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Abstract  
Homology modeling is a powerful tool for predicting a protein’s structure. This approach is 
successful because proteins whose sequences are only 30% identical still adopt the same 
structure, while structure similarity rapidly deteriorates beyond the 30% threshold. By studying 
the divergence of protein structure as sequence evolves in real proteins and in evolutionary 
simulations, we show that this non-linear sequence-structure relationship emerges as a result of 
selection for protein folding stability in divergent evolution. Fitness constraints prevent the 
emergence of unstable protein evolutionary intermediates thereby enforcing evolutionary paths 
that preserve protein structure despite broad sequence divergence. However on longer time 
scales, evolution is punctuated by rare events where the fitness barriers obstructing structure 
evolution are overcome and discovery of new structures occurs. We outline biophysical and 
evolutionary rationale for broad variation in protein family sizes, prevalence of compact 
structures among ancient proteins and more rapid structure evolution of proteins with lower 
packing density. 
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Introduction 
A wide variety of protein structures exist in nature, however the evolutionary origins of this 
panoply of proteins remain unknown. While protein sequence evolution is easily traced in nature 
and produced in the laboratory, the emergence of new protein structures is rarely observed and 
difficult to engineer (1-3). One approach to studying structure evolution is to examine how 
proteins’ structural similarity varies over a range of sequence identities. Such investigations 
proceed by aligning many pairs of proteins so that their sequence identity (or another measure of 
sequence similarity) and structural similarity can be assessed (4-8). The result is a cusped 
relationship between sequence and structure divergence: sequences reliably diverge up to 70% 
without significant protein structure evolution. Below 30% sequence identity, the structural 
similarity between proteins abruptly decreases, giving rise to a “twilight zone” where little can 
be said about the relationship between sequence identity and structural similarity without more 
advanced methods. This finding is the foundation of one of the most important methods in 
protein biophysics: structure homology modeling (9, 10).  Despite the fact that the plateau of 
high structural similarity above 30% sequence identity has been crucial for homology modeling 
and that many of the advanced structure prediction methods have been motivated by abrupt onset 
of the twilight zone, the cusped relationship between sequence and structural similarity has not 
yet received a detailed biophysical justification (11, 12).  

Previous work characterized the relationship between sequence and structure similarity 
by fitting the data empirically with an exponential function, and the adequacy of this model was 
interpreted as evidence in favor of the local model of protein structure determination, namely, 
that only a key subset of residues encode a protein’s structure (4, 5, 7). However we are not 
aware of any further evidence that mutating a special subset, amounting to about 30% of a 
protein’s residues, generally causes a protein’s structure to evolve to a new structure. 
Conversely, randomly mutating 70% of a protein’s residues will almost surely unfold it as even a 
small number of point mutations can destroy a protein’s structure (13). Therefore, it is clear that 
without evolutionary selection, the range of 100-30% sequence identity could not correspond to 
nearly identical structures.  

Purely physical models of structure evolution, without any selection, have explained 
many fundamental features of the protein universe. Dokholyan et al. constructed a protein 
domain universe graph in which protein domain nodes are connected by an edge if they are 
structurally similar. The resulting graph is scale-free, which they showed would be the result of 
duplication and structural divergence of proteins (14, 15). Similarly, the birth, death, innovation 
models developed by Koonin et al. explain the power law-like distribution of gene family sizes 
that exists in many genomes (16). However, because these works use neutral models, they are 
unable to explain the cusped sequence-structure relationship. 

A small but growing collection of cases where protein structure evolution has been 
observed or inferred provides mechanistic insight into the role of selection in protein structure 
evolution. They show that it is possible for proteins to be within a small number of point 
mutations of a fold evolution event (17-19) but also that structure emergence may often pass 
through thermodynamically destabilized intermediates. Among Cro bacteriophage transcription 
factors, a pair of homologous proteins with 40% sequence identity (indicating that they share a 
recent common ancestor) but different structures was found. Subsequent studies showed that 
some Cro proteins might be just a few mutations away from changing fold (17, 20). Similarly, a 
trajectory of point mutations was engineered to convert a natural protein adopting a 3α fold into 
a 4β+α fold. Finding a rare sequence of mutations that avoided unfolded evolutionary 
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intermediates was a major achievement of this work (18, 21, 22). Computational investigations 
of protein structure evolution using model proteins of Protein Database structures also show that 
structure evolution traverses unstable intermediates and found that less stable proteins are more 
evolvable at the structural level (23, 24).  

Here, we explore the evolutionary dynamics of protein structure discovery. Given the fact 
that most globular proteins must adopt a well-defined 3D structure in order to function and the 
strong evidence that many fold evolution pathways require protein destabilization, we 
hypothesize that protein structure discovery requires crossing valleys of low fitness on fitness 
landscapes, corresponding to genetic encoding of evolutionarily transient, unstable proteins. 
Therefore, the strength of selection for folding stability under which a protein evolves may 
modulate its capacity to evolve a new structure.  

We study evolution of protein structures using the data on sequence-structure 
relationships in natural proteins and a variety of evolutionary models of increasing complexity 
and realism. We find that the cusped relationship between structure and sequence divergence is a 
direct consequence of the interplay between evolutionary dynamics and the biophysical 
constraint for protein folding stability. In both the bioinformatics data and simulation data, the 
sharpness of the “cusp,” but not its position (approximately 30% sequence identity for natural 
proteins) is determined by the compactness of evolving proteins, a proxy for their 
thermodynamic stability. Rather than fitting these data empirically, we formalized the 
mechanism underlying structure-sequence divergence in an “ab-initio” analytical model that fits 
the bioinformatics data for proteins grouped by their compactness. Simulations show that what 
underlies the negative correlation between protein stability and structure evolution rate is the 
strength of evolutionary selection for stability under which proteins evolve. Fitness barriers are 
imposed by selection for thermodynamic stability and continual sequence evolution degrades 
sequence identity over the time scales needed to find mutations that overcome these barriers and 
which encode alternative, stable protein structures. Many long-standing observations in protein 
biophysics are reinterpreted and unified using this powerful yet simple interpretive framework.  

