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Abstract 

Objectives: We assessed the current genetic evidence for the involvement of various 

cell types and tissue types in the aetiology of neurodegenerative diseases, especially 

in relation to the neuroinflammatory hypothesis of neurodegenerative diseases. 

 

Methods: We obtained large-scale genome-wide association study (GWAS) summary 

statistics from Parkinson’s disease (PD), Alzheimer’s disease (AD), and amyotrophic 

lateral sclerosis (ALS). We used multiple sclerosis (MS), an autoimmune disease of 

the central nervous system, as a positive control. We applied stratified LD score 

regression to determine if functional marks for cell type and tissue activity, and 

gene set lists were enriched for genetic heritability. We compared our results to 

those from a gene-set enrichment method (Ingenuity Pathway Analysis). 

 

Results: There were no significant heritability enrichments for annotations marking 

genes active within brain regions, but there were for annotations marking genes 

active within cell-types that form part of both the innate and adaptive immune 

systems.  We found this for MS (as expected) and also for AD and PD. The strongest 

signals were from the adaptive immune system (e.g. T cells) for PD, and from both 

the adaptive (e.g. T cells) and innate (e.g. CD14: a marker for monocytes, and CD15: 

a marker for neutrophils) immune systems for AD. Annotations from the liver were 

also significant for AD. Pathway analysis provided complementary results. 

 

Interpretation:  For Alzheimer’s and Parkinson’s disease, we found significant 

enrichment of heritability in annotations marking gene activity in immune cells.  

 

Introduction 

Neurodegenerative diseases – including Alzheimer’s (AD), amyotrophic lateral 

sclerosis (ALS), and Parkinson’s disease (PD) – are personally devastating and an 

increasing burden on health-care systems worldwide. Recently there has been much 

progress in identifying genetic variants associated with neurodegenerative diseases. 

In the latest AD meta-analysis 19 loci in addition to the well-established APOE locus 

were pinpointed.1 The latest PD meta-analysis brought the total number of 

established PD loci to 26,2 and the latest ALS meta-analysis identified three ALS-

associated loci.3 Despite progress in identifying genetic hits in these 

neurodegenerative diseases, the underlying processes or cell-types mediating the 

pathology remain uncertain. 

 

As genome-wide association studies (GWASs) have grown in size and power, so has 

the quality and scope of functional information that can be used to annotate the 

genome with relevant genomic and epigenomic marks linked to the regulation of 

gene expression.  Previous studies have demonstrated enrichment of disease-

associated variants (for numerous diseases) with functional genomic annotations, 

including DNase I hypersensitive sites, transcription factor binding sites, histone 

modifications, and expression quantitative trait loci (eQTLs).4–7 These annotations 

vary depending on cell/tissue-type. Given the many ways in which complex diseases 

arise, and for human brain diseases, the well-recognized cellular heterogeneity of 
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the brain, pinpointing cell-types of interest is important to further understand 

pathogenicity. Efforts to obtain brain samples (the most obviously relevant tissue 

for neurodegenerative diseases) for eQTL analyses are ongoing.8–13 There has been a 

recent proliferation in the availability of cell-type and tissue-specific annotations, 

including brain tissue, for example through the Roadmap Epigenomics Project14 and 

the PsychEncode Project.11 Nevertheless, obtaining large numbers of post-mortem 

human brains remains challenging, and current eQTL analyses are likely to be 

underpowered. Characterization of eQTLs and DNA regulatory elements in blood is 

a complementary approach. 

 

The neuroinflammatory hypothesis of neurodegenerative diseases posits that 

dysregulation of the immune system is an important factor in the aetiology of these 

diseases.15,16 There is little doubt that MS is an immune-mediated disease17 18,19 We 

therefore use this disease as a positive control with regard to expected enrichment 

in heritability for annotations from immune cells. There is extensive functional and 

clinical evidence that immune dysfunction plays a key role in the pathogenesis of 

the relapse-remitting phase of MS.20,21 For AD, Yokoyama et al.22 showed that eight 

variants were associated with both AD and immune-mediated diseases, and there is 

further evidence from pathway analysis1,23,24 and from animal models.25 For PD, the 

role of the immune system has been suggested through pathway analysis26,27, 

animal models28, and variants in the HLA region reaching statistical significance in 

genome-wide association studies.2,29 For ALS, there is evidence of immune 

abnormalities.30 Nevertheless, the extent to which the immune system is involved in 

neurodegenerative diseases such as AD, ALS and PD, and the potential roles played 

by the innate and adaptive immune components, remain unestablished.  

