƒ (∗)+ λ∗g(∗)+ μ∗h(∗) = ƒ (∗)
(37)

Since, it is assumed that there exist only one optimal solu-
tion we have:

L(∗,λ∗,μ∗) = ƒ (∗) = ƒ (!)
∗ = !

(38)

Lastly, since g() in Eqn. 33 is a inequality constraint, we have:

λg() = 0
λ≥ 0 (39)

10.1.4 Dual Functions

For sake of simplicity, let us for a moment ignore the equality
constraint. Then the Lagrangian becomes:

L(,λ,μ) = ƒ ()+ λg(). (40)

It is sometimes easy to transform the Lagrangian into a simpler
form, in order to find an optimal solution. We can represent the
Lagrangian as a Dual function in such a manner that the optimal
solution defined as minimum of L(,λ∗) w.r.t  where λ = λ∗,
can be represented as the maximum of dual function D(λ) w.r.t
λ. For a given λ, the dual is evaluated by finding the minimum of
L(,λ) w.r.t . Thus to find the optimal point we evaluate:

mx
λ

D(λ) =min


L(,λ∗) (41)

So the basic steps to solve the dual problem are as follows: Step
1: Minimize L(,λ) w.r.t , and find  in terms of λ. Step 2:
Substitute (λ) in L s.t. D(λ) = L((λ),λ). Step 3: Maximize
D(λ) w.r.t λ.

10.1.5 Karush Kuhn Tucker Conditions

The derivation in the last part (Eqn. 31 to Eqn. 39)gives us a set
of equations that need to be evaluated along with the considera-
tion of constraints present. These set of equations and constraints
in terms of the Lagrangian, form the Karush Kuhn Tucker Condi-
tions. We give here the generalized KKT conditions and explain

the necessary details.

∂L
∂
= ∂ƒ

∂
+
∑p
j=1λj

∂gj
∂
+
∑p
j=1μj

∂hj
∂
= 0 : = 1, . . . ,n

∂L
∂λj
= gj(x) = 0 : j= 1, . . . ,p

∂L
∂μj
= hj(x) = 0 : j= 1, . . . ,q

λjgj = 0 : j= 1, . . . ,p
λj ≥ 0 : j= 1, . . . ,p

(42)
where L is Eqn. 30.

The KKT conditions specify a few points which are as follows:

1. The first line states that the linear combination of objective
and constraint gradients vanishes.

2. A prerequisite of the KKT conditions is that the gradients
of the constraints must be continuous (evident from second
and third lines in Eqn. 42).

3. The last two lines in Eqn. 42 state that at optimum either the
constraints are active or the constrains are inactive.

10.2 Support Vector Machines

Armed with the knowledge of optimization problems and concept
of Lagrange multipliers, we now delve into the workings of sup-
port vector machines. Burges77 provides a good introduction to
SVMs and is our main reference. Interested readers should refer
to Cristianini and Shawe-Taylor78, Schölkopf and Smola79 and
Vapnik and Vapnik80 for detailed references.

10.2.1 Separable Case

Let us suppose that we are presented with a data set that is
linearly separable. We assume that there are m examples of
data in the format {x,y}, s.t. x ∈ Rn;  = 1, ....,m, where
y ∈ {−1,1} is the corresponding true label of x. We also sup-
pose there is an existence of a linear hyperplane in the n dimen-
sional space that separates the positively labeled data from the
negatively labeled data. Let this separating hyperplane be given
by

w ·x+ b= 0. (43)

where, w is the normal vector ⊥ to the hyperplane and |b|/ ||w||
is the shortest perpendicular distance of the hyperplane to the
origin. ||w|| is the Euclidean norm of w. The margin of a hyper-
plane is then defined as the minimum of the distance of the pos-
itively and negatively labeled examples, to the hyperplane. For
the linear case, the SVM searches for the hyperplane with largest
margin. We now have three conditions, based on the location of
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Origin

Normal Vector w

Margin = 2/||w||

Separating Hyperplane

b
||w||

Positive Example

Negative Example

Support Vectors

Fig. 11 Linear hyperplane for separable data. Adapted from Burges (A
Tutorial on Support Vector Machines)

an example x w.r.t the hyperplane:

w ·x+ b= 0 : example lying on the hyperplane.(44)

w ·x+ b≥ +1 : positively labeled example. (45)

w ·x+ b≤−1 : negatively labeled example. (46)

Combining the equality and the two inequalities we have:

y(w ·x+ b)− 1≥ 0 (47)

Since the SVMs search for the largest margin, we now try to
find a mathematical expression of the margin. Considering the
examples that satisfy equality in Eqn. 45, the distance of the clos-
est positive example can be expressed as |1− b|/ ||w||. Similarly,
considering the negative examples that satisfy equality in Eqn. 46,
the distance of the closest negative example can be expressed as
|− 1− b|/ ||w||. On summation of the two shortest distances, we
get the margin of the hyperplane as 2/ ||w||. Since the labels are
{−1,1}, no example lies inside the hyperplanes representing the
margin in this case. Taking into account that the SVM searches for
the largest margin, we can say that it can be achieved by minimiz-
ing ||w||2, subject to the constraints in Eqn. 47. Examples lying
on the hyperplanes of the margins are termed support vectors, as
their removal would change the margin and thus the solution.
Figure 11 represents the conceptual points about separating hy-
perplanes.