 
Results 
Structure-sequence relationship in the protein universe  
A cusp-like relationship between structure and sequence divergence has long been observed in 
the record (4-6, 11) when the sequence identity and structural similarity is determined for many 
pairs of protein domains. Here, we explore how selection for protein stability affects the shape of 
the relationship between sequence and structure divergence. Following Chothia and Lesk (4), 
who studied the divergence of proteins within protein families, we studied the divergence of 
globular protein domains classified into the same SCOP fold. By choosing a broader 
classification than family, we could track divergence over the long timescales required for 
significant structure evolution to be detected (See Methods, Fig. 1A) (25, 26). SCOP folds are 
broadly defined by major secondary structures in similar arrangements and topologies, so protein 
domains sharing a fold classification often adopt significantly different structures (25). 
Sequences were aligned using the Needleman-Wunsch (NW) algorithm as implemented in 
MATLAB and sequence identity was calculated by the number of identical residues matched in 
the alignment normalized by the average length of the aligned proteins. Structures were aligned 
using the Template-Modeling (TM) algorithm and given a TM score between 0 and 1 to quantify 
their degree of structural similarity (27).  
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We define thermodynamic stability of a protein as the fraction of molecules in the ensemble that 
resides in the native state. It is an experimentally observable thermodynamic property of proteins 
that is related to fitness and as such might be under evolutionary selection (28-33). For single 
domain proteins that fold as two state systems, this quantity is directly related to the folding free 
energy ΔG  through the Boltzmann relation of statistical mechanics:                                              

 

Pnat =
e
− ΔG
kBT

1+ e
− ΔG
kBT   (1) 

where 	T  is temperature and 	kB  is Boltzmann constant. Here we consider only single domains as 
defined in SCOP and use the number of amino acid contacts normalized by the domain length, 
the contact density (CD), as a proxy for the folding free energy ΔG  of a protein (23). This 
approach compensates for the relative deficiency of experimental thermodynamic data. The 
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Figure 1: Stability and fold evolution of SCOP domains SCOP domains classified as α, β, α+β, α/β 
were used. Sequence identity (SID) and structural homology (TM-align score) for each pair of 
domains classified into the same fold were calculated. (A) An illustrative example from the α+β 
flavodoxin-like folds. The SCOP domains and their associated PDB ids from left to right are d1a04a2 
(1A04), d1a2oa1 (1A2O), and d1eudb1 (1EUD). (B-D) The relationship between sequence divergence 
and structure evolution in SCOP domains. Note that sequence identity decreases from left to right. 
Domains are partitioned by contact density (CD) (B) bottom 10% contact density (<4.13 
contacts/residue, N=12,671 data points) (C) middle 10% contact density (4.57<CD<4.65 
contacts/residue. N=3,863 data points) (D) top 10% contact density (>4.93 contacts/residue, N=5,672 
data points). Histograms at the left of the plots show, in B, that at low contact density, the distribution 
of TM-align scores is approximately single peaked while C and D show that at higher contact 
densities, the distribution of structure similarity TM-align scores is bimodal.	
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connection between CD and folding free energy has been established through several lines of 
evidence. Inter-residue contacts stabilize a protein structure through van der Waals interactions, 
so the more contacts in a protein structure the more stable the structure. Indeed, proteins of 
thermophilic organisms have greater contact density than their mesophilic homologs (34). 
Finally, protein length correlates with both contact density and folding free energy. Correlation 
between length and contact density is a consequence of the globular structure of proteins where 
surface to volume ratio depends on total length. Folding free energy is an extensive property that 
increases with the total number of amino acids in a protein (35, 36). Generally lower free energy 

does not necessarily mean greater stability (	Pnat ). That is, a protein consisting of two identical 
thermodynamically independent domains each having folding free energy ΔG , will not be more 
stable than each domain in separation. However, for single-domain proteins that fold in a two-
state manner folding free energy is directly related to stability as can be seen from Eq.1.  

In Figs 1B-D (Dataset S1), the data are subdivided by contact density, such that only 
proteins in the bottom 10% (CD < 4.13 contacts per amino acid residue), middle 10% (4.65 > 
CD > 4.57 contacts per amino acid residue), and top 10% (CD > 4.93 contacts per amino acid 
residue), of contact density are compared (Fig 1B, C, and D respectively). For the most stable 
proteins, there is a bimodal distribution of TM-align scores with a peak at high TM-align scores 
corresponding to diverging proteins maintaining near identical structures and a peak at low TM-
align scores corresponding to proteins that are unrelated or whose folds have evolved (Fig. 1B). 
However in the class of low contact density proteins there is only a peak at low TM-align score. 
Furthermore, for high and intermediate contact density domain, there is a pronounced cusp in the 
sequence-structure relationship. By contrast, the transition from homologous structures to 
diverged structures is more gradual for the low contact density domains, without a visible cusp. 
These results are robust to the exact sequence similarity metric used as shown in Fig. S1. There, 
sequence similarity is measured by the NW alignment score using the BLOSOM30 substitution 
matrix. Because this score takes similarity between aligned residues into account, e.g. a matched 
alanine and glycine would lead to a higher sequence similarity score than alanine and arginine, 
and because it penalizes alignment gaps, the NW alignment score attains greater sensitivity than 
sequence identity. Thus, this analysis robustly indicates that, as proteins diverge, the onset of 
structure evolution occurs earlier for less stable proteins than for more stable ones.  

A possible confounding factor could be that proteins of different contact densities might 
be enriched in different structural classes so that our finding presented in Fig. 1 reflect 
differences in evolutionary scenarios for different protein structural classes. However we can 
eliminate this possibility because we found that there are no significant differences in the shape 
of the sequence-structure relationship when the data are subdivided by protein class (Fig. S2). 

 
A simple analytical model for the twilight zone 
An evolutionary trajectory of sequential amino acid substitutions can be imagined connecting 
proteins of any two structures. There are many experimental studies supporting the vision of an 
evolutionary landscape where sequences folding into stable structures are connected by 
sequences that do not adopt stable structures (21, 33, 37-39). In general, a protein’s stability 
determines the cellular amount of folded, and therefore functional, protein as well as the amount 
of unfolded protein, which is not only non-functional but also can form toxic aggregates (40). 
The fitness of an organism is thereby directly related to the ability of proteins to carry out their 
functions and therefore their stability.  
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Based on these understandings, we construct a simple model of protein structure 
evolution on a fitness landscape where sequences encoding high-fitness (thermodynamically 
stable) proteins form peaks separated by fitness valleys. (Fig. 2A). The model is based on three 
postulates. First, new structures are discovered in divergent evolution from existing structures. 
Second, in analogy with chemical kinetics we treat the events leading to structure evolution as an 
activated process, where wait times between fitness valley crossing events are exponentially 
distributed. The evolutionary reaction coordinate is a mutational path connecting two protein 
structure states. A free energy barrier separating two states in chemical kinetics is analogous to 
the evolutionary barrier comprising sequences that encode unstable proteins separating two 
stable protein structures that confer high fitness on their carrier organisms. In this model, 
organisms encoding thermodynamically stable proteins are “fit” because we assume proteome 
stability is a main component of organismal fitness throughout this paper (29). Third, we 
postulate that crossing the fitness valley leads to the discovery of novel folds that are structurally 
dissimilar to the original fold.  