  

Finucane et al.31 introduced stratified LD score regression as a method for 

partitioning the inferred heritability from GWAS summary statistics. They 

partitioned heritability for a variety of tissue/cell-types for 17 GWASs. We applied 

this methodology to four diseases (MS, AD, ALS, PD) to test for enrichment of 

heritability, both using Finucane et al.’s31 cell-type group annotations and using 

additional annotations from brain and immune cells and from published sets of 
brain and immune-related genes.32  

Methods  

We obtained GWAS summary statistics for three neurodegenerative diseases: 

Alzheimer’s disease (AD),1 amyotrophic lateral sclerosis (ALS)3 and Parkinson’s 

disease (PD).2 We used multiple sclerosis (MS)33 as a positive control, as it is a 

disease affecting the brain with known immune aetiology. All studies were 

conducted in European populations, and are summarized in Table 1. For AD, which 

is a two-stage study, we only used data from the first stage. (See Box 1 for details on 

this study.) We did not study Huntington’s disease (which has other genetic 

modifiers in addition to the primary HTT locus) and frontotemporal dementia, 

because the current GWAS sample sizes for these diseases are modest, and thus the 

datasets were considered to be insufficiently powered for our analyses.31  
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Box 1. 

International Genomics of Alzheimer's Project (IGAP) is a large two-stage study 

based upon genome-wide association studies (GWAS) on individuals of European 

ancestry. In stage 1, IGAP used genotyped and imputed data on 7,055,881 single 

nucleotide polymorphisms (SNPs) to meta-analyse four previously-published GWAS 

datasets consisting of 17,008 Alzheimer's disease cases and 37,154 controls (The 

European Alzheimer's disease Initiative – EADI the Alzheimer Disease Genetics 

Consortium – ADGC The Cohorts for Heart and Aging Research in Genomic 

Epidemiology consortium – CHARGE The Genetic and Environmental Risk in AD 

consortium – GERAD). In stage 2, 11,632 SNPs were genotyped and tested for 

association in an independent set of 8,572 Alzheimer's disease cases and 11,312 

controls. Finally, a meta-analysis was performed combining results from stages 1 & 

2. 

 

We estimated pairwise genetic correlations among the four diseases using cross-

trait LD score regression.34 We then applied stratified LD score regression to 

determine if various functional categories  (cell-type groups, annotations at the 

tissue/cell level for brain or immune cells, and sets of brain and immune gene lists) 

were enriched for heritability. LD score regression exploits the expected 

relationships between true association signals and local LD around them to correct 

out systematic biases and arrive at unbiased estimates of genetic heritability within 

a given set of SNPs (here stratified according to their functional category).31 

Following Finucane et al.31, we added annotations individually to the baseline 

model; we used HapMap Project Phase 3 SNPs for the regression and 1000 Genomes 

Project European population SNPs for the reference panel; we only partitioned the 

heritability of SNPs with minor allele frequency >5%; and we excluded the MHC 

region from analysis.  The high LD and strong association signals within the MHC 

region result in a dominating effect on LD score regression, and for the purposes of 

our analyses excluding this region results in a conservative approach.  

 

The grouped cell-type annotations provided by Finucane et al.31 are the union of 

histone marks for 10 broad categories including central nervous system (CNS), 

cardiovascular, immune/hematopoietic, and liver. For these analyses we corrected 

for multiple testing of four GWASs across 10 cell-type groups (4 x 10 = 40 

hypotheses tested), resulting in a Bonferroni significance threshold of p= 1.2 x 10-3. 

 

We then extended the analytical approach of Finucane et al.31 in the following ways. 

Firstly, we obtained additional annotation information.  We obtained histone marks 

and DNase I hypersensitive sites data from the Roadmap Epigenomics 

Consortium;14 we obtained eQTLs derived from brain regions from the UK Brain 

Expression Consortium10 and the GTEx Consortium;9 and we obtained promoter 

capture HiC array express data in CD34 cells from GM12878 (reference: E-MTAB-

2323).35 We also considered two gene-sets. All these annotations are listed in 

Supplementary Table 1. Secondly, in order to reduce the multiple testing burden, 

we combined information across the four different histone marks and the DNase I 
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hypersensitive marks in order to create an aggregate set of regulatory marks for 

each cell type.  

 

For brain tissue, we defined a union set of histone marks plus DNase I 

hypersensitive sites from the Roadmap Epigenomics Consortium.14 This processing 

resulted in one annotation per brain region (10 annotations). 

 

We grouped eQTLs across all brain regions, but treated the eQTLs from the UK Brain 

Expression Consortium10 and the GTEx Consortium9 separately (resulting in two 

annotations).  Both the GTEx and UKBEC analyses included brain regions highly 

relevant to MS, AD and PD, namely white matter, hippocampus, temporal cortex and 

substantia nigra.  

 

Amongst specific immune cells we assessed the histone marks previously 

described,31 and also the histone marks and DNase I hypersensitive site data from 

the Roadmap Epigenomics Consortium for immune and blood cells,14 and we took 

the union for each cell-type as described above (three histone marks and DNase I 

hypersensitive site).  This resulted in 20 annotations from Finucane et al.31 and 14 

annotations from Roadmap.  