10.3 Lagrangian Representation: Separable Case

Clearly, the previous paragraph shows that finding the margin is a
problem of optimization as the goal is to minimize ||w||2 subject
to constraints in Eqn. 47. Employing the ideas of Chapter 3, the
Lagrangian for the above problem, is:

L(w,b,α) =
1

2
||w||2−

m
∑

=1

αy(x ·w+ b)+
m
∑

=1

α (48)

where 1
2 ||w||

2 is the objective function, α is the Lagrangian mul-
tiplier and the Eqn. 47 is the inequality constraint. Since the min-
imization of the objective function is required, we employ the
ideas of the derivation of KKT conditions (Eqn. 42) to Eqn. 48.
In short, we would require the L(w,b,α) to be minimized w.r.t w
and b and also require its derivative w.r.t all α ’s to vanish. Thus
the KKT conditions take the form:

∂L
∂j
=j−
∑

αyj = 0 : j = 1,....,n
∂L
∂b = −
∑m
=1αy = 0 : i = 1,....,m

∂L
∂α
= −
∑m
=1y(x ·w+ b)+

∑m
=11= 0 : i = 1,....,m

α(y(x ·w+ b)− 1) = 0 : i = 1,....,m
α ≥ 0 : i = 1,....,m

(49)
Thus solving the SVMs is equivalent to solving the KKT conditions.
While w is determined by the training set, b can be found by
solving the penultimate equation in Eqn. 49 for which α 6= 0.
Also note that examples that have α 6= 0 form the set of support
vectors.

The dual problem for the same Lagrangian is:

D=
∑



α−
1

2

∑

,j

ααjyyjx ·xj (50)

Solving for Eqn. 50 requires maximization of D w.r.t α, subject
to second line of Eqn. 49 and positivity of α, with the solution
given by first line of Eqn. 49.

To classify or predict the label of a new example xne, the
SVM has to evaluate (xne ·w+ b) and check the sign of the
evaluated value. A positive sign would lead to assignment of a
+1 label and a negative sign to −1.

10.4 Nonseparable Case

For many classification problems, the data present is nonsepara-
ble. To extend the idea to nonseparable case, some amount of
cost is added, which takes care of particular cases of examples.
This is achieved by introducing slack in the constraints Eqn. 45
and Eqn. 46 (Burges77, Vapnik and Vapnik80). The equations
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then becomes

w ·x+ b≥ 1− ξ : positively labeled example. (51)

w ·x+ b≤−1+ ξ : negatively labeled example. (52)

For an error to occur, the ξ value must exceed unity. To take care
of the cost of errors, a penalty is introduced which changes the
objective function from ||w||2/2 to ||w||2/2+ C(

∑

ξ)
k . Thus

∑

ξ represents the upper bound on the training error. For
quadratic problems, k can be 1 or 2.

10.5 Lagrangian Representation: Nonseparable Case

Since the formulation of the Lagrangian and its dual follow the
same procedure, as mentioned before, we only mention the equa-
tions. The Lagrangian for nonlinear nonseparable case is:

L(w,b,α,ξ) =
1

2
||w||2+C

m
∑

=1

ξ−
m
∑

=1

α{y(x ·w+ b)

−1+ ξ}−
m
∑

=1

μξ (53)

The corresponding KKT conditions are:

∂L
∂j
=j−
∑

αyj = 0 : j= 1, . . . ,n
∂L
∂b = −
∑m
=1αy = 0 : = 1, . . . ,m

∂L
∂α
= y(x ·w+ b)− 1+ ξ = 0 : = 1, . . . ,m

∂L
∂ξ
= C−α− μ = 0 : = 1, . . . ,m

α{y(x ·w+ b)− 1+ ξ}= 0 : = 1, . . . ,m
μξ = 0 : = 1, . . . ,m
α ≥ 0 : = 1, . . . ,m
ξ ≥ 0 : = 1, . . . ,m
μ ≥ 0 : = 1, . . . ,m

(54)

The dual formulation k = 1 for the Lagrangian just discussed is:

D=
∑



α−
1

2

∑

,j

ααjyyjx ·xj (55)

All the previous conditions remain same, except that the La-
grangian multiplier α now has a upper bound of value C. The
solution for the dual is given by w=

∑Ns

=1αyx. Ns is the num-
ber of support vectors. Figure 12 depicts the nonseparable case.

10.6 Kernels and Space Dimensionality Transformation

The above cases were for linear separating hyperplanes. In or-
der to generalize for nonlinear cases, Boser et.al81 employed the
idea of Aizerman60 as follows; Since the Dual in Eqn. 55 and

Origin

Normal Vector w

Margin = 2/||w||

Separating Hyperplane

b
||w||

Positive Example

Negative Example

Support Vectors

Positive example on
opposite side

Fig. 12 Linear hyperplane for nonseparable data. Adapted from Burges
(A Tutorial on Support Vector Machines)

its corresponding constraint equations employ the dot product of
the examples, x ·xj, it was proposed to map the data in a higher
dimensional space using a function ϕ s.t. the algorithm would de-
pend only on dot products in the higher space. Next, the existence
of a function called kernel, dependent on x and xj, was assumed
s.t. the value reported by the kernel was equal to the value re-
sulting from the dot product in the higher space. A mathematical
representation of the above concept is -

ϕ : Rn 7→H (56)

K(x,xj) = ϕ(x) ·ϕ(xj) (57)

where H is a higher dimensional space.
This technique drastically reduces the amount of work required

while dealing with nonlinear separating hyperplanes, concerning
search for appropriate ϕ. Instead, one only works with K(x,xj),
in place of x ·xj. For classification purpose, where the sign of the
function (xne ·w+ b) is evaluated, the formulation employing
kernels become:

ƒ (xne) = (w ·xne+ b)
=
∑Ns

=1αyϕ(s) ·ϕ(xne)+ b
=
∑Ns

=1αyK(s,xne)+ b
(58)

where s are the support vectors.
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