We denote 	k as the rate of structure evolution. Modeling structure evolution as an 
activated process, the probability, 		q(t) , that an ancestral structure (the structure at time 		t =0 ) is 
unchanged at time  follows immediately: 
   (2) 
Next, it is necessary to substitute the variable of time for the variable of sequence identity for 
two reasons. First, sequences can reach mutation saturation. Second, this transformation will 
permit direct comparison between the analytical and the bioinformatics results. The relationship 
for the expected Hamming distance between the evolving protein at time 	t  with respect to the 
ancestral protein at time 		t =0 , normalized by protein length, is given by 
 

 

		
S(t)= l(a−1)

a
1− 1− a
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  (2) 

 
where 	l  is the length of the protein and 	a  is the number of amino acid types, typically 20 (see 
Supplementary Text for derivation). This expression only takes into account the point mutations 
that become fixed in the evolving population because the model only takes into account 
mutations that might contribute to the emergence of a new structure.  

Excluding the time variable from Eqs. 3 and 4, we determine the probability  that a 
structure has persisted once its sequence is at Hamming distance  from its ancestral   
sequence.  

   (3) 

Figure 2B shows the dependence of structure survival probability as a function of sequence 
identity (  v. ). When 		k ≈1  the protein is free to diffuse through structure space as 
easily as it does through sequence space. As proteins become more stable, the barriers between 
protein structures begin to retard structure evolution giving rise to activated dynamics. When 
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		 k≪1 , the sequence identity degrades to random before the first structure evolution events take 
place, resulting in an abrupt decrease in  at very low .	
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Figure 2: Fitness barriers to fold evolution leads to cusped sequence-structure relationship 
(A) A schematic representation of the evolutionary process in which fold discovery events 
occur by overcoming fitness valleys along the “evolutionary” reaction coordinate. Sequences 
that are “more fit,” i.e. that contribute to high fitness in the organisms they are part of are shown 
in blue. Families of homologous proteins are formed by sequence evolution between structure 
evolution events. The rate of structure discovery, , depends on the thermodynamics stability 
(a property of protein biophysics) of an evolving proteins because in our model’s analogy to 
chemical kinetics, the more stable an evolving protein, the higher the fitness barrier to evolving 
a new fold. (B) The relationship between sequence identity and structural survival probability of 
an ancestral structure for a proteins with length 27 (the length of model proteins used below) at 
several values of : from top to bottom, 0.0001 (yellow), 0.003 (orange), 0.01 (green), 0.04 
(light blue), 0.1 (dark blue) 0.25 (purple). The histograms show the probability that the ancestral 
structure has persisted (top) versus the probability that new structure has emerged (bottom) after 
at most 74% of the residues have been mutated. (C) Fit of the analytical model to real protein 
data. The model fit to the data is presented in dashed lines while binned bioinformatics data is 
presented in solid lines for each contact density subgroup: low contact density (blue), 
intermediate contact density (green), high contact density (orange). In the inset, the correlation 
between protein domain contact density and protein structure evolutionary rate, , predicted 
analytically. Error bars indicate one standard deviation.   
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Conceptually, this is because broad exploration of sequence space takes place over the course of 
many mutations before there arises a sequence that is stable yet which has a new minimum free 
energy native  state. The histograms in Figure 2B also indicate that differences in stability may 
explain heterogeneity that has been observed in gene family sizes, defined as the number of non-
redundant sequences that adopt highly homologous structures (41). For each of the structure 
evolution rates tested, the histogram shows the probability that the structure has (bottom) or has 
not (top) evolved after some evolutionary time. The curves and histograms for slow structure 
evolution rates (		 k≪1 ) are consistent with the high contact density class of proteins while those 
with intermediate values of 	k  are consistent with the low contact density class of proteins. 
Unstable proteins move rapidly through structure space, providing little time for gene duplication 
and sequence divergence to populate a particular family when compared to their 
thermodynamically stable counterparts.  

Finally, we confirm that the analytical model predicts a decreasing rate of structure 
evolution, 	k , when fit to the three protein domain subgroups with increasing contact density. 
The bioinformatics data featured in Fig. 1 was binned and averaged for each contact density 
subgroup and the rate of structure evolution, 	k , and twilight zone offset, 	c , were then fit to this 
bioinformatics data (See Methods). As shown in Figure 2C, this fit confirms both that the 
analytical model correctly reproduces the shape of the sequence-structure relation for proteins of 
different contact densities, and that contact density correlates negatively with protein structure 
evolution rate, 	k , (inset, Table S1). Contact density also correlates negatively with 	k  when the 
NW alignment score is used to measure sequence similarity (Fig. S3, Table S2). Interestingly, 
while it might be expected that the analytical model reproduces the correlation between contact 
density and k  when comparing protein domain groups with very different contact densities, it 
also seems to be able to discriminate between protein subgroups with small differences in 
average contact density. Protein domains in the four structural classes, α, β, α/β, α+β, 
have average contact densities that range from 4.33 contacts/residue (α) to 4.66 contacts/residue 
(α/β). While differences in the shape of the sequence-structure relation among the four classes 
remain hardly distinguishable by eye even after this binning and fitting, the fitted 	k  values do 
decrease monotonically with the classes’ increasing contact density indicating that structure 
evolution rates are sensitive even to modest differences in contact density (Fig. S4, Table S1).    
 
Structure evolution of model proteins  
We now turn to explicit modeling of protein structure evolution in order to test the assumptions 
of our analytical model and to get mechanistic insights into the biophysics of fold emergence. 
Details of the model are provided in the Methods section. In brief, each model protein consists of 
27 amino acid residues that fold into a compact 3×3×3 cube (42-44). All 103,346 possible 
compact structures of such model proteins have been enumerated, and, following Heo et al., we 
use a representative subset of randomly selected 10,000 conformations as our space of possible 
protein structures for computational efficiency throughout this work (45). Neighboring amino 
acid residues that are not connected by a covalent bond interact according to a Miyazawa-
Jernigan (MJ) potential (46). In line with previous discussion, the ‘fitness’ of each  each model 

protein is represented by its stability, 	Pnat , the Boltzmann probability that a protein adopts its 
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lowest energy (native) state. For any 27-mer sequence, 	Pnat  can be determined exactly within this 
model (see Methods).  

Hypothesizing that the strength of evolutionary selection under which a protein evolves is 
the origin of both the protein’s stability and its structure evolution rate, we ran many 
evolutionary simulations where proteins could evolve new structures under stability (	Pnat ) 

constraints of various stringencies. Each simulation started with a stable protein (		Pnat >0.99 ) and 
each generation, an amino acid substitution was introduced into the evolving protein. Stabilizing 
mutations that increase Pnat  were always accepted, while destabilizing mutations were accepted 
according to the Metropolis criterion with a selective temperature selT  that establishes stringency 
of evolutionary selection (47, 48) (see Methods, Fig. S5 and Dataset S2). Simulations ran for 
1,000 generations (mutation attempts, illustrated in Fig. 3A) and the structure, sequence, and 
stability ( ) were recorded every 10 generations.  