 

Additionally, we defined four immune cell-type annotations based on promoter 

capture HiC array express data in CD34 from GM12878 (reference: E-MTAB-

2323).35 The data for the prey and bait were analysed separately for interactions 

between captured promoter and captured promoter interactions and for captured 

promoter and all other regions, which resulted in four annotations. 

 

The above cell/tissue-type specific annotations resulted in a multiple testing 

correction for four GWASs across 50 (12 brain + 38 immune) annotations (4 x 50 = 

204 hypotheses tested). Thus we set a Bonferroni significance threshold of p= 2.5 x 

10-4 for these analyses.  Note that there are correlations within the immune and 

brain annotations, making our Bonferroni correction somewhat conservative 

 

We also applied heritability enrichment analysis to two sets of genes; one with 

known brain and one with known immune function. We used a brain gene list of 

2,635 genes previously described by Raychaudhuri et al.36, and an immune gene list 

of 973 genes previously described by Pouget et al.32 Brain genes were defined as 

those fulfilling any of the following criteria: preferential expression in the brain 

compared to other tissues, “neural-activity” annotation in Panther, “learning” 

annotation in Ingenuity, and “synapse” annotation in Gene Ontology. Immune genes 

were defined as those with an “immune response” annotation in at least three of the 

following databases: Kyoto Encyclopedia of Genes and Genomes, Gene Ontology, 

Ingenuity, and Immunology Database and Analysis Portal. SNPs were annotated to 

genes using a 50 kb window, and a baseline list of all genes using this 50 kb window 

was included in the model as previously described.32 
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Finally, we contrasted the above heritability enrichment analyses with a 

complementary approach based on gene-set enrichment analysis. We used 

Ingenuity Pathway Analysis (IPA) (www.ingenuity.com) to identify pathway 

enrichment among genes associated with different neurological traits for canonical 

pathways. Canonical pathways are structured pathways. Data from the different 

phenotypes were integrated and subjected to network analysis via IPA to identify 

pathway enrichment. Enriched networks are ordered by –log p-value, based on a 

Fisher Exact test p-value.37 Cancer-related functions were removed from the disease 

and biological functions results, due to their over-representation in the database. 

For each disease we included SNPs with a p-value <5x10-4, and excluded SNPs in the 

MHC region due to the long stretches of LD in this region. 

 

Results 

There is limited evidence of pairwise genetic correlation among the four diseases 

using cross-trait LD score regression. The lack of an AD-PD pairwise correlation has 

already been reported, as well as between AD-MS and PD-MS.38 We also found no 

statistically significant evidence for genetic correlation between ALS-AD (0.2, p= 

0.08), ALS-PD (-0.08, p=0.01), and ALS-MS (-0.04, p=0.7). 

 

For the grouped cell-type analysis from Finucane et al.,31 the most significant 

enrichment was seen for the immune/hematopoietic category for MS (10.1, p= 3.8 x 

10-13), confirming the recognized role of the immune system in this disease. This 

category was also significantly enriched for heritability of AD (5.5, p= 2.4 x 10-7), in 

addition to liver (10.5, p= 1.1 x 10-5), and these AD signals remained significant even 

after the removal of APOE (chr19: 44905754-44909393) (5.5, p= 2.5 x 10-7 and 10.5, 

p= 1.1 x 10-5 respectively). For ALS and PD, there were no significantly enriched 

functional categories (Fig 1). 

 

At the tissue level, none of the enrichments were significant for the brain 

annotations. The most suggestive signal was for the inferior temporal region in AD 

(4.9, p= 6.6 x 10-4).  

 

For the cell-specific immune annotations assessed relating to both the innate and 

adaptive immune systems, there was significant enrichment for MS heritability and 

to a lesser extent for AD and PD. There was no enrichment of heritability for ALS, 

the smallest dataset in our study (Supplementary Table 1, Fig 2).  Strong MS 

signals for heritability enrichment were found in all immune cell categories, 

including both adaptive and innate cell types.  Significant AD signals were found in 

all immune cell categories except for the non-T-cell/non-B-cell component of the 

adaptive immune system. For PD, only two annotations passed the multiple testing 

threshold: primary T helper cells PMA-I stimulated and primary T regulatory cells 

from peripheral blood (5.2 and 5.4, respectively, p= 0.0002 for both), but several 

other immune annotations were suggestive.  

 

Consistent with previous applications of the LD score regression method, we 

included the annotations separately in the regression model. This means that that 
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enrichments in innate immune cells could in principle be due to overlap in 

annotation with adaptive immune cell-types, and vice versa. To assess this issue, we 

determined the degree of annotation overlap between all pairs of immune cell types 

in our study (Supplementary Table 2).  We found the degree of overlap between 

innate versus adaptive cells ranged from 0.06% (for CD14 versus CD20) to 12% (for 

peripheral blood mononuclear primary cell versus primary T cells from cord blood), 

suggesting a large degree of independence between adaptive and innate cell marks. 

To further investigate this issue, we carried out deeper analyses on a representative 

adaptive cell type (primary T cells from cord blood) and a representative innate cell 

type (CD15), both of which displayed strong heritability enrichment signals in AD.  

The annotation overlap between these two cell types was 6.7% (Supplementary 

Table 2).  When we included both annotations simultaneously in the LD score 

regression model, we found that both cell lines remained significantly enriched for 

MS (22.0, p= 7.4 x 10-20 and 17.2, 2.3 x 10-5, respectively). Similarly, for AD, both cell 

lines remained significantly enriched (8.7, p= 1.7 x 10-7 and 14.3, p= 7.3 x 10-6, 

respectively). Neither of these cell lines had reached significance for PD or ALS in 

the models where they were inputted separately, nor were they significant when 

included simultaneously into the model. The enrichment results for primary T cells 

from cord blood and CD15 when included simultaneously in the model for PD are 

4.9, p= 1.1 x 10-3 and 7.0, p= 5.2 x 10-3, respectively; and for ALS 3.5, p= 0.03 and 3.1, 

p= 0.37 respectively. Overall, these analyses provided us with re-assurance that we 

were detecting independent signals in adaptive versus innate immune cell types. 

 

Our heritability enrichment analysis within brain-related and immune-related gene 

sets also provided strong evidence for a signal in the immune gene set, and not in 

the brain gene set (Supplementary Table 1). As expected, the strongest immune 

gene signal was for MS (1.6, p= 4.6x10-14). We have previously reported the 

enrichment of this immune gene list in the same MS dataset, using an earlier version 

of LD score regression.32 The immune gene list was also enriched for heritability in 

AD (5.2, p= 4.8 x 10-4), and the effects in PD and ALS were suggestive but would not 

survive multiple testing correction (4.5, p= 0.02 and 2.5, p= 0.03, respectively). The 

brain gene list was not significantly enriched in any of the neurodegenerative 

diseases assessed (among the other three diseases enrichment ranges from 0.9 to 

1.9, p >0.04 for all three).  

 

Finally, we compared the above results to an Ingenuity IPA pathway enrichment 

analysis within canonical pathways (Supplementary Table 3). Remarkably, all the 

significant pathways save one ("Aldosterone Signaling in Epithelial Cells") were 

found to be connected to either adaptive or innate immune response. Specific 

examples included: in MS (e.g. T helper cell differentiation, role of macrophages, 

fibroblasts and endothelial cells in RA, B cell receptor signaling, dendritic cell 

maturation, PI3K signaling in B lymphocytes, CD40 signaling; PKCθ signaling in T 

lymphocytes, NF-κB activation by viruses); in PD (e.g. dendritic cell maturation – 

shared with MS, graft-versus-host disease signaling, altered T cell and B cell 

signaling in rheumatoid arthritis); in AD (IL-8 signaling, IL-12 signaling and 

production in macrophages, Fc epsilon RI signaling, Fcγ receptor-mediated 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 25, 2016. ; https://doi.org/10.1101/059519doi: bioRxiv preprint 

https://doi.org/10.1101/059519


phagocytosis in macrophages and monocytes, role of pattern recognition receptors 

in recognition of bacteria and viruses, natural killer cell signaling); and in ALS (e.g. 

NF-κB signaling). The value of the IPA method was also demonstrated in providing 

significant signals for other pathways previously implicated in the pathogenesis of 

AD, including CREB signaling in neurons,39 neuregulin signaling, and ErbB 

signaling.40   

 

Discussion 

Multiple lines of evidence suggest a significant contribution of variants exhibiting 

functional marks for chromatin accessibility (i.e. histone marks, DNase I 

hypersensitive sites) in immune cell types to the heritability of two 

neurodegenerative diseases, namely AD and PD. To the best of our knowledge this is 

the first report of enrichment of immune cell chromatin accessibility marks among 

the genetic risk alleles for neurodegenerative diseases.  Annotations from immune 

cells are most significantly enriched for the heritability of MS, a known autoimmune 

disease which acted as a positive control in our investigations.17 Immune 

annotations are also consistently enriched but to a lesser degree for AD (with 

involvement from both the innate and adaptive immune systems), and some cell-

specific immune annotations (T-cells) were significantly enriched for PD. A lack of 

results from the ALS dataset could be attributed to this dataset being smaller than 

the other datasets investigated (Table 1). These results provide further support for 

the neuroinflammatory hypothesis of neurodegenerative disease,15,16 and highlight 

the potential utility of immune modulating agents, such as those currently used in 

MS for the treatment of AD and PD. However, one needs to be cautious with 

interpreting these cell/tissue-type specific results in the absence of functional and 

other studies. 