First, we quantify the structural similarity between the “wild-type” and mutant structure 
for each time step where a structure discovery event occurs in order to test the structural 
bimodality assumption made by the analytical model. The structural similarity of two model 
proteins is straightforwardly captured by the number of amino acid residue contacts that two 
structures have in common (Q-score, see Methods) (49).  
 

	Pnat
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Figure 3: Dynamics of fold evolution (A) 
Schematic representation of Monte Carlo 
simulated evolution. Protein sequences 
(represented by a series of circles below each 
lattice structure, color indicates amino acid 
type) acquire mutations, periodically causing 
the protein to transition to a new structure. 
(B) Four representative fold evolution 
trajectories at different mean thermodynamic 
stabilities ( 𝑃!!"# ). Dips indicate structure 
evolution events. Trajectory color illustrates 
the thermodynamics stability of the evolving 
proteins, as described in the color bar. (C) 
The distribution of wait times between fold 
discovery events for three different , 

 (blue),  (green), and 

 (yellow). In the insets and in 
(C), the colored data points also correspond 
to these . The top inset shows the 
average wait time between fold discovery 
events for the different values of  tested. 
The bottom inset shows the average 
structural similarity (Q-score) between the 
previous structure and the arising structure 
for fold discovery events. 
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In Figure 3B, representative individual trajectories from four selection regimes are plotted such 
that protein structure discovery events are reflected as dips in Q-score, and protein stability is 
indicated by color. The average Q-score, 	Q , between a random pair of model proteins is 
	0.19±0.08 , as indicated by the red line in Fig. 3B. For each tested selection pressure, an average 
Q-scores associated with fold evolution events, 	Qi , can be determined from the simulation data 
by calculating the Q-score between the ancestral and mutant fold each time a new fold arises, 

and averaging over these values. As depicted in the bottom inset of Fig. 3C, 	Qi   does not differ 

significantly from 	Q  when proteins evolve at the lowest 	Pnat  observed (		Pnat =0.23  ). The case is 

very different, however, when proteins evolve at their most stable 	Pnat  observed (		Pnat =0.97 ). 
Stable proteins are biased towards discovering new structures similar to ancestral structures such 

that 		Qi =0.42±0.17 , almost three standard deviations above 	Q . The positive correlation 
between 	Qi  and 	Pnat  likely reflects that discovering a mutant fold similar to the wild-type (high 

	Q ) avoids destabilizing evolutionary intermediates (Fig. S6). However, even strong selection 

pressure does not increase 	Qi  above ~0.42 because there exist so few structures with 		Q >0.42  for 
any given evolving protein structure (Fig. S7) that their discovery appears unlikely for entropic 
reasons. The underlying rarity of similar structures in the space of model protein structures erects 
evolutionary barriers to fold evolution and limits the capacity of structure evolution to occur 

incrementally. This is reflected in the distribution 		P(Qt ,t+10) , the probability distribution of Q-
scores between protein structures at time 	t  and at time 		t +10 , which is bimodal with peaks at 
		Q =1  and 		Q ≈0.29  (See below, Fig. 4A-C), consistent with the bimodal distribution of TM-align 
scores discussed above.  

A key assumption of the analytical model was that fold evolution is an activated 
process(50). We tested this assumption by examining whether wait times between fold discovery 
events were distributed exponentially, which is the hallmark of an activated process, and found 
that indeed, model protein evolution does follow activated dynamics (Fig. 3C).  

Alleviating purifying selection for stability accelerates the rate of structure evolution by 
allowing proteins to maintain lower stability on average (lower 	Pnat ). The average wait time 

between structure discovery events diminishes rapidly as simulations are run at higher 	Tsel  such 
that the stability of the evolving proteins diminishes. When 		Pnat ≤0.74  selection pressure was so 
weak that nearly every recorded generation explored a different fold (Fig. 3B, Fig. 3C top insert), 
akin to the 		k ≈1  regime in the analytical model. The abrupt transition from diffusive to activated 
dynamics is also apparent in the distribution of fold discovery events (Fig. S8A) which shows 

that the distribution is Poisson when 		Pnat ≥0.74 , where structure evolution events are rare, and 

that the mean number of fold discovery events increases when  !Pnat  falls below 0.74 (Fig. S8A, 
Dataset S2). In summary, structure evolution of model proteins follows activated kinetics in the 
strong selection regime and newly discovered structures appear much different from parent ones, 
providing strong supports of the postulates of the analytical theory.  
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Now we determine whether structure-sequence relationship reproduces the cusp shapes 
observed in real proteins (Fig.1). For unstable proteins, the pace of structure evolution outstrips 
sequence evolution leading to a concave sequence-structure relationship (Fig. 4A), which is 
consistent with the 		k ≈1  regime of the analytical model and not observed in real proteins. The 
most interesting cases are at intermediate selection regimes where there is a sigmoidal cusp-like 
transition from high average structural similarity to low structural similarity at higher sequence 
divergence (Fig 4B-C). In this selection regime, proteins dwell in a particular structure while 
accumulating sequence mutations, yet are periodically, at longer time scales, able to transition to 
another structure, which is substantially different from the preceding one. For extremely stable 
proteins, by contrast, sequence can still evolve readily, but structure evolution is severely 
hindered (Fig. 4D). The increased dwell-time in a particular protein structure also allows 
sequences adopting that fold to proliferate over time, which is reflected in the correlation 

between 	Pnat  and the mean structure family size (Figure 4E). Structure family size is equivalent 
to gene family size, discussed in Shakhnovich et al., except that amino acid sequences rather than 
nucleotide sequences are considered here (41).   

The analytical model and simulations indicate that a divergent scenario reproduces the 
key features of the sequence-structure relationships shown in Fig.1. In this model, the plateau at 
high structural similarity arises from evolutionary fitness barriers impeding structure evolution, 
not from a biophysical fact that sequences encoding stable proteins and sharing more than 30% 
of their residues must encode the same structure. So far, however, we have not been able to fully 
exclude the latter possibility. In order to test whether a purely biophysical constraint might 
explain the cusped sequence-structure relationship, we simulate an alternative, convergent, 
mechanism of structure discovery. To simulate convergent evolution, proteins start from 
sequences that stably fold into a randomly chosen structures but the fitness function favors 
sequence convergence to another, “target” protein (see Methods for details). This scheme was 
constructed to test the pure biophysics hypothesis of the cusp’s origin, described above, and 
obviously does not reflect actual convergent evolutionary forces found in nature.  In Figures 4A 
and 4C we accompany the divergent evolution results described above with the results of 
convergent evolution simulations, shown in gray. Under weak selection for folding stability, the 
convergence of protein structure as sequences evolve follows a similar path as it does during 
divergent evolution (Fig. 4A). By contrast, under strong selection for stability, protein structures 
begin to converge at a much higher sequence identity than where they begin to diverge 
(approximately 85% and 25% respectively, Fig. 4C). Proteins converging under the constraint of 
stability also attain only 	69±9%  sequence identity with respect to the target sequence after 
3,000 mutation attempts and only 0.5% of the evolving proteins attained the target structure, 
compared to 100% in the weak selection regime. Therefore, evolutionary dynamics must play a 
role in generating the sequence-structure cusp and a pure biophysics explanation is rejected.  

Taken together, our results from divergent and convergent evolution scenarios indicate 
that selection pressure generates a peculiar hysteresis in evolutionary trajectories: When proteins 
diverge under selection for folding stability, they long retain the same structure because evolving 
a new structure involves passing through a fitness valley. Were two highly diverged (different 
sequence and structure) proteins to converge on the same sequence again, they would long retain 
different structures for the same reason. Such a scheme was realized experimentally in (18) in 
which two proteins with different sequences and structures were subjected to engineered single 
point mutations which increased their sequence identity up to 88% yet did not unfold the proteins 
or change their original structures.  
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Population size modulating selection pressure 
Evolutionary simulations of individual model proteins, while biophysically realistic, lack 
biological realism: the concepts of fitness and selection are applicable to whole cells and 
populations rather than individual proteins. To address this shortcoming, we performed 
simulations of an evolving population of competing single-cell model organisms, as depicted in 
Figure 5A and described in detail in Methods and (51). Model organisms have genes that encode 
27-mer lattice model proteins. Each generation, an organism can die, divide, undergo a gene 
duplication event, or undergo a genetic point mutation. This evolutionary scheme mimics the 
natural emergence of protein families and was previously used to explain the power-law 
distribution of protein family and superfamily sizes observed in nature (51). In contrast to the 
previous model, selection pressure is here applied to the whole organisms rather than only the 
evolving proteins, which makes the situation more biologically realistic and non-trivial. The 
strength of selection (proxied by  in the previous model of individual protein evolution) is 
determined by the population size (52, 53) in the present, more biologically realistic model.  

Evolutionary runs were simulated over a range of maximum population sizes, , from 
500 to 5,000 organisms, in replicates of 50. Whenever birth of new organisms drives the 
population size, , above , randomly selected organisms are removed to ensure 
constant population size, simulating a turbidostat (51).  

Tsel

		Nmax

	N 		Nmax 		N −Nmax
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After many generations, we recorded the extant proteins from all organisms in a 

particular evolutionary run, calculated their stabilities, and calculated the sequence identity and 
structural similarity (Q-score) of all pairs of proteins. We found that the evolutionary runs 
yielding unstable proteins have qualitatively different relationships between sequence and 
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Figure 4: The relationship between sequence 
divergence and structure evolution for model 
proteins (A-C) The sequence identity and Q-score 
for each pair of proteins compared. White points 
indicate the data points from proteins arising in the 
same trajectory. The color scale indicates the density 
of points for each pair of Q-score, sequence identity 
values, and the average Q-score in each sequence 
identity bin of size 0.1 is calculated and plotted in 
green for divergent evolution simulations and in grey 
for convergent evolution simulations (see Methods) 
The histogram represents the frequency of Q-score 
pairs. (A) Weak selection for folding stability: 

. In this regime structure diverges more 
rapidly than sequence. The result of convergent 
evolution simulations without selection for stability is 
shown in grey. There is not significant evolutionary 
hysteresis when selection for folding stability is low 
as can be seen in the similarity of the green and grey 
curves. (B)  When proteins evolve under 
strong selection for folding stability, as they do in 
both the divergent (green) and the convergent (grey) 
evolution simulations, there is clear evolutionary 
hysteresis: depending on whether a pair of proteins 
with 50% sequence identity are diverging or 
converging their structure will most likely be 
extremely similar or very different respectively). (C) 

: At such strong selection for 
thermodynamic stability, structure evolution is 
limited because stability valleys separating structures 
are not overcome on the time scale of simulations. 
(D) The mean structure family size as a function of 

. The size of a structure family is the number of 
non-redundant sequences (sequence identity < 0.25) 
evolved in simulations that adopt a particular 
structure. Shaded regions show one standard 
deviation and colored points mark  (blue), 

 (green), and  (yellow). 
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structure divergence than other replicas. In these cases, the extremely rapid turn-over of 
structures is manifested in a concave-up dependence of average Q-score on sequence identity 
(green and blue trajectories in Fig. 5B), as in the low 𝑃!"# regime of the Monte Carlo simulations 
(Fig. 4A). Once the population size passes the critical threshold, of about 1,250 organisms, the 
characteristically cusped sequence-structure relationships become the most probable result of 
evolution (Fig. 5B, middle and bottom). On the other hand, we do not see a population size 
where structure evolution is almost entirely shut down, even at the largest population sizes 
probed in simulations. This could reflect that in larger populations, there is a larger influx of 
beneficial as well as deleterious mutations, so more neutral or beneficial fold evolution events 
can occur.   

We found that the average 𝑃!"# of proteins at the end of 3,000 generations (𝑃!"#) strongly 
anti-correlates with the diversity of structures observed in the population, as reflected in the 
structure entropy:  

 
		
H = − pi log(pi )

i=1

10,000

∑   (4) 

where 𝑝! is the probability of finding structure 𝑖 in the final generation of the simulations (inset 
of Fig. 5C). The correlation between 𝑃!"# and 𝐻 reflects the fact that less stable proteins have 
faster rates of structure evolution. This correlation does not depend on population size (different 
colors in Fig 5B inset). Rather, we found that population size modulated the number of 
evolutionary replicas that failed to evolve stable proteins (Fig. 5C). This is also reflected in the 
relative peak heights of the Q-scores shown in Figure 5B.  