 

We note that if we correct for the 17 GWASs assessed in Finucane et al.31 as well as 

the four GWASs we assessed here for the 10 cell-type groups ((17+4) x 10 = 210 

hypotheses tested), both the immune/hematopoietic and liver categories remain 

significant for AD.  

 

The role of the immune system in AD pathogenicity has been previously shown22,25 

and previous pathway analysis of the AD GWAS we assessed here showed 

enrichment in immune-related pathways.24 Findings are strongest for the innate 

immune response, for instance association with the TREM2 gene, which in brain 

cells are primarily expressed on microglia.41,42 Our findings further support the role 

of immune variation in AD susceptibility. Interestingly, using LD score regression, 

AD was found to be not significantly correlated with a variety of immune diseases.34 

This lack of correlation could be because when considering the entire genome the 

signal coming from the correlated loci between the diseases is diluted, or the 

immune variants involved in AD are different from those involved in other immune 

diseases. Microglia, the main immune cell type in the brain, have a different 

developmental trajectory separate from the peripheral immune system.43 

The unique mechanisms of immune surveillance in the brain 44,45also makes 

immune diseases of the brain biologically distinct to peripheral immune diseases, 
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but there is much evidence that disruption of the brain’s immune surveillance is 

critical to the “vicious cycle” of worsening pathology seen in neurodegeneration.46 

Our analysis suggests a predominantly epigenomic mechanism for immune 

dysregulation in neurodegenerative disease, and if confirmed this may be of 

therapeutic relevance, as many drugs are known to act through this mechanism. 

Some, such as histone deacetylase inhibitors, are already known to be efficacious in 

neurodegeneration treatment.47 

 

Functional marks from liver were also enriched for the heritability of AD. This result 

agrees with findings in the literature of the contribution of lipid metabolism through 

liver X receptors (LXR) to the initiation and progression of this disease.48,49 

 

Canonical pathway analysis showed enrichment of AD associations in CREB 

signaling in neurons, and also IL8 and IL12 signaling (which are CREB regulated), 

supporting the immune hypothesis in AD, and pointing to interleukin signaling as a 

potential CREB-responsive mechanism.50  

 

Our results do not provide statistically significant evidence that variants 

overlapping with functional annotations from the brain contribute excessively to the 

heritability of neurodegenerative diseases. The brain doubtless plays an important 

role in the genetic aetiology of these diseases. The lack of brain annotation 

enrichment could be due to data being based on few samples for the brain.  

Furthermore, the brain is a very heterogeneous tissue. Data from brain regions 

contain a mixture of different cell types such as microglia and neurons. Single cell 

sampling may reduce this heterogeneity in the future.51 This analysis should be 

revisited as brain annotation information improves. 

 

In summary, our results suggest a significant contribution of variants that exhibit 

chromatin accessibility marks in immune cells to the heritability of two 

neurodegenerative diseases, namely AD and PD. 

 

Acknowledgements 

We would like to thank Andy Singleton and Mike Nalls for access to the Parkinson’s 

disease summary statistics. We would also like to thank Isabella Fogh and John 

Powell for providing access to the ALS summary statistics. The SLAGEN (Italian 

Consortium for the Genetics of ALS) and ALSGEN (International Consortium of 

Amyotrophic Lateral Sclerosis Genetics) Consortia contributed ALS/controls 

samples. The multiple sclerosis summary statistics were accessed through 

Immunobase (https://www.immunobase.org/). We thank Borbala Mifsud for advice 

on HiC datasets. We also thank Jayne Danska for input on the immune 

interpretation. 

 

Funding for this work: SAG was funded through the Weston Brain Institute 

International Fellowship in Neuroscience. JGP was funded by Fulbright Canada, 

Weston Canada, and Brain Canada through the Canada Brain Research Fund, a 

public-private partnership established by the Government of Canada. MRB was 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 25, 2016. ; https://doi.org/10.1101/059519doi: bioRxiv preprint 

https://doi.org/10.1101/059519


funded through the National Institutes for Health Research (NIHR) as part of the 

portfolio of translational research of the NIHR Biomedical Research Unit at Barts. JH, 

MR and MEW were funded through Medical Research Council (MRC) grant number 

G0901254/1. 