Finally we examine the size of the average protein structure family across the range of 

	Pnat  explored in the simulations (Figure 5D). The size of protein structure family is defined as the 
number of genes encoding non-redundant protein sequences (sequence identity < 25%) but 
whose gene products adopt the same native state structure. In datasets of natural proteins, protein 
structure families of various sizes have been observed and overall, there is a positive correlation 
between gene family size and protein contact density (41). In the context of these simulations, 
which instantiate the crucial mechanisms of structure family creation and growth (sequence 
evolution, gene duplication, and structure evolution) we observe a strong positive correlation 
between 	Pnat of proteins at the end of an evolutionary replica and the average structure family 
size (Fig. 5D). The significance of the trend is further magnified by the observation that the total 
number of genes in a population at the end of a simulation actually correlates negatively with 

	Pnat  (Fig. S9). Overall, this observation supports the view that stable proteins are trapped in 
particular structures, providing more time for the number of sequences adopting this structure to 
grow.   
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Figure 5: Population size modulates selection pressure (A) Schematic representation of the multi-
scale evolution model. Each organism consists of genes that code for proteins and can be duplicated or 
acquire point mutations. Organisms evolve under selection pressure for protein folding stability. At the 
end of the simulation, sequence identity and Q-score are calculated for each pair of extant proteins in 
the population. (B) The number of replicas that evolved the full 3,000 generations yet failed to evolve 
stable proteins ( ) for each population size. Notably, above population sizes of 1,250 the 
selection pressure is apparently strong enough to drive evolution of stable proteins in each replica. 
Inset: the mean  of proteins at the end of an evolutionary trajectory correlates with the diversity of 
structures. Dark green: population size =500, light green: population size = 1,250 and yellow: 
population size = 5,000 (C) The relationship between sequence divergence and structure evolution in 
population simulations. For each trajectory, the average Q-scores are plotted in a color indicating 𝑃!!"# 
of proteins at the end of the simulation. The black line is the average over the individual trajectories. 
Top panel: Population size  = 500. Middle panel: Population size  = 1,250, Bottom panel: Population 
size  = 5,000. Histograms showing the bimodal distribution of Q-scores are shown for each population 
size. Consistent with the results described above, in the realistic context of population dynamics, the 
characteristic cusp-like dependence of structural similarity (Q-score) on sequence identity only 
emerges at strong selection pressure. (D) Mean structure family size as a function of  of proteins at 
the end of each trajectory.	
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Discussion 
We presented a simple physical analytical model of protein structure evolution that 

explains why there is a cusped relationship between structure and sequence divergence. Under 
the constraint of protein folding stability, fitness valleys form barriers that separate sequences 
encoding stable protein structures. The most stable proteins face formidable fitness valley 
barriers and therefore, slow structure evolution rates. Continuous sequence evolution degrades 
sequence identity of diverging proteins over the timescale needed to accumulate the mutations 
that traverse these valleys. Our simulation results show that protein stabilities and their 
accompanying rates of structure evolution, 	k ,  arise as a result of differential selection pressures 
for stability. Strong selection for stability causes proteins to evolve high stability and hinders 
structure evolution, while weak selection permits rapid exploration of structure space, of 
predominantly unstable proteins. Interestingly, this observation strengthens the analogy to 
chemical kinetics: just as the ratio of the free energy barrier to temperature controls the rate of 
barrier crossing in chemical kinetics, the ratio of the fitness barrier to the appropriate measure of 
strength of evolutionary selection controls the rate of structure discovery in the evolutionary 
context of the model (52).  

Importantly, our bioinformatics analysis of protein domains in SCOP shows that the 
effect of selection strength, as reflected in proteins contact densities, is not just theoretical but 
actually modulates the relationship between structure and sequence divergence, which was 
previously thought to be universal. The analytical model we propose not only explains the 
existence of the cusp, it also recapitulates and explains why the transition to the twilight zone 
becomes sharper as selection pressure increases: high selection decreases the probability that a 
new fold will emerge before decay of sequence similarity saturates.  

Our bioinformatics results were the same when we tested a measure of sequence 
similarity that accounts for similarity of physical properties between substituted amino acids. 
While no other study has examined the effect of contact density on the sequence-structure 
relationship, Wilson et al. rigorously tested multiple methods of scoring sequence similarity 
(including percent sequence identity, Smith-Waterman Score, and statistical significance of 
sequence similarity) and confirmed that the non-linear dependence of structure divergence on 
sequence divergence is independent of the methods used (5). Interestingly, several studies that 
focused on the structure evolution that occurs only within protein families, thereby excluding the 
distantly related proteins included in Wilson 2000 and in our study, reported that the non-
linearity does not arise consistently when percent sequence identity was substituted with other, 
more advanced, measures of sequence similarity (7, 8, 54). This apparent contradiction likely 
arises from the close evolutionary relationship among proteins in a protein family, which share a 
common ancestry as inferred by significant sequence similarity, very similar structure and 
function. Sequence identity saturates more rapidly than other measures of sequence similarity so 
when only closely related proteins are examined, sequence identity begins to saturate, causing 
apparent non-linearity, while others such as NW-score or bitscore may or may not begin to 

Figure 5 cont’d: Population size modulates selection pressure Furthermore, strong evolutionary 
pressure increases relative height of the high Q-score peak in the bimodal Q-score distribution relative 
to the low Q-score peak. (D) Strong evolutionary pressure increases the number of generations 
between fold discovery events and because it generates more stable proteins, is also likely to lead to 
larger structure family sizes through gene duplication in this model. Indeed, the largest protein 

families arise in simulations where evolved model proteins have a high mean  (r=0.9, p=0). 
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saturate depending on the family (8). Therefore, using a measure of sequence similarity such as 
statistical significance of the similarity generally yields a linear relationship within protein 
families (7) However when all proteins sharing a particular SCOP fold are examined (5) the 
relationship between sequence and structure divergence remains non-linear, with the cusp  
present irrespective of the particular definition of sequence and structure divergence (z-scores 
and P-values were used as measures of statistical significance in (7) and (5) respectively ).  We 
also note that this finding is consistent with our divergent evolution model, where non-linearity 
emerges from rare evolutionary transitions between significantly different protein structures (Fig. 
4). Thus by limiting the analysis to protein families (7) and (8) excluded significantly diverged 
structures and, not surprisingly, observed linear relationships between structure and sequence 
divergence for most families. By contrast, we were able to analyze and explain the non-linearity 
in the sequence-structure relationship by expanding the analysis to the level of protein fold.  

An underlying motivation of these previous works was to understand how a protein’s 
structure is encoded in its residues, namely, whether structural information is encoded globally 
across all residues or whether it is localized to a subset of “gatekeeper” residues (55-58). Wood 
and Pearson argued that a non-linear relationship between sequence and structure divergence was 
only consistent with the latter mechanism (7, 8). Indeed, there is a very clear mechanism by 
which the gatekeeper model would generate a cusped relationship between sequence and 
structure divergence: if, for example, only 30% of residues determine protein structure, then 70% 
can evolve without disrupting protein structure, and it is not until these gatekeeper residues 
accumulate mutations that a new structure emerges. Our analytical model, however, is a global 
model of residues determining protein structure because we do not define any privileged 
gatekeeper residues. Thus, we clearly demonstrate that a global model based on fitness barrier 
crossing is also consistent with the cusp and twilight zone.  

In order to test whether a local model whereby few gatekeeper residues determine protein 
structure might also consistent with the bioinformatics and simulation data, we constructed a 
second analytical model based on this mechanism (see SI for derivation). This model predicts 
that the position of the twilight zone depends on the number of gatekeeper residues (Fig. S10). 
While this result may be intuitive, it is not consistent with the bioinformatics or simulation data, 
even though the 30% position of the twilight zone is not imposed on these in any way. That we 
do not observe a moving twilight zone in the data indicates either that folds have roughly the 
same number of gatekeeper residues regardless of stability or that structure evolution is mediated 
globally rather than via a few key residues. Contrary to previous work, therefore, we have shown 
that the global model is not only consistent with the bioinformatics data but is actually better at 
explaining the bioinformatics data than the previously favored local model.  

Despite its simplicity, the proposed structure evolution mechanism is powerful in placing 
many longstanding observations in protein biophysical evolution in a single interpretive 
framework. Along with tuning the rate of structure evolution, another effect of selection is to 
modulate the size of sequence families, i.e. families of sequences that fold into the same native 
structure. This is because strong selection slows the pace of structure evolution more 
dramatically than sequence evolution, so during the time period a protein is “trapped” in a 
particular fold by selection, continued duplication and exploration of the sequences adopting that 
fold generates larger and larger sequence families.  

It has been clear for years that protein contact density is deeply connected to evolution. 
Proteins with high contact density tend to be old, part of larger gene families, and part of larger 
structural neighborhoods (defined as the number of non-redundant sequences adopting similar, 
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but different structures, analogous to a SCOP fold) (41, 59). The root of these observation has 
been attributed to intrinsic evolvability conferred upon a protein by its contact density, and it has 
been hypothesized that young proteins may evolve quickly because they are under positive 
selection to evolve stability of new functions (41, 59). Our work provides an alternative 
framework within which to interpret these findings. We suggest that pressure for folding stability 
that causes proteins to evolve high contact density, severely constraints structure evolution, leads 
to larger gene families due to longer divergence times between structure innovation events, and 
selects for discovery of structures similar to the ancestral structure, to the extent that its possible, 
which leads to larger structural neighborhoods.  

It may seem counterintuitive that stability retards the rate of structure evolution because 
in the context of directed evolution, stability typically enhances evolvability (60). Stability 
promotes evolvability during directed evolution because engineered stabilizing mutations create 
a stability buffer that allows the protein to tolerate destabilizing mutations that confer a new 
function without changing the structure. However in the context of natural evolution, a protein’s 
stability reflects mutation-selection balance, the point at which selection for protein folding 
stability is balanced by mutational pressure towards less stable sequences (30). Therefore 
proteins that are naturally very stable are such because they are under stronger pressure for 
stability (e.g. they may be more abundant in the cytoplasm) and for that reason they might not 
have a reservoir of stability that can be used up and regenerated during for subsequent rounds of 
structure evolution (61). Supporting this point, we observed that structure evolution events were 
associated with loss of stability for proteins of marginal stability, but not for the most stable 
proteins (Fig. S11). 

Here, we reported a negative correlation between contact density and structure evolution 
rate. Curiously, when focusing on contact density and sequence evolutionary rate, Zhou et al. 
reported a positive correlation (62). The influence of selection on contact density and 
evolutionary rates therefore apparently depends on the type of evolutionary rate examined 
(structure versus sequence) and on the timescales (long versus short). Overall, we view contact 
density and its associated metrics as neither a sign of intrinsic evolvability nor evolution under 
weak selection, as most previous studies have, but rather as a signature of strong evolutionary 
selection (41, 59, 62). These interpretations may not be diametrically opposed but further studies 
may be needed to clarify their relationship.  

 
Methods 
Structure divergence of proteins sharing a common SCOP fold  

We use the set of all α, β, α+β, and α/β protein domains in SCOP including mutants (25). 
The contact density of each domain was calculated as a predictor of thermodynamic stability. 
When calculating contact density, we consider two residues in contact if any of their non-
hydrogen residues are within 4.5 angstroms of each other. Proteins belonging to top (>4.93 
contacts/residue), middle (4.57<CD<4.65 contacts/residue), and bottom 10% (<4.13 
contacts/residue) with respect to contact density were studied further. 

Following Chothia and Lesk (4), who studied the divergence of proteins within protein 
families, we studied the divergence of proteins classified into the same SCOP fold. By choosing 
a broader classification than family, we could track divergence over the long timescales over 
which significant structure evolution takes place. SCOP folds are extremely broadly defined so 
proteins sharing a fold classification often adopt significantly different structures.  The structural 
similarity of protein domains classified in the same SCOP fold, in the same contact density class 
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(both having high, intermediate, or low contact density) and comparable length (within 10 amino 
acids) were compared using the Template Modeling-align (TM-align) algorithm which yields a 
number representative of the similarity between two folds, ranging from zero to one (63). Then 
their percent sequence identity was calculated from their alignment by the Needleman-Wunsch 
algorithm and Blosum30 substitution matrix, implemented in MATLAB. Proteins classified in 
different SCOP folds do not share significant sequence homology or structural similarity and 
were therefore not compared. In Figures 1B-D and the corresponding Dataset 1, the data are 
subdivided by contact density alone, not by protein class or fold. 

 
Fitting analytical model to bioinformatics data 

In order to quantify the differences in structure evolutionary rates of real proteins 
apparent in Figure 1, we fit the analytical expression for structure evolution, equation 
Error! Reference source not found., to the data presented in Figure 1B-D (where sequence and 
structure similarity is subdivided by contact density) as well as in Figure S1 (where the data is 
subdivided by structural class). We proceeded by binning the data into 50 bins spanning 
sequence identity of zero to one. This step was necessary to achieve a fit to the data because 
otherwise the large majority of data points at low sequence identity and low structural similarity 
dominate and foreclose the possibility of a meaningful fit to the high sequence identity and cusp 
regions of the data. Because the twilight zone of the analytical model occurs at 5% sequence 
identity, the average sequence identity between two random sequences, while the bulk of 
proteins compared in the twilight zone share 20% sequence identity for real proteins, possibly 
reflecting that sequence alignment algorithms seek to maximize the overlap of sequence pairs 
being aligned, we added a parameter 	c  to the equation in order to shift the analytical model 
twilight zone to the twilight zone of the data. The exact curve that was fitted to the data was  

 

 

		 
!S(q)=1− 1−a
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⎟
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+ c   (5) 

	
where 		 !S(q)  is the sequence identity as a function of structure survival probability, a 
rearrangement of Eq. 3 plus 	c , the twilight zone shift. The parameter 	a  is 20, the number of 
amino acid types, and 	l  is the protein length, which is set to the average length of proteins in the 
dataset being fit. 		 !S(q)  rather than 		q(S)  was fit to the data in order to account for the twilight 
zone in more detail when using the binning procedure. Eq. 5 was fit to the binned bioinformatics 
data using the program Igor, which optimized the parameters 	k  and 	c  for fit.  
Protein model  
We use standard 27-mer lattice-model proteins to simulate the structural evolution of proteins 
(64). Lattice proteins can fold into 103,346 fully compact structures for the 3x3x3 cubic lattice, 
and following (45), we use a representative subset of 10,000 randomly chosen structures for 
computational efficiency. All proteins in this model have 28 contacts and therefore have identical 
contact densities. There are 20 amino acid types in the model. The energy of a protein in any 
given structure can be computed from the Miyazawa Jernigan (MJ) potential (46), which 
contains interaction energies for each spatially proximal pair of any two amino acid types. The 
energy of a 27-mer sequence adopting a particular structure, 	S , is given by 
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		ES =