 

We thank the International Genomics of Alzheimer's Project (IGAP) for providing 

summary results data for these analyses. The investigators within IGAP contributed 

to the design and implementation of IGAP and/or provided data but did not 

participate in analysis or writing of this report. IGAP was made possible by the 

generous participation of the control subjects, the patients, and their families. The i–

Select chips was funded by the French National Foundation on Alzheimer's disease 

and related diseases. EADI was supported by the LABEX (laboratory of excellence 

program investment for the future) DISTALZ grant, Inserm, Institut Pasteur de Lille, 

Université de Lille 2 and the Lille University Hospital. GERAD was supported by the 

Medical Research Council (Grant n° 503480), Alzheimer's Research UK (Grant n° 

503176), the Wellcome Trust (Grant n° 082604/2/07/Z) and German Federal 

Ministry of Education and Research (BMBF): Competence Network Dementia (CND) 

grant n° 01GI0102, 01GI0711, 01GI0420. CHARGE was partly supported by the 

NIH/NIA grant R01 AG033193 and the NIA AG081220 and AGES contract N01–AG–

12100, the NHLBI grant R01 HL105756, the Icelandic Heart Association, and the 

Erasmus Medical Center and Erasmus University. ADGC was supported by the 

NIH/NIA grants: U01 AG032984, U24 AG021886, U01 AG016976, and the 

Alzheimer's Association grant ADGC–10–196728. 

 

Author Contributions 

S.A.G., M.R., M.R.B., J.K., and M.E.W. are responsible for concept and study design. 

S.A.G. analysed data, M.R.B. conducted the pathway analysis, and J.G.P. analysed data 

for the gene list enrichment. S.A.G. drafted the manuscript and figures, with input 

from all the authors.  

 

Conflicts of Interest 

Author MEW an employee of Genomics plc, a company providing genomic analysis 

services to the pharmaceutical and healthcare sectors. His involvement in the 

conduct of this research was solely in his capacity as a Reader in Statistical Genetics 

at King's College London. 

 

References 

1.  Lambert JC, Ibrahim-Verbaas CA, Harold D, et al. Meta-analysis of 74,046 

individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat 
Genet 2013;45(12):1452–8. 

2.  Nalls MA, Pankratz N, Lill CM, et al. Large-scale meta-analysis of genome-wide 

association data identifies six new risk loci for Parkinson’s disease. Nat. Genet. 
2014;46(9):989–993. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 25, 2016. ; https://doi.org/10.1101/059519doi: bioRxiv preprint 

https://doi.org/10.1101/059519


3.  Fogh I, Ratti A, Gellera C, et al. A genome-wide association meta-analysis 

identifies a novel locus at 17q11.2 associated with sporadic amyotrophic lateral 
sclerosis. Hum. Mol. Genet. 2014;23(8):2220–2231. 

4.  Maurano MT, Haugen E, Sandstrom R, et al. Large-scale identification of 

sequence variants influencing human transcription factor occupancy in vivo. 
Nat. Genet. 2015; 

5.  Farh KK-H, Marson A, Zhu J, et al. Genetic and epigenetic fine mapping of causal 
autoimmune disease variants. Nature 2015;518(7539):337–343. 

6.  Gagliano SA, Barnes MR, Weale ME, Knight J. A Bayesian method to incorporate 

hundreds of functional characteristics with association evidence to improve 

variant prioritization. PLoS ONE 2014;9(5):e98122. 

7.  Schaub MA, Boyle AP, Kundaje A, et al. Linking disease associations with 

regulatory information in the human genome. Genome Res 2012;22(9):1748–59. 

8.  The GTEx Consortium. The genotype-tissue expression (GTEx) project. Nat 

Genet 2013;45(6):580–585. 

9.  Ardlie KG, Deluca DS, Segrè AV, et al. The Genotype-Tissue Expression (GTEx) 

pilot analysis: Multitissue gene regulation in humans. Science 
2015;348(6235):648–660. 

10.  Ramasamy A, Trabzuni D, Guelfi S, et al. Genetic variability in the regulation of 

gene expression in ten regions of the human brain. Nat. Neurosci. 
2014;17(10):1418–1428. 

11.  Akbarian S, Liu C, Knowles JA, et al. The PsychENCODE project. Nat. Neurosci. 
2015;18(12):1707–1712. 

12.  Miller JA, Ding S-L, Sunkin SM, et al. Transcriptional Landscape of the Prenatal 
Human Brain. Nature 2014;508(7495):199–206. 

13.  Fromer M, Roussos P, Sieberts SK, et al. Gene Expression Elucidates Functional 
Impact of Polygenic Risk for Schizophrenia. bioRxiv 2016;52209. 

14.  Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, et al. Integrative 
analysis of 111 reference human epigenomes. Nature 2015;518(7539):317–330. 

15.  Floyd RA. Neuroinflammatory processes are important in neurodegenerative 

diseases: an hypothesis to explain the increased formation of reactive oxygen 

and nitrogen species as major factors involved in neurodegenerative disease 
development. Free Radic. Biol. Med. 1999;26(9–10):1346–1355. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 25, 2016. ; https://doi.org/10.1101/059519doi: bioRxiv preprint 

https://doi.org/10.1101/059519


16.  Klegeris A, McGeer EG, McGeer PL. Therapeutic approaches to inflammation in 
neurodegenerative disease. Curr. Opin. Neurol. 2007;20(3):351–357. 