1
2 C

ij

(S )
ij=1
27∑ MAA(i )AA( j )   (6) 

 
Where 		C (S ) is the contact matrix of structure 	S , whose elements 		Cij

(S ) =1  when residues 	i  and 	j  

form a non-covalent contact and 		Cij
(S ) =0  otherwise. 	M  is the MJ interaction energy matrix such 

that the element 		MAA(i )AA( j )  contains the interaction energy of the amino acid types of residues 	i  

and 	j . The Boltzmann probability, 		Pnat(T) ,  of a protein adopting its native state (lowest 
energy) structure  is therefore given by the canonical partition function:	

 

		
Pnat(T)=

e−Enat /T

e−Ei/T
i=1
10,000∑

  (7) 

Where 	Ei  is the protein’s energy in structure 	i  and 	T  is the temperature in arbitrary units. The 
structure in which a protein's energy is minimized is considered the protein’s native state. 

The degree of structural homology between two model proteins is quantified using the 
number of contacts the structures have in common, normalized by the total number of contacts 
(28 contacts for all compact 27-mer model proteins) (49, 63).  

 
		
Q1,2 =

1
28 Cij

(1)Cij
(2)

ij=1

27

∑   (8) 

  
Where 		C (1)  and 		C (2)  are the contact matrices of the two structures being compared such that 

		Cij =1  if residues i and j are in contact and 0 otherwise, excluding covalently linked residues as 
in Eq. 6.  
Monte Carlo algorithm for divergent evolution 

The model proteins were evolved under selection for folding stability, . This 
constraint captures two biological features. First, most proteins must be folded to carry out their 
function (the obvious exception is intrinsically disordered proteins). Second, unfolded or 
misfolded species can be toxic (40, 65, 66). Each simulation of model protein evolution 
proceeded in two steps. First, each simulation was initialized with a protein stably adopting a 
particular structure ( ). Stable proteins were made by generating a random 27-mer 
amino acid sequences, introducing random mutations, and accepting the mutations only if they 
stabilized a predetermined ground state (67). This procedure, rather than a Monte Carlo 
procedure, is sufficient for generating unique, stable sequences for each structure. Then, 
evolutionary trajectories at different selection pressures for folding stability were carried out as 
follows. Each generation, the protein was subjected to a point mutation. The fitness effect of the 
point mutation was defined as follows: 

 		f = Pnat
(trial ) −Pnat

(original )
  (9)  

Where 		Pnat
(trial )

 is the stability of the protein with the mutation and 		Pnat
(original )

 is the stability of the 
protein prior to the mutation. Any neutral mutation or mutation increasing fitness was accepted 
while destabilizing mutations were accepted or rejected according to the Metropolis criterion 

	Pnat

		Pnat >0.99
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with 		e f /T . The selective temperature, controls the stringency of selection for protein stability; 
the more destabilizing a mutation, the less likely it is to be accepted (67).   directly tunes the 

equilibrium  of evolving proteins (SI, Fig. 1 and Table 1). Simulations ran for 1,000 

mutation attempts, illustrated in Fig. 3A and the structure, sequence, and stability ( ) were 
recorded every 10 generations. This was repeated for approximately 2,750 different starting 
structures at different strengths of selection for stability  (set by ). 
Monte	Carlo	algorithm	for	convergent	evolution	

In these simulations, many proteins all initially adopting different structures with high 

	Pnat  evolve under selection pressure to maximize their sequence identities with respect to the 
same designated “target” sequence. The target sequence is a randomly selected sequence with a 
thermodynamically stable ground state. To simulate the regime where selection pressure for 
folding stability is low (Figure 4A), any mutation increasing sequence identity with respect to the 
target sequence (		SIDi ,target ) was accepted. No selection pressure for folding stability was applied. 
The regime where selection pressure for folding stability is high was simulated by using the 
fitness function 		SIDi ,target ×Pnat  

(Figure 4C). A single convergent evolution simulation was run in 
each selection regime, consisting of 100 proteins converging over 3,000 generations in the weak 
selection regime while 200 protein converging over 3,000 generation were used in the strong 
selection regime to compensate for slower evolution and improve statistics. To determine the 
sequence-structure relationship for convergent evolution, the sequence identity and Q-score of 
the converging proteins were calculated every 100 generations within each regime. 	
Multi-scale modeling of protein evolution  

We used the multi-scale simulation algorithm developed and described in detail in 
Zeldovich et al. 2007 (51). Because this evolutionary procedure yields protein families of sizes 
matching the distributions observed in nature, it is an ideal source of comparison with SCOP 
data. The simulations were initialized with 100 identical organisms, each consisting of a single 
gene (81-mer DNA) with random sequence and its 27-mer gene product. (Thus, an average 
initial protein has a  corresponding to average stability of random sequences) At each 
step in evolutionary time, one of five fates affects each organism with equal probability (1) no 
event (2) point mutation at a random position in the genome to a random nucleotide at rate 

 per unit time per base pair (3) gene duplication with rate  of a random gene in 

the organism’s genome (4) death of the organism with rate  as given by , 

and (5) division of the organism into two equivalent daughter cell with birthrate . Thus, 
for example, there is a 20% chance that gene duplication is selected as an organism’s possible 
fate and a further probability  that a gene will actually be duplicated. As the population 
evolves, the population size may increase until it reaches a carrying capacity, . Once the 

maximum population size is attained it is maintained by removing  randomly chosen 
organisms from the population each generation. We modulate the strength of selection in the 

	Tsel

	Pnat

	Pnat

	Pnat 	Tsel

		Pnat
rand =0.23
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population by simulating populations with size  set at 500, 600, 700, 800, 900, 1000, 1250, 
1500, 1750, 2000, 2250, 2500, 3000, and 5000.  

Fifty evolutionary trajectories were run at each population size. As the simulation 
progresses, proteins evolve, becoming more stable and periodically changing structure, spawning 
new protein families. Trajectories were terminated after 3,000 generations or when the 
population went extinct. Only simulations that ran the full 3,000 generations were analyzed, and 
even among these evolutionary runs, in some cases, the proteins did not evolve high (Fig. 
5B-C). For our analysis of structure divergence, we calculate the pairwise sequence identity and 
Q-score of each extant pair of proteins harvested from a particular evolutionary run. 

		Nmax

	Pnat
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