17.  Steinman L. Multiple sclerosis: a two-stage disease. Nat. Immunol. 
2001;2(9):762–764. 

18.  International Multiple Sclerosis Genetics Consortium. Network-based multiple 

sclerosis pathway analysis with GWAS data from 15,000 cases and 30,000 
controls. Am. J. Hum. Genet. 2013;92(6):854–865. 

19.  van Baarsen LGM, van der Pouw Kraan TCTM, Kragt JJ, et al. A subtype of 

multiple sclerosis defined by an activated immune defense program. Genes 
Immun. 2006;7(6):522–531. 

20.  Hellings N, Gelin G, Medaer R, et al. Longitudinal study of antimyelin T-cell 

reactivity in relapsing–remitting multiple sclerosis: association with clinical and 

MRI activity. J. Neuroimmunol. 2002;126(1):143–160. 

21.  Hernandez-Pedro NY, Espinosa-Ramirez G, Perez de la Cruz V, et al. Initial 

Immunopathogenesis of Multiple Sclerosis: Innate Immune Response. J. 
Immunol. Res. 2013;2013, 2013:e413465. 

22.  Yokoyama JS, Wang Y, Schork AJ, et al. Association Between Genetic Traits for 
Immune-Mediated Diseases and Alzheimer Disease. JAMA Neurol. 2016; 

23.  Jones L, Holmans PA, Hamshere ML, et al. Genetic Evidence Implicates the 

Immune System and Cholesterol Metabolism in the Aetiology of Alzheimer’s 
Disease. PLOS ONE 2010;5(11):e13950. 

24.  International Genomics of Alzheimer’s Disease Consortium (IGAP). Convergent 

genetic and expression data implicate immunity in Alzheimer’s disease. 
Alzheimers Dement. J. Alzheimers Assoc. 2015;11(6):658–671. 

25.  Wang Y, Cella M, Mallinson K, et al. TREM2 Lipid Sensing Sustains the Microglial 
Response in an Alzheimer’s Disease Model. Cell 2015;160(6):1061–1071. 

26.  Holmans P, Moskvina V, Jones L, et al. A pathway-based analysis provides 

additional support for an immune-related genetic susceptibility to Parkinson’s 
disease. Hum. Mol. Genet. 2013;22(5):1039–1049. 

27.  Durrenberger PF, Grünblatt E, Fernando FS, et al. Inflammatory Pathways in 
Parkinson’s Disease; A BNE Microarray Study. Park. Dis. 2012;2012:214714. 

28.  Kannarkat GT, Boss JM, Tansey MG. The Role of Innate and Adaptive Immunity in 
Parkinson’s Disease. J. Park. Dis. 2013;3(4):493–514. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 25, 2016. ; https://doi.org/10.1101/059519doi: bioRxiv preprint 

https://doi.org/10.1101/059519


29.  Hamza TH, Zabetian CP, Tenesa A, et al. Common genetic variation in the HLA 

region is associated with late-onset sporadic Parkinson’s disease. Nat. Genet. 
2010;42(9):781–785. 

30.  McCombe P., Henderson R. The Role of Immune and Inflammatory Mechanisms 
in ALS. Curr. Mol. Med. 2011;11(3):246–254. 

31.  Finucane HK, Bulik-Sullivan B, Gusev A, et al. Partitioning heritability by 

functional annotation using genome-wide association summary statistics. Nat. 
Genet. 2015;47(11):1228–1235. 

32.  Pouget JG, Gonçalves VF, Consortium SWG of the PG, et al. Genome-Wide 

Association Studies Suggest Limited Immune Gene Enrichment in Schizophrenia 

Compared to 5 Autoimmune Diseases. Schizophr. Bull. 2016;sbw059. 

33.  International Multiple Sclerosis Genetics Consortium, Wellcome Trust Case 

Control Consortium 2, Sawcer S, et al. Genetic risk and a primary role for cell-

mediated immune mechanisms in multiple sclerosis. Nature 
2011;476(7359):214–219. 

34.  Bulik-Sullivan B, Finucane HK, Anttila V, et al. An atlas of genetic correlations 
across human diseases and traits. Nat. Genet. 2015;47(11):1236–1241. 

35.  Mifsud B, Tavares-Cadete F, Young AN, et al. Mapping long-range promoter 

contacts in human cells with high-resolution capture Hi-C. Nat. Genet. 
2015;47(6):598–606. 

36.  Raychaudhuri S, Korn JM, McCarroll SA, et al. Accurately assessing the risk of 

schizophrenia conferred by rare copy-number variation affecting genes with 
brain function. PLoS Genet. 2010;6(9):e1001097. 

37.  Krämer A, Green J, Pollard J, Tugendreich S. Causal analysis approaches in 
Ingenuity Pathway Analysis. Bioinforma. Oxf. Engl. 2014;30(4):523–530. 

38.  Anttila V, Bulik-Sullivan B, Finucane HK, et al. Analysis of shared heritability in 

common disorders of the brain [Internet]. bioRxiv 2016;Available from: 
http://biorxiv.org/content/early/2016/04/16/048991.article-info 

39.  Pugazhenthi S, Wang M, Pham S, et al. Downregulation of CREB expression in 

Alzheimer’s brain and in Aβ-treated rat hippocampal neurons. Mol. 
Neurodegener. 2011;6:60. 

40.  Wieduwilt MJ, Moasser MM. The epidermal growth factor receptor family: 

biology driving targeted therapeutics. Cell. Mol. Life Sci. CMLS 

2008;65(10):1566–1584. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 25, 2016. ; https://doi.org/10.1101/059519doi: bioRxiv preprint 

https://doi.org/10.1101/059519


41.  Guerreiro R, Wojtas A, Bras J, et al. TREM2 Variants in Alzheimer’s Disease. N. 
Engl. J. Med. 2013;368(2):117–127. 

42.  Jonsson T, Stefansson H, Steinberg S, et al. Variant of TREM2 associated with the 
risk of Alzheimer’s disease. N. Engl. J. Med. 2013;368(2):107–116. 

43.  Bilbo SD, Schwarz JM. The Immune System and Developmental Programming of 
Brain and Behavior. Front. Neuroendocrinol. 2012;33(3):267–286. 

44.  Ransohoff RM, Engelhardt B. The anatomical and cellular basis of immune 

surveillance in the central nervous system. Nat. Rev. Immunol. 2012;12(9):623–
635. 

45.  Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of 
central nervous system lymphatic vessels. Nature 2015;523(7560):337–341. 

46.  Zlokovic BV. The Blood-Brain Barrier in Health and Chronic Neurodegenerative 
Disorders. Neuron 2008;57(2):178–201. 

47.  Abel T, Zukin RS. Epigenetic targets of HDAC inhibition in neurodegenerative 
and psychiatric disorders. Curr. Opin. Pharmacol. 2008;8(1):57–64. 

48.  Zelcer N, Khanlou N, Clare R, et al. Attenuation of neuroinflammation and 

Alzheimer’s disease pathology by liver x receptors. Proc. Natl. Acad. Sci. 
2007;104(25):10601–10606. 

49.  Kang J, Rivest S. Lipid metabolism and neuroinflammation in Alzheimer’s 
disease: a role for liver X receptors. Endocr. Rev. 2012;33(5):715–746. 

50.  Wen AY, Sakamoto KM, Miller LS. The Role of the Transcription Factor CREB in 
Immune Function. J. Immunol. 2010;185(11):6413–6419. 

51.  Lacar B, Linker SB, Jaeger BN, et al. Nuclear RNA-seq of single neurons reveals 
molecular signatures of activation. Nat. Commun. 2016;7:11022. 

Figure Legends 

 

 

Fig 1. Enrichment of cell-type groups as used in Finucane et al. 2015. The black 

dashed lines at -log10(P) = 2.9 is the cutoff for Bonferroni significance. 

 

Fig 2. Enrichment of immune cell annotations. The black dashed lines at -log10(P) = 

3.6 is the cutoff for Bonferroni significance. White bars= tissue; purple bars= CD34 

(marker of immature hematopoietic cells - not strictly adaptive or innate); light blue 

bars= marker of T cells; dark blue bar= marker of B cells; royal blue bars= cells of 

the adaptive immune system; pink bars= cells of the innate immune system 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 25, 2016. ; https://doi.org/10.1101/059519doi: bioRxiv preprint 

https://doi.org/10.1101/059519


 

Tables 

 

Table 1. Description of the GWASs summary statistics 

 

Neurodegenerative 

disease 

PMID Cases Controls Cohorts 

Parkinson’s 

disease 

25064009 

 

13,708 95,282 15 

Alzheimer’s 

disease 

24162737 17,008 37,154 19 

Amyotrophic 

lateral sclerosis 

24256812 7,177 8,393 8 

Multiple sclerosis 21833088 

 

9,772 17,376 23 

 

 

 

Supplementary files: 

 

Supplementary Table 1. Annotation enrichment results. Red cells mark 

enrichment that survived Bonferroni correction.  

 

Supplementary Table 2. Overlap among chromatin accessibility annotations for 

immune cells. The main diagonal shows genome coverage (base pairs) for that cell 

type. The upper off-diagonal shows the overlap coverage (base pairs) for that cell-

type-pair. The lower off-diagonal shows the proportion of overlap coverage for that 

cell-type pair. 

 

Supplementary Table 3. Ingenuity Pathway Analysis (IPA) results. Red cells mark 

enrichment that survived Bonferroni correction. 
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